Limited Acclimation in Leaf Morphology and Anatomy to Experimental Drought in Temperate Forest Species
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Site
2.2. Experimental Design
2.3. Seedling Growth and Biomass Above and Below Ground
2.4. Leaf Morphological and Stomatal Traits
2.5. Leaf Anatomical Traits
2.6. Stem Water Potential
2.7. Soil Analysis
2.8. Statistical Analysis
3. Results
3.1. Seedling’s Growth Above and Below Ground
3.2. Leaf Morphology
3.3. Leaf Hydraulic and Anatomical Traits and Stem Water Potentials
3.4. Interrelations of Leaf Functional Traits with Environmental Factors
3.5. Correlations of Leaf Functional Traits
4. Discussion
4.1. Effects of Drought on Above-Ground Growth Traits
4.2. Effects of Drought on LT, LA, and Stomatal Traits
4.3. Effect of Drought on Leaf Hydraulic or Anatomical Traits and Stem Water Status
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoover, D.L.; Wilcox, K.R.; Young, K.E. Experimental droughts with rainout shelters: A methodological review. Ecosphere 2018, 9, e02088. [Google Scholar] [CrossRef] [Green Version]
- Cook, B.I.; Ault, T.R.; Smerdon, J.E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 2015, 1, e1400082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ning, Q.-R.; Gong, X.-W.; Li, M.-Y.; Hao, G.-Y. Differences in growth pattern and response to climate warming between Larix olgensis and Pinus koraiensis in Northeast China are related to their distinctions in xylem hydraulics. Agric. For. Meteorol. 2022, 312, 108724. [Google Scholar] [CrossRef]
- Cheng, D.; Niklas, K.J.; Zhong, Q.; Yang, Y.; Zhang, J. Interspecific differences in whole-plant respiration vs. biomass scaling relationships: A case study using evergreen conifer and angiosperm tree seedlings. Am. J. Bot. 2014, 101, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Chakhchar, A.; Chaguer, N.; Ferradous, A.; Filali-Maltouf, A.; El Modafar, C. Root system response in Argania spinosa plants under drought stress and recovery. Plant Signal. Behav. 2018, 13, e1489669. [Google Scholar] [CrossRef] [Green Version]
- Schlaepfer, D.R.; Bradford, J.B.; Lauenroth, W.K.; Munson, S.M.; Tietjen, B.; Hall, S.A.; Wilson, S.D.; Duniway, M.C.; Jia, G.; Pyke, D.A.; et al. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat. Commun. 2017, 8, 14196. [Google Scholar] [CrossRef]
- Tietjen, B.; Schlaepfer, D.R.; Bradford, J.B.; Lauenroth, W.K.; Hall, S.A.; Duniway, M.; Hochstrasser, T.; Jia, G.; Munson, S.M.; Pyke, D.A.; et al. Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands. Glob. Chang. Biol. 2017, 23, 2743–2754. [Google Scholar] [CrossRef]
- Valverde-Barrantes, O.J.; Freschet, G.T.; Roumet, C.; Blackwood, C. A worldview of root traits: The influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytol. 2017, 215, 1562–1573. [Google Scholar] [CrossRef] [Green Version]
- Canadell, J.; Jackson, R.B.; Ehleringer, J.B.; Mooney, H.A.; Sala, O.; Schulze, E.-D. Maximum rooting depth of vegetation types at the global scale. Oecologia 1996, 108, 583–595. [Google Scholar] [CrossRef]
- Kono, Y.; Ishida, A.; Saiki, S.-T.; Yoshimura, K.; Dannoura, M.; Yazaki, K.; Kimura, F.; Yoshimura, J.; Aikawa, S.-I. Initial hydraulic failure followed by late-stage carbon starvation leads to drought-induced death in the tree Trema orientalis. Commun. Biol. 2019, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Bhusal, N.; Lee, M.; Lee, H.; Adhikari, A.; Han, A.R.; Han, A.; Kim, H.S. Evaluation of morphological, physiological, and biochemical traits for assessing drought resistance in eleven tree species. Sci. Total Environ. 2021, 779, 146466. [Google Scholar] [CrossRef] [PubMed]
- Willis, K.J.; Jeffers, E.S.; Tovar, C. What makes a terrestrial ecosystem resilient? Science 2018, 359, 988–989. [Google Scholar] [CrossRef] [PubMed]
