Remarkable Divergence of the Sex-Linked Region between Two Wild Spinach Progenitors, Spinacia turkestanica and Spinacia tetrandra
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Population Structure of S. oleracea, S. turkestanica, and S. tetrandra in the Sex-Linked Region
2.2. Evolution of the Y-Duplication Region among the S. oleracea and Two Wild Progenitors
2.3. Landscapes of Transposable Element Insertion Polymorphisms in S. oleracea Sex Chromosomes
2.4. Patterns of the Y Chromosome Divergence between S. oleracea and Its Two Wild Progenitors
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Plants Materials
5.2. DNA Extraction and Whole-Genome Resequencing
5.3. Read Mapping and Variant Calling
5.4. Amplification of Gene within the YDR among the Three Spinacia Species
5.5. Population Analysis
5.6. Identification of Transposable Element Insertion Polymorphisms (TIPs)
5.7. Genotyping of TIPs Using 63 Spinacia Accessions
5.8. Identification of Fully Sex-Linked SNPs/TIPs
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Henry, I.M.; Akagi, T.; Tao, R.; Comai, L. One hundred ways to invent the sexes theoretical and observed paths to dioecy in plants. Annu. Rev. 2018, 69, 553–575. [Google Scholar] [CrossRef] [PubMed]
- Renner, S.S. The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 2014, 101, 1588–1596. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, B. The evolution of chromosomal sex determination and dosage compensation. Curr. Biol. 1996, 6, 149–162. [Google Scholar] [CrossRef]
- Pannell, J.R.; Gerchen, J. Sex determination: Sterility genes out of sequence. Curr. Biol. 2018, 28, R80–R83. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, D.; Charlesworth, B.; Marais, G. Steps in the evolution of heteromorphic sex chromosomes. Heredity 2005, 95, 118–128. [Google Scholar] [CrossRef]
- Ming, R.; Bendahmane, A.; Renner, S.S. Sex chromosomes in land plants. Annu. Rev. Plant Biol. 2011, 62, 485–514. [Google Scholar] [CrossRef]
- Jia, H.; Jia, H.; Cai, Q.; Wang, Y.; Zhao, H.; Yang, W.; Wang, G.; Li, Y.; Zhan, D.; Shen, Y.; et al. The red bayberry genome and genetic basis of sex determination. Plant Biotechnol. J. 2019, 17, 397–409. [Google Scholar] [CrossRef]
- Harkess, A.; Zhou, J.; Xu, C.; Bowers, J.E.; Van der Hulst, R.; Ayyampalayam, S.; Mercati, F.; Riccardi, P.; McKain, M.R.; Kakrana, A.; et al. The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat. Commun. 2017, 8, 1279. [Google Scholar] [CrossRef]
- Yang, W.; Wang, D.; Li, Y.; Zhang, Z.; Tong, S.; Li, M.; Zhang, X.; Zhang, L.; Ren, L.; Ma, X.; et al. A general model to explain repeated turnovers of sex determination in the Salicaceae. Mol. Biol. Evol. 2020, 38, 968–980. [Google Scholar] [CrossRef]
- Almeida, P.; Proux-Wera, E.; Churcher, A.; Soler, L.; Dainat, J.; Pucholt, P.; Nordlund, J.; Martin, T.; Ronnberg-Wastljung, A.C.; Nystedt, B.; et al. Genome assembly of the basket willow, Salix viminalis, reveals earliest stages of sex chromosome expansion. BMC Biol. 2020, 18, 78. [Google Scholar] [CrossRef]
- Pucholt, P.; Wright, A.E.; Conze, L.L.; Mank, J.E.; Berlin, S. Recent sex chromosome divergence despite ancient dioecy in the willow Salix viminalis. Mol. Biol. Evol. 2017, 34, 1991–2001. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Y.; She, H.B.; Xu, Z.S.; Zhang, H.L.; Li, G.L.; Zhang, S.F.; Qian, W. Quantitative trait loci (QTL) analysis of leaf related traits in spinach (Spinacia oleracea L.). BMC Plant Biol. 2021, 21, 290. [Google Scholar] [CrossRef] [PubMed]
