A FELASA Working Group Survey on Fish Species Used for Research, Methods of Euthanasia, Health Monitoring, and Biosecurity in Europe, North America, and Oceania
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Survey Design
2.2. Analysis and Presentation of Responses
3. Results
3.1. Geographical Distribution of Respondents
3.2. Fish Species Used for Research
3.3. Euthanasia of Research Fish
3.4. Health Monitoring of Fish
3.5. Biosecurity in the Fish Laboratory
4. Discussion
4.1. Limitations of the Study
4.2. Fish Species Used for Research
4.3. Research Fish Euthanasia
4.4. Health and Biosecurity in the Laboratory
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kinth, P.; Mahesh, G.; Panwar, Y. Mapping of zebrafish research: A global outlook. Zebrafish 2013, 10, 510–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Veterinary Medical Association. AVMA Guidelines for the Euthanasia of Animals, 2020 Edition; American Veterinary Medical Association: Schaumburg, IL, USA, 2020. [Google Scholar]
- Neiffer, D.L.; Stamper, M.A. Fish sedation, analgesia, anesthesia, and euthanasia: Considerations, methods, and types of drugs. Ilar J. 2009, 50, 343–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lidster, K.; Readman, G.D.; Prescott, M.J.; Owen, S.F. International survey on the use and welfare of zebrafish Danio rerio in research. J. Fish Biol. 2017, 90, 1891–1905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collymore, C.; Banks, E.K.; Turner, P.V. Lidocaine hydrochloride compared with MS222 for the euthanasia of zebrafish (Danio rerio). J. Am. Assoc. Lab. Anim. Sci. 2016, 55, 816–820. [Google Scholar] [PubMed]
- Readman, G.D.; Owen, S.F.; Murrell, J.C.; Knowles, T.G. Do fish perceive anaesthetics as aversive? PLoS ONE 2013, 8, e73773. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Vázquez, F.J.; Terry, M.I.; Felizardo, V.O.; Vera, L.M. Daily rhythms of toxicity and effectiveness of anesthetics (MS222 and eugenol) in zebrafish (Danio rerio). Chronobiol. Int. 2011, 28, 109–117. [Google Scholar] [CrossRef]
- Wilson, J.M.; Bunte, R.M.; Carty, A.J. Evaluation of rapid cooling and tricaine methanesulfonate (MS222) as methods of euthanasia in zebrafish (Danio rerio). J. Am. Assoc. Lab. Anim. Sci. 2009, 48, 785–789. [Google Scholar]
- Wong, D.; Von Keyserlingk, M.A.G.; Richards, J.G.; Weary, D.M. Conditioned Place Avoidance of Zebrafish (Danio rerio) to Three Chemicals Used for Euthanasia and Anaesthesia. PLoS ONE 2014, 9, e88030. [Google Scholar]
- Readman, G.D.; Owen, S.F.; Knowles, T.G.; Murrell, J.C. Species specific anaesthetics for fish anaesthesia and euthanasia. Sci. Rep. 2017, 7, 7102. [Google Scholar] [CrossRef] [Green Version]
- Zahl, I.H.; Kiessling, A.; Samuelsen, O.B.; Olsen, R.E. Anesthesia induces stress in Atlantic salmon (Salmo salar), Atlantic cod (Gadus morhua) and Atlantic halibut (Hippoglossus hippoglossus). Fish Physiol. Biochem. 2010, 36, 719–730. [Google Scholar] [CrossRef]
- Schroeder, P.; Lloyd, R.; McKimm, R.; Metselaar, M.; Navarro, J.; O’Farrell, M.; Readman, G.D.; Speilberg, L.; Mocho, J.-P. Anaesthesia of laboratory, aquaculture and ornamental fish: Proceedings of the first LASA-FVS Symposium. Lab. Anim. 2021, 55, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Mocho, J.-P.; Lang, F.; Valentin, G.; Bedu, S.; McKimm, R.; Ramos, J.; Saavedra-Torres, Y.; Wheatley, S.E.; Higgins, J.; Millington, M.E.; et al. A Multi-Site Assessment of Anesthetic Overdose, Hypothermic Shock, and Electrical Stunning as Methods of Euthanasia for Zebrafish (Danio rerio) Embryos and Larvae. Biology 2022, 11, 546. [Google Scholar] [CrossRef] [PubMed]