- Vitasse, Y.; Bottero, A.; Cailleret, M.; Bigler, C.; Fonti, P.; Gessler, A.; Lévesque, M.; Rohner, B.; Weber, P.; Rigling, A.; et al. Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Glob. Chang. Biol. 2019, 25, 3781–3792. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Islam, M.; Bräuning, A. Species-specific growth resilience to drought in a mixed semi-deciduous tropical moist forest in South Asia. For. Ecol. Manag. 2019, 433, 487–496. [Google Scholar] [CrossRef]
- Blackman, C.J.; Gleason, S.M.; Cook, A.; Chang, Y.; Laws, C.A.; Westoby, M. The links between leaf hydraulic vulnerability to drought and key aspects of leaf venation and xylem anatomy among 26 Australian woody angiosperms from contrasting climates. Ann. Bot. 2018, 122, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Witkowski, E.; Lamont, B. Leaf specific mass confounds leaf density and thickness. Oecologia 1991, 88, 486–493. [Google Scholar] [CrossRef]
- Jurik, T.W.; Chabot, J.F.; Chabot, B.F. Effects of Light and Nutrients on Leaf Size, CO2 Exchange, and Anatomy in Wild Strawberry (Fragaria virginiana). Plant Physiol. 1982, 70, 1044–1048. [Google Scholar] [CrossRef] [Green Version]
- Reich, P.B.; Walters, M.B.; Tjoelker, M.G.; Vanderklein, D.; Buschena, C. Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Funct. Ecol. 1998, 12, 395–405. [Google Scholar] [CrossRef]
- Poorter, H.; Niinemets, Ü.; Poorter, L.; Wright, I.J.; Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol. 2009, 182, 565–588. [Google Scholar] [CrossRef]
- Wright, I.J.; Dong, N.; Maire, V.; Prentice, I.C.; Westoby, M.; Díaz, S.; Gallagher, R.V.; Jacobs, B.F.; Kooyman, R.; Law, E.A.; et al. Global climatic drivers of leaf size. Science 2017, 357, 917–921. [Google Scholar] [CrossRef] [Green Version]
- Leigh, A.; Sevanto, S.; Close, J.; Nicotra, A. The influence of leaf size and shape on leaf thermal dynamics: Does theory hold up under natural conditions? Plant Cell Environ. 2016, 40, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Zhou, X.; Nie, Y.; Bai, S.H.; Zhou, L.; Shao, J.; Cheng, W.; Wang, J.; Hu, F.; Fu, Y. Drought-induced changes in root biomass largely result from altered root morphological traits: Evidence from a synthesis of global field trials. Plant Cell Environ. 2018, 41, 2589–2599. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, Y.; Chen, Y.; Ling, L.; Jiang, Y.; Duan, H.; Liu, J. Effects of drought regimes on growth and physiological traits of a typical shrub species in subtropical China. Glob. Ecol. Conserv. 2020, 24, e01269. [Google Scholar] [CrossRef]
- Forner, A.; Valladares, F.; Bonal, D.; Granier, A.; Grossiord, C.; Aranda, I. Extreme droughts affecting Mediterranean tree species’ growth and water-use efficiency: The importance of timing. Tree Physiol. 2018, 38, 1127–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manning, D.A.C.; Lopez-Capel, E.; White, M.L.; Barker, S. Carbon isotope determination for separate components of heterogeneous materials using coupled thermogravimetric analysis/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- Kuster, T.M.; Arend, M.; Bleuler, P.; Günthardt-Goerg, M.S.; Schulin, R. Water regime and growth of young oak stands subjected to air-warming and drought on two different forest soils in a model ecosystem experiment. Plant Biol. 2012, 15, 138–147. [Google Scholar] [CrossRef]
- Zadworny, M.; Mucha, J.; Jagodziński, A.M.; Kościelniak, P.; Łakomy, P.; Modrzejewski, M.; Ufnalski, K.; Żytkowiak, R.; Comas, L.H.; Rodríguez-Calcerrada, J. Seedling regeneration techniques affect root systems and the response of Quercus robur seedlings to water shortages. For. Ecol. Manag. 2021, 479, 118552. [Google Scholar] [CrossRef]
