Sensitivity and Specificity of Patient-Reported Clinical Manifestations to Diagnose COVID-19 in Adults from a National Database in Chile: A Cross-Sectional Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methodology
2.1. Participants
2.2. Clinical Features
2.3. Reference Standard
2.4. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Diagnostic Accuracy of Clinical Features
3.3. Multivariable Models
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Qu, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 19, 14–15. [Google Scholar] [CrossRef]
- Hozhabri, H.; Piceci Sparascio, F.; Sohrabi, H.; Mousavifar, L.; Roy, R.; Scribano, D.; De Luca, A.; Ambrosi, C.; Sarshar, M. The Global Emergency of Novel Coronavirus (SARS-CoV-2): An Update of the Current Status and Forecasting. Int. J. Environ. Res. Public Health 2020, 17, 5648. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Weekly Epidemiological Update on COVID-19—26 October 2021. Edition 63 [Internet]. 2021. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19 (accessed on 26 October 2021).
- Cheng, M.P.; Papenburg, J.; Desjardins, M.; Kanjilal, S.; Quach, C.; Libman, M.; Dittrich, S.; Yansouni, C.P. Diagnostic Testing for Severe Acute Respiratory Syndrome-Related Coronavirus 2: A Narrative Review. Ann. Intern. Med. 2020, 172, 726–734. [Google Scholar] [CrossRef] [Green Version]
- Mlcochova, P.; Kemp, S.A.; Dhar, M.S.; Papa, G.; Meng, B.; Ferreira, I.A.T.M.; Datir, R.; Collier, D.A.; Albecka, A.; Singh, S.; et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 2021, 599, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Tao, K.; Tzou, P.L.; Nouhin, J.; Gupta, R.K.; de Oliveira, T.; Kosakovsky Pond, S.L.; Fera, D.; Shafer, R.W. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat. Rev. Genet. 2021, 22, 757–773. [Google Scholar] [CrossRef]
- Dong, R.; Hu, T.; Zhang, Y.; Li, Y.; Zhou, X.H. Assessing the Transmissibility of the New SARS-CoV-2 Variants: From Delta to Omicron. Vaccines 2022, 10, 496. [Google Scholar] [CrossRef]
- Viana, R.; Moyo, S.; Amoako, D.G.; Tegally, H.; Scheepers, C.; Althaus, C.L.; Anyaneji, U.J.; Bester, P.A.; Boni, M.F.; Chand, M.; et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 2022, 603, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Sandri, T.L.; Inoue, J.; Geiger, J.; Griesbaum, J.M.; Heinzel, C.; Burnet, M.; Fendel, R.; Kremsner, P.G.; Held, J.; Kreidenweiss, A. Complementary methods for SARS-CoV-2 diagnosis in times of material shortage. Sci. Rep. 2021, 11, 11899. [Google Scholar] [CrossRef] [PubMed]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Zhou, M.; Zhang, X.; Qu, J. Coronavirus disease 2019 (COVID-19): A clinical update. Front. Med. 2020, 14, 126–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hornuss, D.; Lange, B.; Schröter, N.; Rieg, S.; Kern, W.V.; Wagner, D. Anosmia in COVID-19 patients. Clin. Microbiol. Infect. 2020, 26, 1426–1427. [Google Scholar] [CrossRef] [PubMed]