- She, H.B.; Xu, Z.S.; Zhang, H.L.; Li, G.L.; Wu, J.; Wang, X.W.; Li, Y.; Liu, Z.Y.; Qian, W. Identification of a male-specific region (MSR) in Spinacia oleracea. Hortic. Plant J. 2021, 7, 341–346. [Google Scholar] [CrossRef]
- Okazaki, Y.; Takahata, S.; Hirakawa, H.; Suzuki, Y.; Onodera, Y. Molecular evidence for recent divergence of X- and Y-linked gene pairs in Spinacia oleracea L. PLoS ONE 2019, 14, e0214949. [Google Scholar] [CrossRef]
- Akamatus, T.; Suzuki, T.; Uchimiya, H. Determination of Male or Female of Spinach by Using DNA Marker; Sakata no tane KK: Yokohama, Japan, 1998. [Google Scholar]
- Liu, D.; Qian, W.; Zhang, H.; Fan, G.; Xu, Z. Development and application of molecular markers linked with sex gene X/Y in spinach. Hortic. Plant J. 2015, 42, 1583–1590. [Google Scholar]
- Kudoh, T.; Takahashi, M.; Osabe, T.; Toyoda, A.; Hirakawa, H.; Suzuki, Y.; Ohmido, N.; Onodera, Y. Molecular insights into the non-recombining nature of the spinach male-determining region. Mol. Genet. Genom. 2017, 293, 557–568. [Google Scholar] [CrossRef]
- Yu, L.; Ma, X.K.; Deng, B.; Yue, J.J.; Ming, R. Construction of high-density genetic maps defined sex determination region of the Y chromosome in spinach. Mol. Genet. Genom. 2021, 296, 41–53. [Google Scholar] [CrossRef]
- She, H.; Liu, Z.; Xu, Z.; Zhang, H.; Cheng, F.; Wang, X.; Qian, W. The female(XX) and male(YY) genomes provide insights into the sex determination mechanism in spinach. bioRxiv 2020. [Google Scholar] [CrossRef]
- Cai, X.F.; Sun, X.P.; Xu, C.X.; Sun, H.H.; Wang, X.L.; Ge, C.H.; Zhang, Z.H.; Wang, Q.X.; Fei, Z.J.; Jiao, C.; et al. Genomic analyses provide insights into spinach domestication and the genetic basis of agronomic traits. Nat. Commun. 2021, 12, 7246, Erratum in Nat. Commun. 2022, 13, 7246. [Google Scholar] [CrossRef]
- Li, N.; Wang, Y.Y.; Wang, J.W.; Zhang, W.Q.; Meng, Z.W.; Wang, Y.S.; Zhang, Y.L.; Li, S.F.; Gao, W.J.; Deng, C.L. Identification of Sex Differentiation-Related microRNAs in Spinach Female and Male Flower. Int. J. Mol. Sci. 2022, 23, 4090. [Google Scholar] [CrossRef]
- Ribera, A.; Bai, Y.; Wolters, A.; Treuren, R.V.; Kik, C.J.E. A review on the genetic resources, domestication and breeding history of spinach (Spinacia oleracea L.). Euphytica 2020, 216, 48. [Google Scholar] [CrossRef]
- Treuren, R.; Groot, L.; Hisoriev, H.; Khassanov, F.; Farzaliyev, V.; Melyan, G.; Gabrielyan, I.; Soest, L.; Kik, C. Acquisition and regeneration of Spinacia turkestanica Iljin and S. tetrandra Steven ex M. Bieb. to improve a spinach gene bank collection. Genet. Resour. Crop Evol. 2020, 67, 549–559. [Google Scholar] [CrossRef]
- She, H.B.; Liu, Z.Y.; Xu, Z.S.; Zhang, H.L.; Cheng, F.; Wu, J.; Wang, X.W.; Qian, W. Comparative chloroplast genome analyses of cultivated spinach and two wild progenitors shed light on the phylogenetic relationships and variation. Sci. Rep. 2022, 12, 856. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Jiao, C.; Sun, H.; Cai, X.; Wang, X.; Ge, C.; Zheng, Y.; Liu, W.; Sun, X.; Xu, Y.; et al. Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nat. Commun. 2017, 8, 15275. [Google Scholar] [CrossRef] [PubMed]
- Hulse-Kemp, A.M.; Bostan, H.; Chen, S.Y.; Ashrafi, H.; Stoffel, K.; Sanseverino, W.; Li, L.Z.; Cheng, S.F.; Schatz, M.C.; Garvin, T.; et al. An anchored chromosome-scale genome assembly of spinach improves annotation and reveals extensive gene rearrangements in euasterids. Plant Genome 2021, 14, e20101. [Google Scholar] [CrossRef]
- Akagi, T.; Pilkington, S.M.; Varkonyi-Gasic, E.; Henry, I.M.; Sugano, S.S.; Sonoda, M.; Firl, A.; McNeilage, M.A.; Douglas, M.J.; Wang, T.; et al. Two Y-chromosome-encoded genes determine sex in kiwifruit. Nat. Plants 2019, 5, 801–809. [Google Scholar] [CrossRef]