- Von Krogh, K.; Higgins, J.; Saavedra Torres, Y.; Mocho, J.-P. Screening of anaesthetics in adult zebrafish (Danio rerio) for the induction of euthanasia by overdose. Biology 2021, 10, 1133. [Google Scholar] [CrossRef]
- European Union. Directive 2010/63/EU of the European Parliament and of the Council; On the protection of animals used for scientific purposes. Off. J. Eur. Union 2010, 276, 33–79. [Google Scholar]
- Canadian Council on Animal Care. Canadian Council on Animal Care (CCAC) Guidelines: Zebrafish and Other Small, Warm-Water Laboratory Fish; Canadian Council on Animal Care: Ottawa, ON, Canada, 2020. [Google Scholar]
- Boyland, N.; Brooke, P. Farmed Fish Welfare during Slaughter; Aquaculture Advisory Council (AAC): Brussels, Belgium, 2017. [Google Scholar]
- Bohlin, T.; Hamrin, S.; Heggberget, T.G.; Rasmussen, G.; Saltveit, S.J. Electrofishing—Theory and practice with special emphasis on salmonids. Hydrobiologia 1989, 173, 9–43. [Google Scholar] [CrossRef]
- Snyder, D.E. Invited overview: Conclusions from a review of electrofishing and its harmful effects on fish. Rev. Fish Biol. Fish. 2003, 13, 445–453. [Google Scholar] [CrossRef]
- Lambooij, E.; Grimsbo, E.; Van de Vis, J.W.; Reimert, H.G.M.; Nortvedt, R.; Roth, B. Percussion and electrical stunning of Atlantic salmon (Salmo salar) after dewatering and subsequent effect on brain and heart activities. Aquaculture 2010, 300, 107–112. [Google Scholar] [CrossRef]
- Lambooij, E.; Kloosterboer, R.J.; Gerritzen, M.A.; Van De Vis, J.W. Assessment of electrical stunning in fresh water of African Catfish (Clarias gariepinus) and chilling in ice water for loss of consciousness and sensibility. Aquaculture 2006, 254, 388–395. [Google Scholar] [CrossRef]
- Retter, K.; Esser, K.-H.; Lupke, M.; Hellmann, J.; Steinhagen, D.; Jung-Schroers, V. Stunning of common carp: Results from a field and a laboratory study. BMC Vet. Res. 2018, 14, 205. [Google Scholar] [CrossRef] [Green Version]
- Roth, B.; Slinde, E.; Robb, D.H.F. Percussive stunning of Atlantic salmon (Salmo salar) and the relation between force and stunning. Aquac. Eng. 2007, 36, 192–197. [Google Scholar] [CrossRef]
- Blessing, J.J.; Marshall, J.C.; Balcombe, S.R. Humane killing of fishes for scientific research: A comparison of two methods. J. Fish Biol. 2010, 76, 2571–2577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, M.; Varga, Z.M. Anesthesia and euthanasia in zebrafish. Ilar J. 2012, 53, 192–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, C.K.; Bright, L.A.; Marx, J.O.; Andersen, R.P.; Mullins, M.C.; Carty, A.J. Effectiveness of rapid cooling as a method of euthanasia for young zebrafish (Danio rerio). J. Am. Assoc. Lab. Anim. Sci. 2018, 57, 58–63. [Google Scholar] [PubMed]
- Lambooij, E.; Van De Vis, H.; Kloosterboer, R.J.; Pieterse, C. Welfare aspects of live chilling and freezing of farmed eel (Anguilla anguilla L.): Neurological and behavioural assessment. Aquaculture 2002, 210, 159–169. [Google Scholar] [CrossRef]
- Bermejo-Poza, R.; Fernandez-Muela, M.; Fuente, J.; Perez, C.; Gonzalez de Chavarri, E.; Diaz, M.; Torrent, F.; Villarroel, M. Effect of ice stunning versus electronarcosis on stress response and flesh quality of rainbow trout. Aquaculture 2021, 538, 736586. [Google Scholar] [CrossRef]