- Poorter, H.; Niklas, K.J.; Reich, P.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 2011, 193, 30–50. [Google Scholar] [CrossRef]
- Dayer, S.; Herrera, J.; Dai, Z.; Burlett, R.; Lamarque, L.J.; Delzon, S.; Bortolami, G.; Cochard, H.; Gambetta, G.A. The sequence and thresholds of leaf hydraulic traits underlying grapevine varietal differences in drought tolerance. J. Exp. Bot. 2020, 71, 4333–4344. [Google Scholar] [CrossRef] [Green Version]
- Erice, G.; Louahlia, S.; Irigoyen, J.J.; Sanchez-Diaz, M.; Avice, J.-C. Biomass partitioning, morphology and water status of four alfalfa genotypes submitted to progressive drought and subsequent recovery. J. Plant Physiol. 2010, 167, 114–120. [Google Scholar] [CrossRef]
- Duan, H.; Chaszar, B.; Lewis, J.D.; Smith, A.R.; Huxman, E.T.; Tissue, D.T. CO2 and temperature effects on morphological and physiological traits affecting risk of drought-induced mortality. Tree Physiol. 2018, 38, 1138–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blum, A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 2016, 40, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Varone, L.; Ribas-Carbo, M.; Cardona, C.; Gallé, A.; Medrano, H.; Gratani, L.; Flexas, J. Stomatal and non-stomatal limitations to photosynthesis in seedlings and saplings of Mediterranean species pre-conditioned and aged in nurseries: Different response to water stress. Environ. Exp. Bot. 2012, 75, 235–247. [Google Scholar] [CrossRef]
- Song, J.; Trueba, S.; Yin, X.-H.; Cao, K.-F.; Brodribb, T.J.; Hao, G.-Y. Hydraulic vulnerability segmentation in compound-leaved trees: Evidence from an embolism visualization technique. Plant Physiol. 2022, 189, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Poorter, H.; Jagodzinski, A.; Ruiz-Peinado, R.; Kuyah, S.; Luo, Y.; Oleksyn, J.; Usoltsev, V.A.; Buckley, T.N.; Reich, P.; Sack, L. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytol. 2015, 208, 736–749. [Google Scholar] [CrossRef] [PubMed]
- Beikircher, B.; De Cesare, C.; Mayr, S. Hydraulics of high-yield orchard trees: A case study of three Malus domestica cultivars. Tree Physiol. 2013, 33, 1296–1307. [Google Scholar] [CrossRef] [PubMed]
- Junk, W.; Piedade, M.T.; Wittmann, F.; Schöngart, J.; Parolin, P. Amazonian Floodplain Forests. Ecophysiology, Biodiversity and Sustainable Management; Caldwell, M.M., Heldmaier, G., Jackson, R.B., Lange, O.L., Mooney, H.A., Schulze, E.-D., Sommer, U., Eds.; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2010; Volume 210. [Google Scholar]
- Oksanen, J.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Simpson, G.; Solymos, P.; Stevens, M.; Wagner, H.J.V. Community ecology package: Ordination, diversity and dissimilarities. Version 2013, 2, 295. [Google Scholar]
- Wei, T.; Simko, V. R package “corrplot”: Visualization of a Correlation Matrix (Version 0.84). 2017. Available online: https://github.com/taiyun/corrplot (accessed on 9 July 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Lambers, H.; Oliveira, R.S. Plant Physiological Ecology; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Nikolova, P.S.; Zang, C.; Pretzsch, H. Combining tree-ring analyses on stems and coarse roots to study the growth dynamics of forest trees: A case study on Norway spruce (Picea abies [L.] H. Karst). Trees 2011, 25, 859–872. [Google Scholar] [CrossRef]
- Bouriaud, O.; Leban, J.-M.; Bert, D.; Deleuze, C. Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiol. 2005, 25, 651–660. [Google Scholar] [CrossRef] [Green Version]
- Pájaro-Esquivia, Y.S.; Domínguez-Haydar, Y.; Tinoco-Ojanguren, C. Intraspecific variation in morpho-functional traits and plastic response to water and light in seedlings of Aspidosperma polyneuron (Apocynaceae). Flora 2021, 282, 151903. [Google Scholar] [CrossRef]
