Cardiomyocyte Proliferation from Fetal- to Adult- and from Normal- to Hypertrophy and Failing Hearts
Abstract
:Simple Summary
Abstract
1. Introduction
2. Fetal and Early Neonatal Hyperplastic Cardiomyocyte Growth
3. Conversion from Fetal to Neonatal Cardiomyocyte Growth
3.1. Morphology
3.2. Metabolism
3.3. Sarcomere Structure
3.4. Experimental Studies
4. Cardiomyocyte Neonatal Growth
5. Post-Natal to Adult Growth
6. Effects of Additional Stress on Cardiomyocytes
6.1. Physiologic Hypertrophy
6.2. Pathologic Hypertrophy
7. Structural Response of Cardiomyocytes to Overload
7.1. Volume Overload
7.2. Pressure Overload
8. The Role of Connective Tissue, Hemodynamic, Metabolic, Genetic, and Structural Alterations in Development of Myocardial Failure
8.1. Connective Tissue
8.2. Interstitial Collagen and Myocardial Stiffness
8.3. Contractile Proteins in Myocardial Failure
8.4. Hemodynamic Effects in Myocardial Failure
8.5. Altered Calcium Transit in Myocardial Failure
8.6. Genes, Isozymes and Protooncogenes in Hypertrophy
9. Mitochondria
9.1. Structure and Oxidative Metabolism in Normal and Hypertrophied Myocardium
9.2. Mitochondrial Morphology in Hypertrophy and Failure
10. Sarcomerogenesis in Growth and Hypertrophy
10.1. Normal Growth
10.2. Microtubules
10.3. Intercalated Disc and Z-Bands
11. How Do Stressed Cardiomyocytes Adapt, Degenerate, and Die?
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karsner, H.T.; Saphir, O.; Todd, T.W. The State of the Cardiac Muscle in Hypertrophy and Atrophy. Am. J. Pathol. 1925, 1, 351–372. [Google Scholar] [PubMed]
- Richter, G.W.; Kellner, A. Hypertrophy of the human heart at the level of fine structure. An analysis and two postulates. J. Cell Biol. 1963, 18, 12. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, P.; Sdek, P.; MacLellan, W.R. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol. Rev. 2007, 87, 521–544. [Google Scholar] [CrossRef] [Green Version]
- Ahuja, P.; Perriard, E.; Pedrazzini, T.; Satoh, S.; Perriard, J.C.; Ehler, E. Re-expression of proteins involved in cytokinesis during cardiac hypertrophy. Exp. Cell Res. 2007, 313, 1270–1283. [Google Scholar] [CrossRef] [PubMed]
- Swynghedauw, B. Are adult cardiocytes still able to proliferate? Arch. Mal. Coeur Vaiss. 2003, 96, 1225–1230. [Google Scholar]
- Clubb, F.J., Jr.; Bishop, S.P. Formation of binucleated myocardial cells in the neonatal rat. An index for growth hypertrophy. Lab. Investig. 1984, 50, 571–577. [Google Scholar]
- Oparil, S.; Bishop, S.P.; Clubb, F.J., Jr. Myocardial cell hypertrophy or hyperplasia. Hypertension 1984, 6, III38–III43. [Google Scholar] [CrossRef]
- Soonpaa, M.H.; Rubart, M.; Field, L.J. Challenges measuring cardiomyocyte renewal. Biochim. Biophys. Acta 2013, 1833, 799–803. [Google Scholar] [CrossRef] [Green Version]
- Harsdorf, R.V.; Poole-Wilson, P.A.; Dietz, R. Regenerative capacity of the myocardium: Implications for treatment of heart failure. Lancet 2004, 363, 1306–1313. [Google Scholar] [CrossRef]
- Senyo, S.E.; Steinhauser, M.L.; Pizzimenti, C.L.; Yang, V.K.; Cai, L.; Wang, M.; Wu, T.D.; Guerquin-Kern, J.L.; Lechene, C.P.; Lee, R.T. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 2013, 493, 433–436. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, T.M.A.; Ang, Y.S.; Radzinsky, E.; Zhou, P.; Huang, Y.; Elfenbein, A.; Foley, A.; Magnitsky, S.; Srivastava, D. Regulation of Cell Cycle to Stimulate Adult Cardiomyocyte Proliferation and Cardiac Regeneration. Cell 2018, 173, 104–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engel, F.B. Cardiomyocyte proliferation: A platform for mammalian cardiac repair. Cell Cycle 2005, 4, 1360–1363. [Google Scholar] [CrossRef] [PubMed]
- Field, L.J. Modulation of the cardiomyocyte cell cycle in genetically altered animals. Ann. N. Y. Acad. Sci. 2004, 1015, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Pasumarthi, K.B.; Field, L.J. Cardiomyocyte cell cycle regulation. Circ. Res. 2002, 90, 1044–1054. [Google Scholar] [CrossRef] [PubMed]
- Porrello, E.R.; Mahmoud, A.I.; Simpson, E.; Hill, J.A.; Richardson, J.A.; Olson, E.N.; Sadek, H.A. Transient regenerative potential of the neonatal mouse heart. Science 2011, 331, 1078–1080. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; D’Agostino, G.; Loo, S.J.; Wang, C.X.; Su, L.P.; Tan, S.H.; Tee, G.Z.; Pua, C.J.; Pena, E.M.; Cheng, R.B.; et al. Early Regenerative Capacity in the Porcine Heart. Circulation 2018, 138, 2798–2808. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Zhang, E.; Zhao, M.; Chong, Z.; Fan, C.; Tang, Y.; Hunter, J.D.; Borovjagin, A.V.; Walcott, G.P.; Chen, J.Y.; et al. Regenerative Potential of Neonatal Porcine Hearts. Circulation 2018, 138, 2809–2816. [Google Scholar] [CrossRef]
- Bishop, S.P.; Hine, P. Carciac muscle cytoplasmic and nuclear development during canine neonatal growth. Recent Adv. Stud. Cardiac Struct. Metab. 1975, 8, 77–98. [Google Scholar]
- Li, F.; Wang, X.; Capasso, J.M.; Gerdes, A.M. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J. Mol. Cell Cardiol. 1996, 28, 1737–1746. [Google Scholar] [CrossRef]
- Flinn, M.A.; Link, B.A.; O‘Meara, C.C. Upstream regulation of the Hippo-Yap pathway in cardiomyocyte regeneration. Semin. Cell Dev. Biol. 2020, 100, 11–19. [Google Scholar] [CrossRef]
- Laflamme, M.A.; Murry, C.E. Regenerating the heart. Nat. Biotechnol. 2005, 23, 845–856. [Google Scholar] [CrossRef] [PubMed]
- Soonpaa, M.H.; Kim, K.K.; Pajak, L.; Franklin, M.; Field, L.J. Cardiomyocyte DNA synthesis and binucleation during murine development. Am. J. Physiol. 1996, 271, H2183–H2189. [Google Scholar] [CrossRef] [PubMed]
- Korecky, B.; Sweet, S.; Rakusan, K. Number of nuclei in mammalian cardiac myocytes. Can. J. Physiol. Pharmacol. 1979, 57, 1122–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beinlich, C.J.; Rissinger, C.J.; Morgan, H.E. Mechanisms of rapid growth in the neonatal pig heart. J. Mol. Cell. Cardiol. 1995, 27, 273–281. [Google Scholar] [CrossRef]
- Jonker, S.S.; Louey, S.; Giraud, G.D.; Thornburg, K.L.; Faber, J.J. Timing of cardiomyocyte growth, maturation, and attrition in perinatal sheep. FASEB J. 2015, 29, 4346–4357. [Google Scholar] [CrossRef] [Green Version]