- Strykowski, J.L.; Schech, J.M. Effectiveness of recommended euthanasia methods in larval zebrafish (Danio rerio). J. Am. Assoc. Lab. Anim. Sci. 2015, 54, 81–84. [Google Scholar]
- Lieggi, C.; Kalueff, A.V.; Lawrence, C.; Collymore, C. The Influence of Behavioral, Social, and Environmental Factors on Reproducibility and Replicability in Aquatic Animal Models. Ilar J. 2020, 60, 270–288. [Google Scholar] [CrossRef]
- Alestrom, P.; D’Angelo, L.; Midtlyng, P.J.; Schorderet, D.F.; Schulte-Merker, S.; Sohm, F.; Warner, S. Zebrafish: Housing and husbandry recommendations. Lab. Anim. 2020, 54, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Johansen, R.; Needham, J.R.; Colquhoun, D.J.; Poppe, T.T.; Smith, A.J. Guidelines for health and welfare monitoring of fish used in research. Lab. Anim. 2006, 40, 323–340. [Google Scholar] [CrossRef] [Green Version]
- Mocho, J.-P.; Pereira, N. Chapter 4—Health monitoring, disease, and clinical pathology. In Laboratory Fish in Biomedical Research; D’Angelo, L., De Girolamo, P., Eds.; Academic Press: San Diego, CA, USA, 2021; pp. 81–100. [Google Scholar]
- Mocho, J.-P.; Collymore, C.; Farmer, S.C.; Leguay, E.; Murray, K.N.; Pereira, N. FELASA-AALAS recommendations for monitoring and reporting of laboratory fish diseases and health status, with an emphasis on zebrafish (Danio rerio). Comp. Med. 2022, 72, 127–148. [Google Scholar] [CrossRef]
- Borges, A.C.; Pereira, N.; Franco, M.; Vale, L.; Pereira, M.; Cunha, M.V.; Amaro, A.; Albuquerque, T.; Rebelo, M. Implementation of a Zebrafish Health Program in a Research Facility: A 4-Year Retrospective Study. Zebrafish 2016, 13 (Suppl. 1), S115–S126. [Google Scholar] [CrossRef] [Green Version]
- Mocho, J.-P. Three-Dimensional Screen: A Comprehensive Approach to the Health Monitoring of Zebrafish. Zebrafish 2016, 13 (Suppl. 1), S132–S137. [Google Scholar] [CrossRef] [Green Version]
- Gauthier, D.T.; Rhodes, M.W. Mycobacteriosis in fishes: A review. Vet. J. 2009, 180, 33–47. [Google Scholar] [CrossRef]
- Kent, M.L.; Harper, C.; Wolf, J.C. Documented and potential research impacts of subclinical diseases in zebrafish. Ilar J. 2012, 53, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Whipps, C.M.; Lieggi, C.; Wagner, R. Mycobacteriosis in zebrafish colonies. ILAR J. 2012, 53, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, C.; Ennis, D.G.; Harper, C.; Kent, M.L.; Murray, K.; Sanders, G.E. The challenges of implementing pathogen control strategies for fishes used in biomedical research. Comp. Biochem. Physiol. Toxicol. Pharmacol. CBP 2012, 155, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Kent, M.L.; Sanders, J.L.; Spagnoli, S.; Al-Samarrie, C.E.; Murray, K.N. Review of diseases and health management in zebrafish Danio rerio (Hamilton 1822) in research facilities. J. Fish Dis. 2020, 43, 637–650. [Google Scholar] [CrossRef]
- Lawrence, C.; Eisen, J.S.; Varga, Z.M. Husbandry and Health Program Survey Synopsis. Zebrafish 2016, 13 (Suppl. 1), S5–S7. [Google Scholar] [CrossRef] [Green Version]
- Murray, K.N.; Dreska, M.; Nasiadka, A.; Rinne, M.; Matthews, J.L.; Carmichael, C.; Bauer, J.; Varga, Z.M.; Westerfield, M. Transmission, diagnosis, and recommendations for control of Pseudoloma neurophilia infections in laboratory zebrafish (Danio rerio) facilities. Comp. Med. 2011, 61, 322–329. [Google Scholar]