- Vaira, L.A.; Salzano, G.; Deiana, G.; De Riu, G. Anosmia and Ageusia: Common Findings in COVID-19 Patients. Laryngoscope 2020, 130, 1787. [Google Scholar] [CrossRef] [Green Version]
- Lechien, J.R.; Chiesa-Estomba, C.M.; De Siati, D.R.; Horoi, M.; Le Bon, S.D.; Rodriguez, A.; Dequanter, D.; Blecic, S.; El Afia, F.; Distinguin, L.; et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): A multicenter European study. Eur. Arch. Otorhinolaryngol. 2020, 277, 2251–2261. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, E.S.; Dufort, E.M.; Blog, D.S.; Hall, E.W.; Hoefer, D.; Backenson, B.P.; Muse, A.T.; Kirkwood, J.N.; St George, K.; Holtgrave, D.R.; et al. COVID-19 Testing, Epidemic Features, Hospital Outcomes, and Household Prevalence, New York State-March 2020. Clin. Infect. Dis. 2020, 71, 1953–1959. [Google Scholar] [CrossRef] [PubMed]
- Jolobe, O.M.P. Oligosymptomatic COVID-19 infection also needs to be recognised. Am. J. Emerg. Med. 2021, 50, 800. [Google Scholar] [CrossRef] [PubMed]
- Taramasco, C.; Rimassa, C.; Romo, J.A.; Zavando, A.C.; Bravo, R.F. Epidemiological surveillance in COVID-19 pandemic: EPIVIGILA system. Medwave 2022, 22, e8741. [Google Scholar] [CrossRef]
- Struyf, T.; Deeks, J.J.; Dinnes, J.; Takwoingi, Y.; Davenport, C.; Leeflang, M.M.; Spijker, R.; Hooft, L.; Emperador, D.; Domen, J.; et al. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19. Cochrane Database Syst. Rev. 2022, 5, CD013665. [Google Scholar] [PubMed]
- Wynants, L.; Van Calster, B.; Collins, G.S.; Riley, R.D.; Heinze, G.; Schuit, E.; Bonten, M.M.J.; Dahly, D.L.; Damen, J.A.; Debray, T.P.A.; et al. Prediction models for diagnosis and prognosis of COVID-19: Systematic review and critical appraisal. BMJ 2020, 369, m1328. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Chen, W.; Ren, H.; Zhao, J.; Wang, L.; Jin, R.; Zhou, J.; Wang, Q.; Yan, F.; Zhang, B.; et al. A rapid screening classifier for diagnosing COVID-19. Int. J. Biol. Sci. 2021, 17, 539–548. [Google Scholar] [CrossRef]
- Shanbehzadeh, M.; Kazemi-Arpanahi, H.; Orooji, A.; Mobarak, S.; Jelvay, S. Performance evaluation of selected machine learning algorithms for COVID-19 prediction using routine clinical data: With versus Without CT scan features. J. Educ. Health Promot. 2021, 10, 285. [Google Scholar]
- Li, J.; Li, S.; Qiu, X.; Zhu, W.; Li, L.; Qin, B. Performance of Diagnostic Model for Differentiating Between COVID-19 and Influenza: A 2-Center Retrospective Study. Med. Sci. Monit. 2021, 27, e932361. [Google Scholar] [CrossRef] [PubMed]
- Arpaci, I.; Huang, S.; Al-Emran, M.; Al-Kabi, M.N.; Peng, M. Predicting the COVID-19 infection with fourteen clinical features using machine learning classification algorithms. Multimed. Tools Appl. 2021, 80, 11943–11957. [Google Scholar] [CrossRef]