- Burrell, J.H.; Boyn, A.M.; Kumarasamy, V.; Hsieh, A.; Head, S.I.; Lumbers, E.R. Growth and maturation of cardiac myocytes in fetal sheep in the second half of gestation. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2003, 274, 952–961. [Google Scholar] [CrossRef]
- Mollova, M.; Bersell, K.; Walsh, S.; Savla, J.; Das, L.T.; Park, S.Y.; Silberstein, L.E.; Remedios, C.G.D.; Graham, D.; Colan, S.; et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc. Natl. Acad. Sci. USA 2013, 110, 1446–1451. [Google Scholar] [CrossRef] [Green Version]
- Pfitzer, P.; Schulte, H.D. The nuclear DNA content of myocardial cells of monkeys as a model for polyploidization in the human heart. In Proceedings of the Third Conference on Experimental Medicine and Surgery in Primates, Lyon, France, 21–23 June 1972; p. 11. [Google Scholar]
- Bergmann, O.; Zdunek, S.; Frisen, J.; Bernard, S.; Druid, H.; Jovinge, S. Cardiomyocyte renewal in humans. Circ. Res. 2012, 110, e17–e18. [Google Scholar] [CrossRef] [Green Version]
- Olivetti, G.; Cigola, E.; Maestri, R.; Corradi, D.; Lagrasta, C.; Gambert, S.R.; Anversa, P. Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J. Mol. Cell. Cardiol. 1996, 28, 1463–1477. [Google Scholar] [CrossRef]
- Clubb, F.J., Jr.; Bell, P.D.; Kriseman, J.D.; Bishop, S.P. Myocardial cell growth and blood pressure development in neonatal spontaneously hypertensive rats. Lab. Investig. 1987, 56, 189–197. [Google Scholar]
- Tracy, R.E.; Sander, G.E. Histologically measured cardiomyocyte hypertrophy correlates with body height as strongly as with body mass index. Cardiol. Res. Pract. 2011, 2011, 658958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergmann, O.; Zdunek, S.; Felker, A.; Salehpour, M.; Alkass, K.; Bernard, S.; Sjostrom, S.L.; Szewczykowska, M.; Jackowska, T.; Remedios, C.D.; et al. Dynamics of Cell Generation and Turnover in the Human Heart. Cell 2015, 161, 1566–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linzbach, A.J. Heart failure from the point of view of quantitative anatomy. Am. J. Cardiol. 1960, 5, 370–382. [Google Scholar] [CrossRef]
- Bishop, S.P.; Oparil, S.; Reynolds, R.H.; Drummond, J.L. Regional myocyte size in normotensive and spontaneously hypertensive rats. Hypertension 1979, 1, 378–383. [Google Scholar] [CrossRef] [Green Version]
- Bishop, S.P. The myocardial cell: Normal growth, cardiac hypertrophy and response to injury. Toxicol. Pathol. 1990, 18, 438–453. [Google Scholar] [CrossRef] [Green Version]
- Kelly, R.G.; Buckingham, M.E.; Moorman, A.F. Heart fields and cardiac morphogenesis. Cold Spring Harb. Perspect. Med. 2014, 4, a015750. [Google Scholar] [CrossRef] [Green Version]
- Chacko, K.J. Observations on the ultrastructure of developing myocardium of rat embryos. J. Morphol. 1976, 150, 681–709. [Google Scholar] [CrossRef]
- Rumyantsev, P.P. DNA synthesis and nuclear division in embryonal and postnatal histogenesis of myocardium (autoradiographic study). Fed. Proc. Transl. Suppl. 1965, 24, 899–902. [Google Scholar]
- Sasaki, R.; Morishita, T.; Yamagata, S. Autoradiographic studies on heart muscle cells in normal rats. Tohoku J. Exp. Med. 1970, 100, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Braun, T. Multimodal Regulation of Cardiac Myocyte Proliferation. Circ. Res. 2017, 121, 293–309. [Google Scholar] [CrossRef]
- Paradis, A.N.; Gay, M.S.; Zhang, L. Binucleation of cardiomyocytes: The transition from a proliferative to a terminally differentiated state. Drug Discov. Today 2014, 19, 602–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foglia, M.J.; Poss, K.D. Building and re-building the heart by cardiomyocyte proliferation. Development 2016, 143, 729–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, G.; Poolman, R.A.; Li, J.M. Arresting developments in the cardiac myocyte cell cycle: Role of cyclin-dependent kinase inhibitors. Cardiovasc. Res. 1998, 39, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Kelly, A.M.; Chacko, S. Myofibril organisation and mitosis in cultured cardiac muscle cells. Dev. Biol. 1976, 48, 421–430. [Google Scholar] [CrossRef]
- Robbins, E.; Gonatas, N.K. The Ultrastructure of a Mammalian Cell during the Mitotic Cycle. J. Cell Biol. 1964, 21, 429–463. [Google Scholar] [CrossRef]
- Manasek, F.J. Embryonic development of the heart. I. A light and electron microscopic study of myocardial development in the early chick embryo. J. Morphol. 1968, 125, 329–365. [Google Scholar] [CrossRef]
- Rumyantsev, P.P. Electron microscope study of the myofibril partial disintegration and recovery in the mitotically dividing cardiac muscle cells. Zeitschrift Für Zellforschung Und Mikroskopische Anatomie 1972, 129, 471–499. [Google Scholar] [CrossRef]
- Bishop, S.P.; Anderson, P.G.; Tucker, D.C. Morphological development of the rat heart growing in oculo in the absence of hemodynamic work load. Circ. Res. 1990, 66, 84–102. [Google Scholar] [CrossRef] [Green Version]
- Sybers, H.D.; Ingwall, J.S.; Luca, M.A.D. Fetal mouse heart in organ structure: Ultrastructure. Lab. Investig. 1975, 32, 713–719. [Google Scholar]
- Uphoff, C.; Nyquist-Battie, C.; Toth, R. Cardiac muscle development in mice exposed to ethanol in utero. Teratology 1984, 30, 119–129. [Google Scholar] [CrossRef]
- Barcroft, J.; Barron, D.H. Blood pressure and pulse rate in the foetal sheep. J. Exp. Biol. 1945, 22, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Hagopian, M.; Anversa, P.; Loud, A.V. Quantitative radioautographic localization of newly synthesized protein in the postnatal rat heart. J. Mol. Cell. Cardiol. 1975, 7, 357–367. [Google Scholar] [CrossRef]
- Morkin, E. Postnatal muscle fiber assembly: Localization of newly synthesized myofibrillar proteins. Science 1970, 167, 1499–1501. [Google Scholar] [CrossRef] [PubMed]
- Westermann, B. Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol. 2010, 11, 872–884. [Google Scholar] [CrossRef]