- Murray, K.N.; Varga, Z.M.; Kent, M.L. Biosecurity and Health Monitoring at the Zebrafish International Resource Center. Zebrafish 2016, 13 (Suppl. 1), S30–S38. [Google Scholar] [CrossRef] [Green Version]
- Midttun, H.L.E.; Vindas, M.A.; Nadler, L.E.; Øverli, Ø.; Johansen, I.B. Behavioural effects of the common brain-infecting parasite Pseudoloma neurophilia in laboratory zebrafish (Danio rerio). Sci. Rep. 2020, 10, 8083. [Google Scholar] [CrossRef]
- Midttun, H.L.E.; Vindas, M.A.; Whatmore, P.J.; Øverli, Ø.; Johansen, I.B. Effects of Pseudoloma neurophilia infection on the brain transcriptome in zebrafish (Danio rerio). J. Fish Dis. 2020, 43, 863–875. [Google Scholar] [CrossRef]
- Spagnoli, S.; Sanders, J.; Kent, M.L. The common neural parasite Pseudoloma neurophilia causes altered shoaling behaviour in adult laboratory zebrafish (Danio rerio) and its implications for neurobehavioural research. J. Fish Dis. 2017, 40, 443–446. [Google Scholar] [CrossRef] [Green Version]
- Spagnoli, S.; Xue, L.; Kent, M.L. The common neural parasite Pseudoloma neurophilia is associated with altered startle response habituation in adult zebrafish (Danio rerio): Implications for the zebrafish as a model organism. Behav. Brain Res. 2015, 291, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Sergeant, E.S.G. Epitools Epidemiological Calculators. Ausvet. 2018. Available online: http://epitools.ausvet.com.au (accessed on 27 July 2022).
- Collymore, C.; Crim, M.J.; Lieggi, C. Recommendations for Health Monitoring and Reporting for Zebrafish Research Facilities. Zebrafish 2016, 13 (Suppl. 1), S138–S148. [Google Scholar] [CrossRef] [Green Version]
- Mocho, J.-P.; Martin, D.J.; Millington, M.E.; Saavedra Torres, Y. Environmental Screening of Aeromonas hydrophila, Mycobacterium spp., and Pseudocapillaria tomentosa in Zebrafish Systems. JoVE 2017, 130, e55306. [Google Scholar]
- Beran, V.; Matlova, L.; Dvorska, L.; Svastova, P.; Pavlik, I. Distribution of mycobacteria in clinically healthy ornamental fish and their aquarium environment. J. Fish Dis. 2006, 29, 383–393. [Google Scholar] [CrossRef]
- Mocho, J.-P.; Collymore, C.; Farmer, S.C.; Leguay, E.; Murray, K.N.; Pereira, N. FELASA-AALAS recommendations for biosecurity in an aquatic facility; including prevention of zoonosis, introduction of new fish colonies, and quarantine. Comp. Med. 2022, 72, 149–168. [Google Scholar] [CrossRef]
- Johan, C.A.C.; Zainathan, S.C. Megalocytiviruses in ornamental fish: A review. Vet. World 2020, 13, 2565–2577. [Google Scholar] [CrossRef]
- Bermudez, R.; Losada, A.P.; De Azevedo, A.M.; Guerra-Varela, J.; Perez-Fernandez, D.; Sanchez, L.; Padros, F.; Nowak, B.; Quiroga, M.I. First description of a natural infection with spleen and kidney necrosis virus in zebrafish. J. Fish Dis. 2018, 41, 1283–1294. [Google Scholar] [CrossRef]
- Mason, T.; Snell, K.; Mittge, E.; Melancon, E.; Montgomery, R.; McFadden, M.; Camoriano, J.; Kent, M.L.; Whipps, C.M.; Peirce, J. Strategies to Mitigate a Mycobacterium marinum Outbreak in a Zebrafish Research Facility. Zebrafish 2016, 13 (Suppl. 1), S77–S87. [Google Scholar] [CrossRef] [Green Version]
- Kent, M.L.; Feist, S.W.; Harper, C.; Hoogstraten-Miller, S.; Law, J.M.; Sánchez-Morgado, J.M.; Tanguay, R.L.; Sanders, G.E.; Spitsbergen, J.M.; Whipps, C.M. Recommendations for control of pathogens and infectious diseases in fish research facilities. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 2009, 149, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.; Sabrautzki, S.; Beyerlein, A.; Brielmeier, M. Combining fish and environmental PCR for diagnostics of diseased laboratory zebrafish in recirculating systems. PLoS ONE 2019, 14, e0222360. [Google Scholar] [CrossRef] [Green Version]