- Sánchez-Gómez, D.; Zavala, M.A.; Valladares, F. Functional traits and plasticity linked to seedlings’ performance under shade and drought in Mediterranean woody species. Ann. For. Sci. 2008, 65, 311. [Google Scholar] [CrossRef] [Green Version]
- Minucci, J.M.; Miniat, C.F.; Teskey, R.O.; Wurzburger, N. Tolerance or avoidance: Drought frequency determines the response of an N2-fixing tree. New Phytol. 2017, 215, 434–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaltonen, H.; Lindén, A.; Heinonsalo, J.; Biasi, C.; Pumpanen, J. Effects of prolonged drought stress on Scots pine seedling carbon allocation. Tree Physiol. 2017, 37, 418–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, W.; Allington, G.; Li, Y.L.; Zhang, T.-H.; Zhao, X.-Y.; Wang, S.-K. Life history strategy influences biomass allocation in response to limiting nutrients and water in an Arid system. Pol. J. Ecol. 2012, 60, 545–557. [Google Scholar]
- Hamann, E.; Kesselring, H.; Stöcklin, J. Plant responses to simulated warming and drought: A comparative study of functional plasticity between congeneric mid and high elevation species. J. Plant Ecol. 2017, 11, 364–374. [Google Scholar] [CrossRef] [Green Version]
- Pretzsch, H.; Uhl, E.; Biber, P.; Schütze, G.; Coates, K.D. Change of allometry between coarse root and shoot of Lodgepole pine (Pinus contorta DOUGL. ex. LOUD) along a stress gradient in the sub-boreal forest zone of British Columbia. Scand. J. For. Res. 2012, 27, 532–544. [Google Scholar] [CrossRef]
- Sack, L.; Grubb, P.J.; Marañón, T. The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest understories in southern Spain. Plant Ecol. 2003, 168, 139–163. [Google Scholar] [CrossRef]
- Ludlow, M.M. Strategies of Response to Water Stress. In Proceedings of the Structural and Functional Responses to Environmental Stresses: Water Shortage. 14th International Botanical Congress, Berlin, Germany, 24 July–1 August 1987; Kreeb, K.H., Richter, H., Hinckley, T.M., Eds.; SPB Academic Publishers: Hague, The Netherlands, 1989; pp. 269–281. [Google Scholar]
- Taeger, S.; Zang, C.; Liesebach, M.; Schneck, V.; Menzel, A. Impact of climate and drought events on the growth of Scots pine (Pinus sylvestris L.) provenances. For. Ecol. Manag. 2013, 307, 30–42. [Google Scholar] [CrossRef]
- Zang, C.; Hartl, C.; Dittmar, C.; Rothe, A.; Menzel, A. Patterns of drought tolerance in major European temperate forest trees: Climatic drivers and levels of variability. Glob. Chang. Biol. 2014, 20, 3767–3779. [Google Scholar] [CrossRef]
- Sancho-Knapik, D.; Escudero, A.; Mediavilla, S.; Scoffoni, C.; Zailaa, J.; Cavender-Bares, J.; Álvarez-Arenas, T.G.; Molins, A.; Alonso-Forn, D.; Ferrio, J.P.; et al. Deciduous and evergreen oaks show contrasting adaptive responses in leaf mass per area across environments. New Phytol. 2020, 230, 521–534. [Google Scholar] [CrossRef]
- Bhusal, N.; Han, S.-G.; Yoon, T.-M. Impact of drought stress on photosynthetic response, leaf water potential, and stem sap flow in two cultivars of bi-leader apple trees (Malus × domestica Borkh.). Sci. Hortic. 2019, 246, 535–543. [Google Scholar] [CrossRef]
- Ren, T.; He, N.; Liu, Z.; Li, M.; Zhang, J.; Li, A.; Wei, C.; Lü, X.; Han, X. Environmental filtering rather than phylogeny determines plant leaf size in three floristically distinctive plateaus. Ecol. Indic. 2021, 130, 108049. [Google Scholar] [CrossRef]
- Valladares, F.; Sánchez-Gómez, D. Ecophysiological Traits Associated with Drought in Mediterranean Tree Seedlings: Individual Responses versus Interspecific Trends in Eleven Species. Plant Biol. 2006, 8, 688–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zavala, M.; de la Parra, R.B. A mechanistic model of tree competition and facilitation for Mediterranean forests: Scaling from leaf physiology to stand dynamics. Ecol. Model. 2005, 188, 76–92. [Google Scholar] [CrossRef]