- Hoppel, C.L.; Tandler, B.; Fujioka, H.; Riva, A. Dynamic organization of mitochondria in human heart and in myocardial disease. Int. J. Biochem. Cell Biol. 2009, 41, 1949–1956. [Google Scholar] [CrossRef] [Green Version]
- Rosca, M.G.; Tandler, B.; Hoppel, C.L. Mitochondria in cardiac hypertrophy and heart failure. J. Mol. Cell. Cardiol. 2013, 55, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Ascuitto, R.J.; Ross-Ascuitto, N.T. Substrate metabolism in the developing heart. Semin. Perinatol. 1996, 20, 542–563. [Google Scholar] [CrossRef]
- Cerveny, K.L.; Tamura, Y.; Zhang, Z.; Jensen, R.E.; Sesaki, H. Regulation of mitochondrial fusion and division. Trends Cell Biol. 2007, 17, 563–569. [Google Scholar] [CrossRef]
- Fürst, D.O.; Gautel, M. The anatomy of a molecular giant: How the sarcomere cytoskeleton is assembled from immunoglobulin superfamily molecules. J. Mol. Cell. Cardiol. 1995, 27, 951–959. [Google Scholar] [CrossRef]
- Zebrowski, D.C.; Vergarajauregui, S.; Wu, C.C.; Piatkowski, T.; Becker, R.; Leone, M.; Hirth, S.; Ricciardi, F.; Falk, N.; Giessl, A.; et al. Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes. eLife 2015, 4, e05563. [Google Scholar] [CrossRef]
- Leone, M.; Musa, G.; Engel, F.B. Cardiomyocyte binucleation is associated with aberrant mitotic microtubule distribution, mislocalization of RhoA and IQGAP3, as well as defective actomyosin ring anchorage and cleavage furrow ingression. Cardiovasc. Res. 2018, 114, 1115–1131. [Google Scholar] [CrossRef] [PubMed]
- Engel, F.B.; Schebesta, M.; Keating, M.T. Anillin localization defect in cardiomyocyte binucleation. J. Mol. Cell. Cardiol. 2006, 41, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, P.; Perriard, E.; Perriard, J.C.; Ehler, E. Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes. J. Cell Sci. 2004, 117, 3295–3306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taguchi, N.; Ishihara, N.; Jofuku, A.; Oka, T.; Mihara, K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 2007, 282, 11521–11529. [Google Scholar] [CrossRef] [Green Version]
- Terracio, L.; Rubin, K.; Gullberg, D.; Balog, E.; Carver, W.; Jyring, R.; Borg, T.K. Expression of collagen binding integrins during cardiac development and hypertrophy. Circ. Res. 1991, 68, 734–744. [Google Scholar] [CrossRef] [Green Version]
- Hudlicka, O.; Brown, M.D. Postnatal growth of the heart and its blood vessels. J. Vasc. Res. 1996, 33, 266–287. [Google Scholar] [CrossRef]
- Batra, S.; Rakusan, K. Capillary network geometry during postnatal growth in rat hearts. Am. J. Physiol. 1992, 262, H635–H640. [Google Scholar] [CrossRef]
- Rakusan, K.; Cicutti, N.; Flanagan, M.F. Changes in the microvascular network during cardiac growth, development, and aging. Cell. Mol. Biol. Res. 1994, 40, 117–122. [Google Scholar]
- Rakusan, K.; Flanagan, M.F.; Geva, T.; Southern, J.; Praagh, R.V. Morphometry of human coronary capillaries during normal growth and the effect of age in left ventricular pressure-overload hypertrophy. Circulation 1992, 86, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Honig, C.R.; Frierson, J.L.; Nelson, C.N. O2 transport and Vo2 in resting muscle: Significance for tissue-capillary exchange. Am. J. Physiol. 1971, 220, 357–363. [Google Scholar] [CrossRef]
- Turek, Z.; Hoofd, L.; Rakusan, K. Myocardial capillaries and tissue oxygenation. Can. J. Cardiol. 1986, 2, 98–103. [Google Scholar] [PubMed]
- Lopaschuk, G.D.; Collins-Nakai, R.L.; Itoi, T. Developmental changes in energy substrate use by the heart. Cardiovasc. Res. 1992, 26, 1172–1180. [Google Scholar] [CrossRef] [PubMed]
- Breuer, E.; Barta, E.; Zlatos, L.; Pappova, E. Developmental changes of myocardial metabolism. II. Myocardial metabolism of fatty acids in the early postnatal period in dogs. Biol. Neonatol. 1968, 12, 54–64. [Google Scholar] [CrossRef]
- Velayutham, N.; Agnew, E.J.; Yutzey, K.E. Postnatal Cardiac Development and Regenerative Potential in Large Mammals. Pediatr. Cardiol. 2019, 40, 1345–1358. [Google Scholar] [CrossRef]
- Adler, C.P.; Friedburg, H.; Herget, G.W.; Neuburger, M.; Schwalb, H. Variability of cardiomyocyte DNA content, ploidy level and nuclear number in mammalian hearts. Virchows Arch. 1996, 429, 159–164. [Google Scholar] [CrossRef]
- Puente, B.N.; Kimura, W.; Muralidhar, S.A.; Moon, J.; Amatruda, J.F.; Phelps, K.L.; Grinsfelder, D.; Rothermel, B.A.; Chen, R.; Garcia, J.A.; et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 2014, 157, 565–579. [Google Scholar] [CrossRef] [Green Version]
- Kimura, W.; Nakada, Y.; Sadek, H.A. Hypoxia-induced myocardial regeneration. J. Appl. Physiol. 2017, 123, 1676–1681. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Ren, J.; Guo, W. Sarcomeric protein isoform transitions in cardiac muscle: A journey to heart failure. Biochim. Biophys. Acta 2015, 1852, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Opitz, C.A.; Leake, M.C.; Makarenko, I.; Benes, V.; Linke, W.A. Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circ. Res. 2004, 94, 967–975. [Google Scholar] [CrossRef] [Green Version]
- Gregorio, C.C.; Granzier, H.; Sorimachi, H.; Labeit, S. Muscle assembly: A titanic achievement? Curr. Opin. Cell Biol. 1999, 11, 18–25. [Google Scholar] [CrossRef]
- McElhinny, A.S.; Labeit, S.; Gregorio, C.C. Probing the functional roles of titin ligands in cardiac myofibril assembly and maintenance. Adv. Exp. Med. Biol. 2000, 481, 67–86. [Google Scholar] [CrossRef] [PubMed]
- Warren, C.M.; Krzesinski, P.R.; Campbell, K.S.; Moss, R.L.; Greaser, M.L. Titin isoform changes in rat myocardium during development. Mech. Dev. 2004, 121, 1301–1312. [Google Scholar] [CrossRef] [PubMed]
- Saggin, L.; Gorza, L.; Ausoni, S.; Schiaffino, S. Troponin I switching in the developing heart. J. Biol. Chem. 1989, 264, 16299–16302. [Google Scholar] [CrossRef]
- Posterino, G.S.; Dunn, S.L.; Botting, K.J.; Wang, W.; Gentili, S.; Morrison, J.L. Changes in cardiac troponins with gestational age explain changes in cardiac muscle contractility in the sheep fetus. J. Appl. Physiol. 2011, 111, 236–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borg, T.K.; Caulfield, J.B. The collagen matrix of the heart. Fed. Proc. 1981, 40, 2037–2041. [Google Scholar] [PubMed]