- Russell, W.M.S.; Burch, R.L. The Principles of Humane Experimental Technique; Methuen & Co: London, UK, 1959. [Google Scholar]
African sharptooth catfish (Clarias gariepinus) | Eel | Pike (Esox lucius) |
American paddlefish (Polyodon spathula) | European grayling (Thymallus thymallus) | Plaice |
Anchovy | Flathead grey mullet (Mugil cephalus) | Plainfin midshipman (Porichthys notatus) |
Astyanax mexicanus | Flounder | Pseudochondrostoma duriense |
Atlantic cod (Gadus morhua) | Gilt head sea bream (Sparus aurata) | Ray |
Ballan wrasse (Labrus bergylta) | Goby | Roach |
Bigeyes | Golden orfe (Leuciscus idus) | Rockling |
Bluegill sunfish (Lepomis macrochirus) | Goldfish (Carassius auratus) | Salmon |
Bullhead | Gourami | Sculpin |
Butterfish | Gudgeon | Sea bass |
Carp | Guppy | Senegal bichir (Polypterus senegalus) |
Catfish | Hagfish | Shark |
Charr | John Dory | Shortfin molly (Poecilia mexicana) |
Cichlids (other than tilapia) | Killifish | Skate |
Clownfish | Knifefish | Smelt |
Cobia (Rachycentron canadum) | Lamprey | Snapper |
Cod | Leather jacket (Oligoplites saurus) | Sole |
Common barbel (Barbus barbus) | Luciobarbus bocagei | Stickleback |
Common bream (Abramis brama) | Lumpsucker | Sturgeon |
Common chub (Squalius cephalus) | Marblefish | Sunbleak (Leucaspius delineatus) |
Common dab (Limanda limanda) | Meagre (Argyrosomus regius) | Tench (Tinca tinca) |
Common rudd (Scardinius erythrophthalmus) | Medaka (Oryzias latipes) | Tilapia |
Common sunfish (Lepomis gibbosus) | Minnow (other than zebrafish) | Trout |
Common triplefin (Forsterygion lapillum) | Parore | Tuna |
Dragonet | Peacock blenny (Salaria pavo) | Turbot |
Drummer (Pogonias cromis) | Perch | Wolffish |
Eastern mudminnow (Umbra pygmae) | Phreatichthys andruzzii | Zebrafish (Danio rerio) |
Population Size | Prevalence | ||||
---|---|---|---|---|---|
0.5% | 1% | 5% | 10% | 50% | |
500 | 333 | 238 | 60 | 31 | 7 |
1000 | 475 | 273 | 62 | 32 | 7 |
5000 | 595 | 307 | 63 | 32 | 7 |
10,000 | 613 | 311 | 63 | 32 | 7 |
100,000 | 629 | 315 | 64 | 32 | 7 |
1,000,000 | 631 | 316 | 64 | 32 | 7 |
∞ | 630 | 314 | 62 | 31 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mocho, J.-P.; von Krogh, K. A FELASA Working Group Survey on Fish Species Used for Research, Methods of Euthanasia, Health Monitoring, and Biosecurity in Europe, North America, and Oceania. Biology 2022, 11, 1259. https://doi.org/10.3390/biology11091259
Mocho J-P, von Krogh K. A FELASA Working Group Survey on Fish Species Used for Research, Methods of Euthanasia, Health Monitoring, and Biosecurity in Europe, North America, and Oceania. Biology. 2022; 11(9):1259. https://doi.org/10.3390/biology11091259
Chicago/Turabian StyleMocho, Jean-Philippe, and Kristine von Krogh. 2022. "A FELASA Working Group Survey on Fish Species Used for Research, Methods of Euthanasia, Health Monitoring, and Biosecurity in Europe, North America, and Oceania" Biology 11, no. 9: 1259. https://doi.org/10.3390/biology11091259
APA StyleMocho, J. -P., & von Krogh, K. (2022). A FELASA Working Group Survey on Fish Species Used for Research, Methods of Euthanasia, Health Monitoring, and Biosecurity in Europe, North America, and Oceania. Biology, 11(9), 1259. https://doi.org/10.3390/biology11091259