- Akagi, T.; Henry, I.M.; Tao, R.; Comai, L. A Y-chromosome–encoded small RNA acts as a sex determinant in persimmons. Science 2014, 346, 646–650. [Google Scholar] [CrossRef]
- Akagi, T.; Henry, I.M.; Ohtani, H.; Morimoto, T.; Beppu, K.; Kataoka, I.; Tao, R. A Y-encoded suppressor of feminization arose via lineage-specific duplication of a cytokinin response regulator in kiwifruit. Plant Cell 2018, 30, 780–795. [Google Scholar] [CrossRef]
- Charlesworth, D. Plant contributions to our understanding of sex chromosome evolution. New Phytol. 2015, 208, 52–65. [Google Scholar] [CrossRef]
- Cai, X.; Lin, R.M.; Liang, J.L.; King, G.J.; Wu, J.; Wang, X.W. Transposable element insertion: A hidden major source of domesticated phenotypic variation in Brassica rapa. Plant Biotechnol. J. 2022, 20, 1298–1310. [Google Scholar] [CrossRef]
- Vanburen, R.; Zeng, F.; Chen, C.; Zhang, J.; Wai, C.M.; Han, J.; Aryal, R.; Gschwend, A.R.; Wang, J.; Na, J.K. Origin and domestication of papaya Yh chromosome. Genome Res. 2015, 25, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Rifkin, J.L.; Beaudry, F.E.; Humphries, Z.; Choudhury, B.I.; Barrett, S.C.; Wright, S.I. Widespread recombination suppression facilitates plant sex chromosome evolution. Mol. Biol. Evol. 2021, 38, 1018–1030. [Google Scholar] [CrossRef]
- Renner, S.S.; Muller, N.A. Plant sex chromosomes defy evolutionary models of expanding recombination suppression and genetic degeneration. Nat. Plants 2021, 7, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Na, J.K.; Yu, Q.; Gschwend, A.R.; Han, J.; Zeng, F.; Aryal, R.; VanBuren, R.; Murray, J.E.; Zhang, W.; et al. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc. Natl. Acad. Sci. USA 2012, 109, 13710–13715. [Google Scholar] [CrossRef] [PubMed]
- Cotter, D.J.; Brotman, S.M.; Sayres, M.A.W. Genetic diversity on the human X chromosome does not support a strict pseudoautosomal boundary. Genetics 2016, 203, 485–492. [Google Scholar] [CrossRef]
- Yazdi, H.P.; Ellegren, H. A genetic map of Ostrich Z chromosome and the role of inversions in Avian sex chromosome evolution. Genome Biol. Evol. 2018, 10, 2049–2060. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Kai, W.; Li, M.; Hakon, H.J.N.A.R. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Phillippy, A.; Delcher, A.L.; Smoot, M. Versatile and open software for comparing large genomes. Genome Biol. 2004, 5, R12. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
She, H.; Xu, Z.; Zhang, H.; Wu, J.; Wang, X.; Liu, Z.; Qian, W. Remarkable Divergence of the Sex-Linked Region between Two Wild Spinach Progenitors, Spinacia turkestanica and Spinacia tetrandra. Biology 2022, 11, 1138. https://doi.org/10.3390/biology11081138
She H, Xu Z, Zhang H, Wu J, Wang X, Liu Z, Qian W. Remarkable Divergence of the Sex-Linked Region between Two Wild Spinach Progenitors, Spinacia turkestanica and Spinacia tetrandra. Biology. 2022; 11(8):1138. https://doi.org/10.3390/biology11081138
Chicago/Turabian StyleShe, Hongbing, Zhaosheng Xu, Helong Zhang, Jian Wu, Xiaowu Wang, Zhiyuan Liu, and Wei Qian. 2022. "Remarkable Divergence of the Sex-Linked Region between Two Wild Spinach Progenitors, Spinacia turkestanica and Spinacia tetrandra" Biology 11, no. 8: 1138. https://doi.org/10.3390/biology11081138
APA StyleShe, H., Xu, Z., Zhang, H., Wu, J., Wang, X., Liu, Z., & Qian, W. (2022). Remarkable Divergence of the Sex-Linked Region between Two Wild Spinach Progenitors, Spinacia turkestanica and Spinacia tetrandra. Biology, 11(8), 1138. https://doi.org/10.3390/biology11081138