- Terracio, L.; Gullberg, D.; Rubin, K.; Craig, S.; Borg, T.K. Expression of collagen adhesion proteins and their association with the cytoskeleton in cardiac myocytes. Anat. Rec. 1989, 223, 62–71. [Google Scholar] [CrossRef]
- Caulfield, J.B.; Borg, T.K. The collagen network of the heart. Lab. Investig. 1979, 40, 364–372. [Google Scholar]
- Wang, Y.; Yao, F.; Wang, L.; Li, Z.; Ren, Z.; Li, D.; Zhang, M.; Han, L.; Wang, S.Q.; Zhou, B.; et al. Single-cell analysis of murine fibroblasts identifies neonatal to adult switching that regulates cardiomyocyte maturation. Nat. Commun. 2020, 11, 2585. [Google Scholar] [CrossRef]
- Wu, C.C.; Jeratsch, S.; Graumann, J.; Stainier, D.Y.R. Modulation of Mammalian Cardiomyocyte Cytokinesis by the Extracellular Matrix. Circ. Res. 2020, 127, 896–907. [Google Scholar] [CrossRef]
- Castro-Ferreira, R.; Fontes-Carvalho, R.; Falcao-Pires, I.; Leite-Moreira, A.F. The role of titin in the modulation of cardiac function and its pathophysiological implications. Arq. Bras. Cardiol. 2011, 96, 332–339. [Google Scholar] [CrossRef] [Green Version]
- Jackson, T.; Allard, M.F.; Sreenan, C.M.; Doss, L.K.; Bishop, S.P.; Swain, J.L. The c-myc proto-oncogene regulates cardiac development in transgenic mice. Mol. Cell. Biol. 1990, 10, 3709–3716. [Google Scholar] [CrossRef] [PubMed]
- Jackson, T.; Allard, M.F.; Sreenan, C.M.; Doss, L.K.; Bishop, S.P.; Swain, J.L. Transgenic animals as a tool for studying the effect of the c-myc proto-oncogene on cardiac development. Mol. Cell. Biochem. 1991, 104, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Machida, N.; Brissie, N.; Sreenan, C.; Bishop, S.P. Inhibition of cardiac myocyte division in c-myc transgenic mice. J. Mol. Cell. Cardiol. 1997, 29, 1895–1902. [Google Scholar] [CrossRef] [PubMed]
- Porrello, E.R.; Mahmoud, A.I.; Simpson, E.; Johnson, B.A.; Grinsfelder, D.; Canseco, D.; Mammen, P.P.; Rothermel, B.A.; Olson, E.N.; Sadek, H.A. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl. Acad. Sci. USA 2013, 110, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Clubb, F.J., Jr.; Penney, D.G.; Baylerian, M.S.; Bishop, S.P. Cardiomegaly due to myocyte hyperplasia in perinatal rats exposed to 200 ppm carbon monoxide. J. Mol. Cell. Cardiol. 1986, 18, 477–486. [Google Scholar] [CrossRef]
- Bae, S.; Xiao, Y.; Li, G.; Casiano, C.A.; Zhang, L. Effect of maternal chronic hypoxic exposure during gestation on apoptosis in fetal rat heart. Am. J. Physiol. Heart Circ. Physiol. 2003, 285, H983–H990. [Google Scholar] [CrossRef] [Green Version]
- Tong, W.; Xiong, F.; Li, Y.; Zhang, L. Hypoxia inhibits cardiomyocyte proliferation in fetal rat hearts via upregulating TIMP-4. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 304, R613–R620. [Google Scholar] [CrossRef] [Green Version]
- Tong, W.; Xue, Q.; Li, Y.; Zhang, L. Maternal hypoxia alters matrix metalloproteinase expression patterns and causes cardiac remodeling in fetal and neonatal rats. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H2113–H2121. [Google Scholar] [CrossRef] [Green Version]
- Nakada, Y.; Canseco, D.C.; Thet, S.; Abdisalaam, S.; Asaithamby, A.; Santos, C.X.; Shah, A.M.; Zhang, H.; Faber, J.E.; Kinter, M.T.; et al. Hypoxia induces heart regeneration in adult mice. Nature 2017, 541, 222–227. [Google Scholar] [CrossRef]
- Neffgen, J.F.; Korecky, B. Cellular hyperplasia and hypertrophy in cardiomegalies induced by anemia in young and adult rats. Circ. Res. 1972, 30, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Jonker, S.S.; Giraud, M.K.; Giraud, G.D.; Chattergoon, N.N.; Louey, S.; Davis, L.E.; Faber, J.J.; Thornburg, K.L. Cardiomyocyte enlargement, proliferation and maturation during chronic fetal anaemia in sheep. Exp. Physiol. 2010, 95, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Chattergoon, N.N.; Giraud, G.D.; Louey, S.; Stork, P.; Fowden, A.L.; Thornburg, K.L. Thyroid hormone drives fetal cardiomyocyte maturation. FASEB J. 2012, 26, 397–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chattergoon, N.N.; Louey, S.; Stork, P.; Giraud, G.D.; Thornburg, K.L. Mid-gestation ovine cardiomyocytes are vulnerable to mitotic suppression by thyroid hormone. Reprod. Sci. 2012, 19, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Gerdes, A.M.; Kriseman, J.; Bishop, S.P. Changes in myocardial cell size and number during the development and reversal of hyperthyroidism in neonatal rats. Lab. Investig. 1983, 48, 598–602. [Google Scholar]
- Kim, M.Y.; Eiby, Y.A.; Lumbers, E.R.; Wright, L.L.; Gibson, K.J.; Barnett, A.C.; Lingwood, B.E. Effects of glucocorticoid exposure on growth and structural maturation of the heart of the preterm piglet. PLoS ONE 2014, 9, e93407. [Google Scholar] [CrossRef] [Green Version]
- Fishman, N.H.; Hof, R.B.; Rudolph, A.M.; Heymann, M.A. Models of congenital heart disease in fetal lambs. Circulation 1978, 58, 354–364. [Google Scholar] [CrossRef] [Green Version]
- Saiki, Y.; Konig, A.; Waddell, J.; Rebeyka, I.M. Hemodynamic alteration by fetal surgery accelerates myocyte proliferation in fetal guinea pig hearts. Surgery 1997, 122, 412–419. [Google Scholar] [CrossRef]
- Porrello, E.R.; Olson, E.N. A neonatal blueprint for cardiac regeneration. Stem Cell Res. 2014, 13, 556–570. [Google Scholar] [CrossRef] [Green Version]
- Bishop, S.P.; Zhou, Y.; Nakada, Y.; Zhang, J. Changes in Cardiomyocyte Cell Cycle and Hypertrophic Growth During Fetal to Adult in Mammals. J. Am. Heart Assoc. 2021, 10, e017839. [Google Scholar] [CrossRef]
- Jonker, S.S.; Louey, S. Endocrine and other physiologic modulators of perinatal cardiomyocyte endowment. J. Endocrinol. 2016, 228, R1–R18. [Google Scholar] [CrossRef] [Green Version]