- Nie, Y.; Li, J.; Huang, X.; Guo, W.; Zhang, X.; Ma, Y.; Wang, H.; Qi, M.; Tang, X.; Shen, X.; et al. Epidemiological and clinical characteristics of 671 COVID-19 patients in Henan Province, China. Int. J. Epidemiol. 2020, 49, 1085–1095. [Google Scholar] [CrossRef]
- Stegeman, I.; Ochodo, E.A.; Guleid, F.; Holtman, G.A.; Yang, B.; Davenport, C.; Deeks, J.J.; Dinnes, J.; Dittrich, S.; Emperador, D.; et al. Routine laboratory testing to determine if a patient has COVID-19. Cochrane Database Syst. Rev. 2020, 11, CD013787. [Google Scholar]
- Ge, Y.; Martinez, L.; Sun, S.; Chen, Z.; Zhang, F.; Li, F.; Sun, W.; Chen, E.; Pan, J.; Li, C.; et al. COVID-19 Transmission Dynamics Among Close Contacts of Index Patients With COVID-19: A Population-Based Cohort Study in Zhejiang Province, China. JAMA Intern. Med. 2021, 181, 1343–1350. [Google Scholar] [CrossRef] [PubMed]
- Madewell, Z.J.; Yang, Y.; Longini, I.M., Jr.; Halloran, M.E.; Dean, N.E. Household Secondary Attack Rates of SARS-CoV-2 by Variant and Vaccination Status: An Updated Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e229317. [Google Scholar] [CrossRef]
- Cid Pedraza, C.; Herrera, C.A.; Prieto Toledo, L.; Oyarzún, F. Mortality outcomes in hospitals with public, private not-for-profit and private for-profit ownership in Chile 2001–2010. Health Policy Plan. 2015, 30 (Suppl. S1), i75–i81. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela, M.S.; Toro, S.Y.; Rojo-Mendoza, F. Equal in poverty, unequal in wealth: Ethnic stratification in Chile, the mapuche case. Bull. Lat. Am. Res. 2017, 36, 526–541. [Google Scholar] [CrossRef]
- Agostini, C.A.; Brown, P.H.; Roman, A.C. Poverty and Inequality Among Ethnic Groups in Chile. World Dev. 2010, 38, 1036–1046. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Persons without COVID-19 (n = 1,889,890) | Persons with COVID-19 (n = 297,180) | Total (n = 2,187,070) | p-Value |
---|---|---|---|---|
Mean Age (years, SD) | 43.0 ± 17.5 | 43.8 ± 17.0 | 43.1 ± 17.5 | <0.001 1 |
Female Gender (%) | 52.8% | 49.7% | 52.4% | <0.001 2 |
Nationality (%) | ||||
Chilean | 92.1% | 91.4% | 92.0% | <0.001 2 |
Not-Chilean | 7.9% | 8.6% | 8.0% | |
Indigenous Chilean (%) | 2.5% | 3.9% | 2.7% | <0.001 2 |
Site of Residence (%) | ||||
Metropolitan Region | 40.2% | 37.4% | 39.8% | <0.001 2 |
Northern Chile | 8.9% | 12.4% | 9.3% | |
Central Chile | 10.4% | 9.3% | 10.2% | |
South-Central Chile | 24.5% | 24.2% | 24.4% | |
Southern Chile | 13.6% | 12.4% | 13.4% | |
Austral Chile | 2.6% | 4.3% | 2.8% | |
Health Insurance (%) | ||||
Public (FONASA) | 75.1% | 77.8% | 75.5% | <0.001 2 |
Private (ISAPRE) | 19.6% | 15.3% | 19.0% | |
Other | 5.3% | 6.9% | 5.5% | |
Arterial Hypertension (%) | 11.2% | 15.2% | 11.7% | <0.001 2 |
Diabetes Mellitus (%) | 5.5% | 8.3% | 5.9% | <0.001 2 |