- Edwards, E.J.; Chatelet, D.S.; Sack, L.; Donoghue, M.J. Leaf life span and the leaf economic spectrum in the context of whole plant architecture. J. Ecol. 2014, 102, 328–336. [Google Scholar] [CrossRef] [Green Version]
- Tian, M.; Yu, G.; He, N.; Hou, J. Leaf morphological and anatomical traits from tropical to temperate coniferous forests: Mechanisms and influencing factors. Sci. Rep. 2016, 6, 19703. [Google Scholar] [CrossRef] [Green Version]
- Galmés, J.; Flexas, J.; Savé, R.; Medrano, H. Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: Responses to water stress and recovery. Plant Soil 2006, 290, 139–155. [Google Scholar] [CrossRef]
- Gazanchian, A.; Hajheidari, M.; Sima, N.K.; Salekdeh, G.H. Proteome response of Elymus elongatum to severe water stress and recovery. J. Exp. Bot. 2007, 58, 291–300. [Google Scholar] [CrossRef]
- Verma, K.K.; Song, X.-P.; Zeng, Y.; Li, D.-M.; Guo, D.-J.; Rajput, V.D.; Chen, G.-L.; Barakhov, A.; Minkina, T.M.; Li, Y.-R. Characteristics of Leaf Stomata and Their Relationship with Photosynthesis in Saccharum officinarum Under Drought and Silicon Application. ACS Omega 2020, 5, 24145–24153. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J. Exp. Bot. 2008, 59, 3317–3325. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Li, L.X.; Chen, W.F. Effect of water stress on stomatal density, length, width and net photosynthetic rate in rice leaves. J. Shenyang Agric. Univ. 1999, 30, 477–480. [Google Scholar]
- Luu, D.-T.; Maurel, C. Aquaporins in a challenging environment: Molecular gears for adjusting plant water status. Plant Cell Environ. 2004, 28, 85–96. [Google Scholar] [CrossRef]
- Verslues, P.E.; Agarwal, M.; Katiyar-Agarwal, S.; Zhu, J.; Zhu, J.-K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 2006, 45, 523–539. [Google Scholar] [CrossRef] [PubMed]
- Franks, P.J.; Doheny-Adams, T.W.; Britton-Harper, Z.J.; Gray, J.E. Increasing water-use efficiency directly through genetic manipulation of stomatal density. New Phytol. 2015, 207, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Villar, R.; Ruiz-Robleto, J.; Ubera, J.L.; Poorter, H. Exploring variation in leaf mass per area (LMA) from leaf to cell: An anatomical analysis of 26 woody species. Am. J. Bot. 2013, 100, 1969–1980. [Google Scholar] [CrossRef] [PubMed]
- He, N.; Liu, C.; Tian, M.; Li, M.; Yang, H.; Yu, G.; Guo, D.; Smith, M.D.; Yu, Q.; Hou, J. Variation in leaf anatomical traits from tropical to cold-temperate forests and linkage to ecosystem functions. Funct. Ecol. 2017, 32, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Givnish, T.J. Ecological constraints on the evolution of plasticity in plants. Evol. Ecol. 2002, 16, 213–242. [Google Scholar] [CrossRef]
- Dietrich, L.; Hoch, G.; Kahmen, A.; Körner, C. Losing half the conductive area hardly impacts the water status of mature trees. Sci. Rep. 2018, 8, 15006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardini, A.; Pedà, G.; La Rocca, N. Trade-offs between leaf hydraulic capacity and drought vulnerability: Morpho-anatomical bases, carbon costs and ecological consequences. New Phytol. 2012, 196, 788–798. [Google Scholar] [CrossRef]
- Simonin, K.A.; Limm, E.B.; Dawson, T.E. Hydraulic conductance of leaves correlates with leaf lifespan: Implications for lifetime carbon gain. New Phytol. 2012, 193, 939–947. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Wang, C.; Zhou, Z.; Li, Z. Co-ordinated performance of leaf hydraulics and economics in 10 Chinese temperate tree species. Funct. Plant Biol. 2016, 43, 1082. [Google Scholar] [CrossRef] [PubMed]