- Xiao, G.; Mao, S.; Baumgarten, G.; Serrano, J.; Jordan, M.C.; Roos, K.P.; Fishbein, M.C.; MacLellan, W.R. Inducible activation of c-Myc in adult myocardium in vivo provokes cardiac myocyte hypertrophy and reactivation of DNA synthesis. Circ. Res. 2001, 89, 1122–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcu, K.B. Regulation of expression of the c-myc proto-oncogene. Bioessays 1987, 6, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Burton, P.B.; Raff, M.C.; Kerr, P.; Yacoub, M.H.; Barton, P.J. An intrinsic timer that controls cell-cycle withdrawal in cultured cardiac myocytes. Dev. Biol. 1999, 216, 659–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velayutham, N.; Alfieri, C.M.; Agnew, E.J.; Riggs, K.W.; Baker, R.S.; Ponny, S.R.; Zafar, F.; Yutzey, K.E. Cardiomyocyte cell cycling, maturation, and growth by multinucleation in postnatal swine. J. Mol. Cell. Cardiol. 2020, 146, 95–108. [Google Scholar] [CrossRef]
- Grabner, W.; Pfitzer, P. Number of nuclei in isolated myocardial cells of pigs. Virchows Arch. B Cell Pathol. 1974, 15, 279–294. [Google Scholar] [CrossRef]
- Østergaard, K.H.; Baandrup, U.T.; Wang, T.; Bertelsen, M.F.; Andersen, J.B.; Smerup, M.; Nyengaard, J.R. Left ventricular morphology of the giraffe heart examined by stereological methods. Anat. Rec. 2013, 296, 611–621. [Google Scholar] [CrossRef] [Green Version]
- Gan, P.; Patterson, M.; Sucov, H.M. Cardiomyocyte Polyploidy and Implications for Heart Regeneration. Annu. Rev. Physiol. 2020, 82, 45–61. [Google Scholar] [CrossRef] [Green Version]
- Orr-Weaver, T.L. When bigger is better: The role of polyploidy in organogenesis. Trends Genet. 2015, 31, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Pandit, S.K.; Westendorp, B.; Bruin, A.D. Physiological significance of polyploidization in mammalian cells. Trends Cell Biol. 2013, 23, 556–566. [Google Scholar] [CrossRef]
- Yekelchyk, M.; Guenther, S.; Preussner, J.; Braun, T. Mono- and multi-nucleated ventricular cardiomyocytes constitute a transcriptionally homogenous cell population. Basic Res. Cardiol. 2019, 114, 36. [Google Scholar] [CrossRef] [Green Version]
- Bishop, S.P.; Drummond, J.L. Surface morphology and cell size measurement of isolated rat cardiac myocytes. J. Mol. Cell. Cardiol. 1979, 11, 423–433. [Google Scholar] [CrossRef]
- Bishop, S.P.; Dillon, D.; Naftilan, J.; Reynolds, R. Surface morphology of isolated cardiac myocytes from hypertrophied hearts of aging spontaneously hypertensive rats. Scan. Electron Microsc. 1980, 2, 193–199. [Google Scholar]
- Derks, W.; Bergmann, O. Polyploidy in Cardiomyocytes: Roadblock to Heart Regeneration? Circ. Res. 2020, 126, 552–565. [Google Scholar] [CrossRef] [PubMed]
- Peterson, N.G.; Fox, D.T. Communal living: The role of polyploidy and syncytia in tissue biology. Chromosome Res. 2021, 29, 245–260. [Google Scholar] [CrossRef]
- Stephen, M.J.; Poindexter, B.J.; Moolman, J.A.; Sheikh-Hamad, D.; Bick, R.J. Do binucleate cardiomyocytes have a role in myocardial repair? Insights using isolated rodent myocytes and cell culture. Open Cardiovasc. Med. J. 2009, 3, 1–7. [Google Scholar] [CrossRef]
- Setnikar, I.; Magistretti, M.J. Relationships between organ weight and body weight in the male rat. Arzneimittelforschung 1965, 15, 1042–1048. [Google Scholar]
- Nakamura, S.; Asai, J.; Hama, K. The transverse tubular system of rat myocardium: Its morphology and morphometry in the developing and adult animal. Anat. Embryol. 1986, 173, 307–315. [Google Scholar] [CrossRef]
- Schiebler, T.H.; Wolff, H.H. Electron microscopic studies on the rat myocardium during its development. Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie 1966, 69, 22–40. [Google Scholar] [CrossRef]
- Karbassi, E.; Fenix, A.; Marchiano, S.; Muraoka, N.; Nakamura, K.; Yang, X.; Murry, C.E. Cardiomyocyte maturation: Advances in knowledge and implications for regenerative medicine. Nat. Rev. Cardiol. 2020, 17, 341–359. [Google Scholar] [CrossRef]
- Vornanen, M. Excitation-contraction coupling of the developing rat heart. Mol. Cell Biochem. 1996, 163, 5–11. [Google Scholar] [CrossRef]
- Vornanen, M. Force-frequency relationship, contraction duration and recirculating fraction of calcium in postnatally developing rat heart ventricles: Correlation with heart rate. Acta Physiol. Scand. 1992, 145, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.F.; Chen, Y.C.; Yeh, H.I.; Chen, S.A. Mononucleated and binucleated cardiomyocytes in left atrium and pulmonary vein have different electrical activity and calcium dynamics. Prog. Biophys. Mol. Biol. 2012, 108, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Wahler, G.M.; Dollinger, S.J.; Smith, J.M.; Flemal, K.L. Time course of postnatal changes in rat heart action potential and in transient outward current is different. Am. J. Physiol. 1994, 267, H1157–H1166. [Google Scholar] [CrossRef] [PubMed]
- Anversa, P.; Ricci, R.; Olivetti, G. Coronary capillaries during normal and pathological growth. Can. J. Cardiol. 1986, 2, 104–113. [Google Scholar]
- Anversa, P.; Olivetti, G.; Loud, A.V. Morphometric study of early postnatal development in the left and right ventricular myocardium of the rat. I. Hypertrophy, hyperplasia, and binucleation of myocytes. Circ. Res. 1980, 46, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Vivien, C.J.; Hudson, J.E.; Porrello, E.R. Evolution, comparative biology and ontogeny of vertebrate heart regeneration. NPJ Regen. Med. 2016, 1, 16012. [Google Scholar] [CrossRef] [Green Version]
- Sugden, P.H.; Fuller, S.J. Correlations between cardiac protein synthesis rates, intracellular pH and the concentrations of creatine metabolites. Biochem. J. 1991, 273, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Zak, R.; Martin, A.F.; Reddy, M.K.; Rabinowitz, M. Control of protein balance in hypertrophied cardiac muscle. Circ. Res. 1976, 38, I145–I150. [Google Scholar]
- Bergmann, O.; Bhardwaj, R.D.; Bernard, S.; Zdunek, S.; Barnabé-Heider, F.; Walsh, S.; Zupicich, J.; Alkass, K.; Buchholz, B.A.; Druid, H.; et al. Evidence for cardiomyocyte renewal in humans. Science 2009, 324, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Cohn, J.N. Post-MI remodeling. Clin. Cardiol. 1993, 16, 21–24. [Google Scholar] [CrossRef]