Asthma (%) | 2.8% | 2.8% | 2.8% | 0.675 2 |
Cardiovascular Disease (%) | 1.1% | 1.0% | 1.1% | <0.001 2 |
Immunosupression (%) | 0.84% | 0.62% | 0.81% | <0.001 2 |
Liver Disease (%) | 0.30% | 0.21% | 0.29% | <0.001 2 |
Kidney Disease (%) | 1.0% | 0.97% | 1.01% | 0.013 2 |
Chronic Lung Disease (%) | 1.5% | 1.2% | 1.5% | <0.001 2 |
Chronic Neurologic Disease (%) | 0.64% | 0.51% | 0.62% | <0.001 2 |
Suspected Contact (%) | 2.01% | 2.29% | 2.05% | <0.001 2 |
Confirmed Contact (%) | 9.32% | 18.3% | 10.5% | <0.001 2 |
International Travel (%) | 1.3% | 0.28% | 1.18% | <0.001 2 |
National Travel | 0.81% | 0.35% | 0.75% | <0.001 2 |
Clinical Feature | Prevalence | Sensitivity (95% CI) | Specificity (95% CI) | LR (+) (95% CI) | LR (−) (95% CI) | DOR (95% CI) |
---|---|---|---|---|---|---|
Headache | 39.0% | 56.5% (56.4–56.7%) | 63.8% (63.7–63.8%) | 1.56 (1.55–1.57) | 0.60 (0.601–0.602) | 2.30 (2.27–2.31) |
Myalgia | 32.7% | 53.3% (53.1–53.5%) | 70.6% (70.5–70.6%) | 1.81 (1.80–1.82) | 0.66 (0.659–0.664) | 2.74 (2.71–2.76) |
Cough | 31.6% | 51.1% (51.0–51.3% | 71.5% (71.4–71.5% | 1.79 (1.78–1.80) | 0.684 (0.681–0.686) | 2.62 (2.60–2.64) |
Sore Throat | 25.7% | 33.2% (33.0–33.4%) | 75.5% (75.4–75.5%) | 1.35 (1.35–1.36) | 0.885 (0.883–0.888) | 1.53 (1.52–1.54) |
Fever | 15.5% | 30.6% (30.4–30.7%) | 86.9% (86.9–87.0%) | 2.34 (2.32–2.35) | 0.80 (0.799–0.801) | 2.34 (2.32–2.35) |
Diarrhea | 8.9% | 9.18% (9.07–9.28%) | 91.0% (91.0–91.1%) | 1.02 (1.01–1.04) | 0.998 (0.996–0.999) | 1.03 (1.01–1.04) |
Dyspnea | 8.7% | 11.1% (11–11.2%) | 91.6% (91.6–91.7%) | 1.33 (1.31–1.34) | 0.97 (0.960–0.972) | 1.37 (1.35–1.38) |
Abdominal Pain | 7.0% | 5.66% (5.58–5.75%) | 92.8% (92.7–92.8%) | 0.783 (0.77–0.795) | 1.02 (1.02–1.02) | 0.77 (0.757–0.782) |
Chest Pain | 5.1% | 7.15% (7.05–7.24%) | 95.2% (95.1–95.2%) | 1.48 (1.46–1.50) | 0.976 (0.975–0.977) | 1.52 (1.50–1.54) |
Anosmia | 5.0% | 17.7% (17.6–17.9%) | 97.0% (97.0–97.0%) | 5.89 (5.83–5.96) | 0.85 (0.847–0.850) | 6.95 (6.86–7.04) |
Dysgeusia/Ageusia | 4.1% | 13.9% (13.8–14.0%) | 97.5% (97.4–97.5% | 5.47 (5.44–5.54) | 0.883 (0.882–0.885) | 6.19 (6.11–6.28) |
Tachypnea | 1.2% | 1.71% (1.66–1.75%) | 98.9% (98.9–98.9%) | 1.55 (1.51–1.60) | 0.994 (0.993–0.994) | 1.56 (1.51–1.61) |
Prostration | 0.4% | 0.59% (0.56–0.61%) | 99.5% (99.5–99.5%) | 1.24 (1.18–1.3) | 0.99 (0.99–0.99) | 1.24 (1.18–1.31) |
Cyanosis | 0.16% | 0.23% (0.21–0.25%) | 99.9% (99.8–99.9% | 1.57 (1.44–1.7) | 0.999 (0.999–0.999) | 1.57 (1.44–1.70) |
Characteristic | Adjusted Odds Ratio (aOR) | 95% CI | p-Value |
---|---|---|---|
Demographic Characteristics | |||
Male Sex | 1.21 | 1.20–1.22 | <0.001 |
Age > 65 Years | 1.18 | 1.16–1.19 | <0.001 |
Site of Residence | |||
Northern Chile | 1.52 | 1.50–1.54 | <0.001 |
Central Chile | 0.82 | 0.81–0.83 | <0.001 |
South-Central Chile | 1.08 | 1.07–1.09 | <0.001 |