- Bourne, A.E.; Creek, D.; Peters, J.; Ellsworth, D.; Choat, B. Species climate range influences hydraulic and stomatal traits in Eucalyptus species. Ann. Bot. 2017, 120, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Sack, L.; Streeter, C.M.; Holbrook, N.M. Hydraulic Analysis of Water Flow through Leaves of Sugar Maple and Red Oak. Plant Physiol. 2004, 134, 1824–1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choat, B.; Sack, L.; Holbrook, N.M. Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytol. 2007, 175, 686–698. [Google Scholar] [CrossRef] [PubMed]
- Attia, Z.; Domec, J.-C.; Oren, R.; Way, D.A.; Moshelion, M. Growth and physiological responses of isohydric and anisohydric poplars to drought. J. Exp. Bot. 2015, 66, 4373–4381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDowell, N.G. Mechanisms Linking Drought, Hydraulics, Carbon Metabolism, and Vegetation Mortality. Plant Physiol. 2011, 155, 1051–1059. [Google Scholar] [CrossRef] [Green Version]
Sources of Variation | df | PB | Root: Shoot | RCD | PH | LMF | SMF | RMF | ΨPD |
---|---|---|---|---|---|---|---|---|---|
Species (Sp.) | 3 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Drought (D) | 2 | 0.010 | 0.045 | 0.001 | 0.001 | 0.033 | 0.819 | 0.048 | 0.008 |
Sp. × D | 6 | 1.000 | 1.000 | 0.977 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 |
Sources of variation | df | ΨMD | LA | LT | XCD | VBD | VBA | SL | SD |
Species (Sp.) | 3 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Drought (D) | 2 | 0.016 | 0.034 | 0.012 | 0.039 | 0.005 | 0.006 | 0.019 | 0.019 |
Sp. × D | 6 | 1.000 | 0.332 | 0.668 | 0.749 | 0.84 | 0.347 | 0.568 | 0.879 |
Species | Drought Levels | Palisade- | Spongy- | Abaxial- | Adaxial- |
---|---|---|---|---|---|
Mesophyll Thickness | Epidermis | ||||
F. mandshurica | WW | 73.86 ± 3.2 a | 63.35 ± 1.8 a | 13.54 ± 1.6 a | 8.81 ± 0.5 a |
MD | 78.88 ± 3.4 ab | 69.61 ± 3.2 ab | 16.06 ± 1.2 ab | 10.61 ± 1.0 ab | |
SD | 84.08 ± 5.4 b | 72.67 ± 2.6 b | 18.58 ± 1.9 b | 12.12 ± 1.1 b | |
T. amurensis | WW | 50.63 ± 2.4 a | 36.41 ± 2.8 a | 14.69 ± 1.6 a | 8.01 ± 0.6 a |
MD | 53.08 ± 2.0 ab | 39.87 ± 1.9 ab | 17.22 ± 1.6 ab | 9.05 ± 0.6 ab | |
SD | 58.43 ± 1.5 b | 43.44 ± 1.8 b | 20.37 ± 1.8 b | 9.99 ± 0.8 b | |
L. gmelinii | Drought levels | Epi- hypodermis | Mesophyll thickness | Resin duct | |
WW | 11.52 ± 1.1 a | 22.78 ± 1.2 a | 51.35 ± 2.2 a | ||
MD | 12.73 ± 0.9 ab | 24.35 ± 0.8 ab | 48.55 ± 1.7 ab | ||
SD | 13.96 ± 0.8 b | 26.11 ± 0.7 b | 46.86 ± 1.7 b | ||
P. koraiensis | WW | 19.51 ± 1.3 a | 23.34 ± 1.3 a | 26.42 ± 0.9 a | |
MD | 22.30 ± 1.3 ab | 24.94 ± 0.8 ab | 24.56 ± 1.0 ab | ||
SD | 24.86 ± 1.2 b | 26.47 ± 1.1 b | 23.92 ± 0.5 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.; Shen, F.; Yang, L.; Xing, W.; Clothier, B. Limited Acclimation in Leaf Morphology and Anatomy to Experimental Drought in Temperate Forest Species. Biology 2022, 11, 1186. https://doi.org/10.3390/biology11081186
Khan A, Shen F, Yang L, Xing W, Clothier B. Limited Acclimation in Leaf Morphology and Anatomy to Experimental Drought in Temperate Forest Species. Biology. 2022; 11(8):1186. https://doi.org/10.3390/biology11081186
Chicago/Turabian StyleKhan, Attaullah, Fangyuan Shen, Lixue Yang, Wei Xing, and Brent Clothier. 2022. "Limited Acclimation in Leaf Morphology and Anatomy to Experimental Drought in Temperate Forest Species" Biology 11, no. 8: 1186. https://doi.org/10.3390/biology11081186
APA StyleKhan, A., Shen, F., Yang, L., Xing, W., & Clothier, B. (2022). Limited Acclimation in Leaf Morphology and Anatomy to Experimental Drought in Temperate Forest Species. Biology, 11(8), 1186. https://doi.org/10.3390/biology11081186