- Olivetti, G.; Capasso, J.M.; Meggs, L.G.; Sonnenblick, E.H.; Anversa, P. Cellular basis of chronic ventricular remodeling after myocardial infarction in rats. Circ. Res. 1991, 68, 856–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMullen, J.R.; Jennings, G.L. Differences between pathological and physiological cardiac hypertrophy: Novel therapeutic strategies to treat heart failure. Clin. Exp. Pharmacol. Physiol. 2007, 34, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Sadoshima, J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat. Rev. Cardiol. 2018, 15, 387–407. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, I.; Minamino, T. Physiological and pathological cardiac hypertrophy. J. Mol. Cell. Cardiol. 2016, 97, 245–262. [Google Scholar] [CrossRef]
- Scheuer, J.; Buttrick, P. The cardiac hypertrophic responses to pathologic and physiologic loads. Circulation 1987, 75, I63–I68. [Google Scholar]
- Pluim, B.M.; Zwinderman, A.H.; Laarse, A.V.D.; Wall, E.E.V.D. The athlete’s heart. A meta-analysis of cardiac structure and function. Circulation 2000, 101, 336–344. [Google Scholar] [CrossRef] [Green Version]
- Pluim, B.M.; Lamb, H.J.; Kayser, H.W.; Leujes, F.; Beyerbacht, H.P.; Zwinderman, A.H.; van der Laarse, A.; Vliegen, H.W.; de Roos, A.; van der Wall, E.E. Functional and metabolic evaluation of the athlete‘s heart by magnetic resonance imaging and dobutamine stress magnetic resonance spectroscopy. Circulation 1998, 97, 666–672. [Google Scholar] [CrossRef] [Green Version]
- Pelliccia, A.; Maron, B.J.; Spataro, A.; Proschan, M.A.; Spirito, P. The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes. N. Engl. J. Med. 1991, 324, 295–301. [Google Scholar] [CrossRef]
- Gunn, H.M. Heart weight and running ability. J. Anat. 1989, 167, 225–233. [Google Scholar]
- Schoning, P.; Erickson, H.; Milliken, G.A. Body weight, heart weight, and heart-to-body weight ratio in greyhounds. Am. J. Vet. Res. 1995, 56, 420–422. [Google Scholar]
- Steel, J.D.; Taylor, R.I.; Davis, P.E.; Stewart, G.A.; Salmon, P.W. Relationships between heart score, heart weight and body weight in Greyhound dogs. Aust. Vet. J. 1976, 52, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, F.S.; Brum, P.C.; Krieger, J.E. Duration-controlled swimming exercise training induces cardiac hypertrophy in mice. Braz. J. Med. Biol. Res. 2003, 36, 1751–1759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, M.L.; Cheslow, Y.; Vikstrom, K.; Malhotra, A.; Geenen, D.L.; Nakouzi, A.; Leinwand, L.A.; Buttrick, P.M. Cardiac adaptations to chronic exercise in mice. Am. J. Physiol. 1994, 267, H1167–H1173. [Google Scholar] [CrossRef] [PubMed]
- Anversa, P.; Levicky, V.; Beghi, C.; McDonald, S.L.; Kikkawa, Y. Morphometry of exercise-induced right ventricular hypertrophy in the rat. Circ. Res. 1983, 52, 57–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anversa, P.; Ricci, R.; Olivetti, G. Effects of exercise on the capillary vasculature of the rat heart. Circulation 1987, 75, I12–I18. [Google Scholar]
- Iemitsu, M.; Miyauchi, T.; Maeda, S.; Sakai, S.; Kobayashi, T.; Fujii, N.; Miyazaki, H.; Matsuda, M.; Yamaguchi, I. Physiological and pathological cardiac hypertrophy induce different molecular phenotypes in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 281, R2029–R2036. [Google Scholar] [CrossRef]
- Iemitsu, M.; Maeda, S.; Miyauchi, T.; Matsuda, M.; Tanaka, H. Gene expression profiling of exercise-induced cardiac hypertrophy in rats. Acta Physiol. Scand. 2005, 185, 259–270. [Google Scholar] [CrossRef]
- Burelle, Y.; Wambolt, R.B.; Grist, M.; Parsons, H.L.; Chow, J.C.; Antler, C.; Bonen, A.; Keller, A.; Dunaway, G.A.; Popov, K.M.; et al. Regular exercise is associated with a protective metabolic phenotype in the rat heart. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H1055–H1063. [Google Scholar] [CrossRef]
- White, F.C.; McKirnan, M.D.; Breisch, E.A.; Guth, B.D.; Liu, Y.M.; Bloor, C.M. Adaptation of the left ventricle to exercise-induced hypertrophy. J. Appl. Physiol. 1987, 62, 1097–1110. [Google Scholar] [CrossRef]
- Singh, S.; White, F.C.; Bloor, C.M. Effect of acute exercise stress in cardiac hypertrophy: I. correlation of regional blood flow and qualitative ultrastructural changes. Yale J. Biol. Med. 1980, 53, 459–470. [Google Scholar]
- Stone, H.L. Cardiac function and exercise training in conscious dogs. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1977, 42, 824–832. [Google Scholar] [CrossRef] [PubMed]
- Carew, T.E.; Covell, J.W. Left ventricular function in exercise-induced hypertrophy in dogs. Am. J. Cardiol. 1978, 42, 82–88. [Google Scholar] [CrossRef]
- Wyatt, H.L.; Mitchell, J. Influences of physical conditioning and deconditioning on coronary vasculature of dogs. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1978, 45, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Iacobazzi, D.; Suleiman, M.S.; Ghorbel, M.; George, S.J.; Caputo, M.; Tulloh, R.M. Cellular and molecular basis of RV hypertrophy in congenital heart disease. Heart 2016, 102, 12–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Detweiler, D.K.; Patterson, D.F. The prevalence and types of cardiovascular disease in dogs. Ann. N. Y. Acad. Sci. 1965, 127, 481–516. [Google Scholar] [CrossRef]
- Kawamura, K.; Kashii, C.; Imamura, K. Ultrastructural changes in hypertrophied myocardium of spontaneously hypertensive rats. Jpn. Circ. J. 1976, 40, 1119–1145. [Google Scholar] [CrossRef] [Green Version]
- Uegaito, T.; Fujiwara, H.; Ishida, M.; Kawamura, A.; Takemura, G.; Kida, M.; Tanaka, M.; Kawai, C. Hypertrophy of surviving myocytes overlying the infarct in human old myocardial infarctions with abnormal Q waves. Int. J. Cardiol. 1991, 32, 93–101. [Google Scholar] [CrossRef]
- Theroux, P.; Ross, J., Jr.; Franklin, D.; Covell, J.W.; Bloor, C.M.; Sasayama, S. Regional myocardial function and dimensions early and late after myocardial infarction in the unanesthetized dog. Circ. Res. 1977, 40, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Rubin, S.A.; Fishbein, M.C.; Swan, H.J. Compensatory hypertrophy in the heart after myocardial infarction in the rat. J. Am. Coll. Cardiol. 1983, 1, 1435–1441. [Google Scholar] [CrossRef] [Green Version]