Southern Chile | 0.98 | 0.97–0.99 | 0.022 |
Austral Chile | 2.08 | 2.04–2.13 | <0.001 |
Private Insurance | 0.90 | 0.89–0.91 | <0.001 |
Indigenous Chilean | 1.44 | 1.41–0.148 | <0.001 |
Suspected Contact | 1.24 | 1.21–1.28 | <0.001 |
Confirmed Contact | 2.27 | 2.24–2.30 | <0.001 |
Clinical Symptoms | |||
Headache | 1.29 | 1.28–1.30 | <0.001 |
Myalgia | 1.68 | 1.67–1.70 | <0.001 |
Dyspnea | 0.96 | 0.95–0.98 | <0.001 |
Anosmia | 3.72 | 3.66–3.79 | <0.001 |
Dysgeusia/Ageusia | 1.81 | 1.77–1.84 | <0.001 |
Cough | 1.88 | 1.86–1.90 | <0.001 |
Fever | 2.23 | 2.21–2.26 | <0.001 |
Chest Pain | 0.97 | 0.95–0.98 | <0.001 |
Sore Throat | 0.87 | 0.86–0.88 | <0.001 |
Abdominal Pain | 0.61 | 0.60–0.62 | <0.001 |
Prostration | 0.97 | 0.91–1.02 | 0.30 |
Diarrhea | 0.75 | 0.74–0.76 | <0.001 |
Tachypnea | 1.25 | 1.21–1.29 | <0.001 |
Cyanosis | 1.37 | 1.25–1.50 | <0.001 |
Constant | 0.056 | 0.056–0.057 | <0.001 |
Characteristic | Adjusted Odds Ratio (aOR) | 95% CI | p-Value |
---|---|---|---|
Demographic Characteristics | |||
Male Sex | 1.21 | 1.20–1.22 | <0.001 |
Age > 65 Years | 1.13 | 1.11–1.14 | <0.001 |
Indigenous Chilean | 1.52 | 1.48–1.56 | <0.001 |
Private Insurance (ISAPRE) | 0.91 | 0.90–0.92 | <0.001 |
Confirmed Contact | 2.30 | 2.28–2.33 | <0.001 |
Clinical Symptoms | |||
Myalgia | 1.78 | 1.76–1.80 | <0.001 |
Anosmia | 3.80 | 3.72–3.86 | <0.001 |
Dysgeusia/Ageusia | 1.80 | 1.76–1.83 | <0.001 |
Cough | 1.86 | 1.85–1.88 | <0.001 |
Fever | 2.23 | 2.20–2.25 | <0.001 |
Abdominal Pain | 0.54 | 0.53–0.55 | <0.001 |
Constant | 0.06 | 0.06–0.062 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez, F.; Muñoz, S.; Guerrero-Nancuante, C.; Taramasco, C. Sensitivity and Specificity of Patient-Reported Clinical Manifestations to Diagnose COVID-19 in Adults from a National Database in Chile: A Cross-Sectional Study. Biology 2022, 11, 1136. https://doi.org/10.3390/biology11081136
Martinez F, Muñoz S, Guerrero-Nancuante C, Taramasco C. Sensitivity and Specificity of Patient-Reported Clinical Manifestations to Diagnose COVID-19 in Adults from a National Database in Chile: A Cross-Sectional Study. Biology. 2022; 11(8):1136. https://doi.org/10.3390/biology11081136
Chicago/Turabian StyleMartinez, Felipe, Sergio Muñoz, Camilo Guerrero-Nancuante, and Carla Taramasco. 2022. "Sensitivity and Specificity of Patient-Reported Clinical Manifestations to Diagnose COVID-19 in Adults from a National Database in Chile: A Cross-Sectional Study" Biology 11, no. 8: 1136. https://doi.org/10.3390/biology11081136
APA StyleMartinez, F., Muñoz, S., Guerrero-Nancuante, C., & Taramasco, C. (2022). Sensitivity and Specificity of Patient-Reported Clinical Manifestations to Diagnose COVID-19 in Adults from a National Database in Chile: A Cross-Sectional Study. Biology, 11(8), 1136. https://doi.org/10.3390/biology11081136