- Marian, A.J.; Braunwald, E. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circ. Res. 2017, 121, 749–770. [Google Scholar] [CrossRef]
- Ferrans, V.J.; Morrow, A.G.; Roberts, W.C. Myocardial ultrastructure in idiopathic hypertrophic subaortic stenosis. A study of operatively excised left ventricular outflow tract muscle in 14 patients. Circulation 1972, 45, 769–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilley, L.P.; Liu, S.K. Cardiomyopathy in the dog. Recent Adv. Stud. Card. Struct. Metab. 1975, 10, 641–653. [Google Scholar]
- Liu, S.K.; Maron, B.J.; Tilley, L.P. Canine hypertrophic cardiomyopathy. J. Am. Vet. Med. Assoc. 1979, 174, 708–713. [Google Scholar] [PubMed]
- Sandusky, G.E., Jr.; Capen, C.C.; Kerr, K.M. Histological and ultrastructural evaluation of cardiac lesions in idiopathic cardiomyopathy in dogs. Can. J. Comp. Med. 1984, 48, 81–86. [Google Scholar]
- Liu, S.K.; Maron, B.J.; Tilley, L.P. Feline hypertrophic cardiomyopathy: Gross anatomic and quantitative histologic features. Am. J. Pathol. 1981, 102, 388–395. [Google Scholar]
- Liu, S.K.; Peterson, M.E.; Fox, P.R. Hypertropic cardiomyopathy and hyperthyroidism in the cat. J. Am. Vet. Med. Assoc. 1984, 185, 52–57. [Google Scholar]
- Abbott, J.A. Feline hypertrophic cardiomyopathy: An update. Vet. Clin. N. Am. Small Anim. Pract. 2010, 40, 685–700. [Google Scholar] [CrossRef]
- Liu, S.K.; Roberts, W.C.; Maron, B.J. Comparison of morphologic findings in spontaneously occurring hypertrophic cardiomyopathy in humans, cats and dogs. Am. J. Cardiol. 1993, 72, 944–951. [Google Scholar] [CrossRef]
- Geisterfer-Lowrance, A.A.; Christe, M.; Conner, D.A.; Ingwall, J.S.; Schoen, F.J.; Seidman, C.E.; Seidman, J.G. A mouse model of familial hypertrophic cardiomyopathy. Science 1996, 272, 731–734. [Google Scholar] [CrossRef]
- Semsarian, C.; Healey, M.J.; Fatkin, D.; Giewat, M.; Duffy, C.; Seidman, C.E.; Seidman, J.G. A polymorphic modifier gene alters the hypertrophic response in a murine model of familial hypertrophic cardiomyopathy. J. Mol. Cell. Cardiol. 2001, 33, 2055–2060. [Google Scholar] [CrossRef]
- Olsson, M.C.; Palmer, B.M.; Stauffer, B.L.; Leinwand, L.A.; Moore, R.L. Morphological and functional alterations in ventricular myocytes from male transgenic mice with hypertrophic cardiomyopathy. Circ. Res. 2004, 94, 201–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardt, S.E.; Geng, Y.J.; Montagne, O.; Asai, K.; Hong, C.; Yang, G.P.; Bishop, S.P.; Kim, S.J.; Vatner, D.E.; Seidman, C.E.; et al. Accelerated cardiomyopathy in mice with overexpression of cardiac G(s)alpha and a missense mutation in the alpha-myosin heavy chain. Circulation 2002, 105, 614–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.J.; Iizuka, K.; Kelly, R.A.; Geng, Y.J.; Bishop, S.P.; Yang, G.; Kudej, A.; McConnell, B.K.; Seidman, C.E.; Seidman, J.G.; et al. An alpha-cardiac myosin heavy chain gene mutation impairs contraction and relaxation function of cardiac myocytes. Am. J. Physiol. 1999, 276, H1780–H1787. [Google Scholar] [CrossRef] [PubMed]
- Vatner, D.E.; Yang, G.P.; Geng, Y.J.; Asai, K.; Yun, J.S.; Wagner, T.E.; Ishikawa, Y.; Bishop, S.P.; Homcy, C.J.; Vatner, S.F. Determinants of the cardiomyopathic phenotype in chimeric mice overexpressing cardiac Gsalpha. Circ. Res. 2000, 86, 802–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asai, K.; Yang, G.P.; Geng, Y.J.; Takagi, G.; Bishop, S.; Ishikawa, Y.; Shannon, R.P.; Wagner, T.E.; Vatner, D.E.; Homcy, C.J.; et al. Beta-adrenergic receptor blockade arrests myocyte damage and preserves cardiac function in the transgenic G(salpha) mouse. J. Clin. Investig. 1999, 104, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Meerson, F.Z.; Zaletayeva, T.A.; Lagutchev, S.S.; Pshennikova, M.G. Structure and Mass of Mitochondria in the Process of Compensatory Hyperfunction and Hypertrophy of the Heart. Exp. Cell Res. 1964, 36, 568–578. [Google Scholar] [CrossRef]
- Weber, K.T.; Clark, W.A.; Janicki, J.S.; Shroff, S.G. Physiologic versus pathologic hypertrophy and the pressure-overloaded myocardium. J. Cardiovasc. Pharmacol. 1987, 10, S37–S50. [Google Scholar] [CrossRef]
- Wikman-Coffelt, J.; Parmley, W.W.; Mason, D.T. The cardiac hypertrophy process. Analyses of factors determining pathological vs. physiological development. Circ. Res. 1979, 45, 697–707. [Google Scholar] [CrossRef] [Green Version]
- Hittinger, L.; Shannon, R.P.; Bishop, S.P.; Gelpi, R.J.; Vatner, S.F. Subendomyocardial exhaustion of blood flow reserve and increased fibrosis in conscious dogs with heart failure. Circ. Res. 1989, 65, 971–980. [Google Scholar] [CrossRef] [Green Version]
- Anversa, P.; Ricci, R.; Olivetti, G. Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: A review. J. Am. Coll. Cardiol. 1986, 7, 1140–1149. [Google Scholar] [CrossRef] [Green Version]
- Grossman, W.; Jones, D.; McLaurin, L.P. Wall stress and patterns of hypertrophy in the human left ventricle. J. Clin. Investig. 1975, 56, 56–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hood, W.P., Jr.; Rackley, C.E.; Rolett, E.L. Wall stress in the normal and hypertrophied human left ventricle. Am. J. Cardiol. 1968, 22, 550–558. [Google Scholar] [CrossRef]
- Grant, C.; Greene, D.G.; Bunnell, I.L. Left ventricular enlargement and hypertrophy. A clinical and angiocardiographic study. Am. J. Med. 1965, 39, 895–904. [Google Scholar] [CrossRef]
- Dell‘italia, L.J.; Balcells, E.; Meng, Q.C.; Su, X.; Schultz, D.; Bishop, S.P.; Machida, N.; Straeter-Knowlen, I.M.; Hankes, G.H.; Dillon, R.; et al. Volume-overload cardiac hypertrophy is unaffected by ACE inhibitor treatment in dogs. Am. J. Physiol. 1997, 273, H961–H970. [Google Scholar] [CrossRef] [PubMed]
- Gerdes, A.M.; Campbell, S.E.; Hilbelink, D.R. Structural remodeling of cardiac myocytes in rats with arteriovenous fistulas. Lab. Investig. 1988, 59, 857–861. [Google Scholar]
- Gerdes, A.M. Remodeling of ventricular myocytes during cardiac hypertrophy and heart failure. J. Fla. Med. Assoc. 1992, 79, 253–255. [Google Scholar]
- Gerdes, A.M. Cardiac myocyte remodeling in hypertrophy and progression to failure. J. Card. Fail. 2002, 8, S264–S268. [Google Scholar] [CrossRef]
- Smith, S.H.; McCaslin, M.; Sreenan, C.; Bishop, S.P. Regional myocyte size in two-kidney, one clip renal hypertension. J. Mol. Cell. Cardiol. 1988, 20, 1035–1042. [Google Scholar] [CrossRef]
- Smith, S.H.; Bishop, S.P. Regional myocyte size in compensated right ventricular hypertrophy in the ferret. J. Mol. Cell. Cardiol. 1985, 17, 1005–1011. [Google Scholar] [CrossRef]
- Smith, S.H.; Kramer, M.F.; Reis, I.; Bishop, S.P.; Ingwall, J.S. Regional changes in creatine kinase and myocyte size in hypertensive and nonhypertensive cardiac hypertrophy. Circ. Res. 1990, 67, 1334–1344. [Google Scholar] [CrossRef] [Green Version]
- Olivetti, G.; Capasso, J.M.; Sonnenblick, E.H.; Anversa, P. Side-to-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circ. Res. 1990, 67, 23–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, J., Jr.; Sonnenblick, E.H.; Taylor, R.R.; Spotnitz, H.M.; Covell, J.W. Diastolic geometry and sarcomere lengths in the chronically dilated canine left ventricle. Circ. Res. 1971, 28, 49–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, K.T. Cardiac interstitium in health and disease: The fibrillar collagen network. J. Am. Coll. Cardiol. 1989, 13, 1637–1652. [Google Scholar] [CrossRef] [Green Version]
- Schaper, J.; Froede, R.; Hein, S.; Buck, A.; Hashizume, H.; Speiser, B.; Friedl, A.; Bleese, N. Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation 1991, 83, 504–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hein, S.; Kostin, S.; Heling, A.; Maeno, Y.; Schaper, J. The role of the cytoskeleton in heart failure. Cardiovasc. Res. 2000, 45, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Zile, M.R.; Tomita, M.; Nakano, K.; Mirsky, I.; Usher, B.; Lindroth, J.; Carabello, B.A. Effects of left ventricular volume overload produced by mitral regurgitation on diastolic function. Am. J. Physiol. 1991, 261, H1471–H1480. [Google Scholar] [CrossRef]
- Urabe, Y.; Mann, D.L.; Kent, R.L.; Nakano, K.; Tomanek, R.J.; Carabello, B.A.; Cooper, G.T. Cellular and ventricular contractile dysfunction in experimental canine mitral regurgitation. Circ. Res. 1992, 70, 131–147. [Google Scholar] [CrossRef] [Green Version]
- Spinale, F.G.; Tomita, M.; Zellner, J.L.; Cook, J.C.; Crawford, F.A.; Zile, M.R. Collagen remodeling and changes in LV function during development and recovery from supraventricular tachycardia. Am. J. Physiol. 1991, 261, H308–H318. [Google Scholar] [CrossRef]
- Spinale, F.G.; Zellner, J.L.; Tomita, M.; Crawford, F.A.; Zile, M.R. Relation between ventricular and myocyte remodeling with the development and regression of supraventricular tachycardia-induced cardiomyopathy. Circ. Res. 1991, 69, 1058–1067. [Google Scholar] [CrossRef] [Green Version]
- Spinale, F.G.; Hendrick, D.A.; Crawford, F.A.; Smith, A.C.; Hamada, Y.; Carabello, B.A. Chronic supraventricular tachycardia causes ventricular dysfunction and subendocardial injury in swine. Am. J. Physiol. 1990, 259, H218–H229. [Google Scholar] [CrossRef]
- Zellner, J.L.; Spinale, F.G.; Eble, D.M.; Hewett, K.W.; Crawford, F.A., Jr. Alterations in myocyte shape and basement membrane attachment with tachycardia-induced heart failure. Circ. Res. 1991, 69, 590–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komamura, K.; Shannon, R.P.; Pasipoularides, A.; Ihara, T.; Lader, A.S.; Patrick, T.A.; Bishop, S.P.; Vatner, S.F. Alterations in left ventricular diastolic function in conscious dogs with pacing-induced heart failure. J. Clin. Investig. 1992, 89, 1825–1838. [Google Scholar] [CrossRef] [PubMed]
- Shannon, R.P.; Komamura, K.; Shen, Y.T.; Bishop, S.P.; Vatner, S.F. Impaired regional subendocardial coronary flow reserve in conscious dogs with pacing-induced heart failure. Am. J. Physiol. 1993, 265, H801–H809. [Google Scholar] [CrossRef] [PubMed]
- Komamura, K.; Shannon, R.P.; Ihara, T.; Shen, Y.T.; Mirsky, I.; Bishop, S.P.; Vatner, S.F. Exhaustion of Frank-Starling mechanism in conscious dogs with heart failure. Am. J. Physiol. 1993, 265, H1119–H1131. [Google Scholar] [CrossRef]
- Weber, K.T.; Pick, R.; Silver, M.A.; Moe, G.W.; Janicki, J.S.; Zucker, I.H.; Armstrong, P.W. Fibrillar collagen and remodeling of dilated canine left ventricle. Circulation 1990, 82, 1387–1401. [Google Scholar] [CrossRef] [Green Version]
- Harper, J.; Harper, E.; Covell, J.W. Collagen characterization in volume-overload- and pressure-overload-induced cardiac hypertrophy in minipigs. Am. J. Physiol. 1993, 265, H434–H438. [Google Scholar] [CrossRef]
- Ruzicka, M.; Keeley, F.W.; Leenen, F.H. The renin-angiotensin system and volume overload-induced changes in cardiac collagen and elastin. Circulation 1994, 90, 1989–1996. [Google Scholar] [CrossRef] [Green Version]
- Michel, J.B.; Salzmann, J.L.; Nlom, M.O.; Bruneval, P.; Barres, D.; Camilleri, J.P. Morphometric analysis of collagen network and plasma perfused capillary bed in the myocardium of rats during evolution of cardiac hypertrophy. Basic Res. Cardiol. 1986, 81, 142–154. [Google Scholar] [CrossRef]
- Marcus, M.L.; Mueller, T.M.; Gascho, J.A.; Kerber, R.E. Effects of cardiac hypertrophy secondary to hypertension on the coronary circulation. Am. J. Cardiol. 1979, 44, 1023–1028. [Google Scholar] [CrossRef]
- Rembert, J.C.; Kleinman, L.H.; Fedor, J.M.; Wechsler, A.S.; Greenfield, J.C., Jr. Myocardial blood flow distribution in concentric left ventricular hypertrophy. J. Clin. Investig. 1978, 62, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Parrish, D.G.; Ring, W.S.; Bache, R.J. Myocardial perfusion in compensated and failing hypertrophied left ventricle. Am. J. Physiol. 1985, 249, H534–H539. [Google Scholar] [CrossRef] [PubMed]
- Vrobel, T.R.; Ring, W.S.; Anderson, R.W.; Emery, R.W.; Bache, R.J. Effect of heart rate on myocardial blood flow in dogs with left ventricular hypertrophy. Am. J. Physiol. 1980, 239, H621–H627. [Google Scholar] [CrossRef] [PubMed]
- Bache, R.J.; Vrobel, T.R.; Ring, W.S.; Emery, R.W.; Andersen, R.W. Regional myocardial blood flow during exercise in dogs with chronic left ventricular hypertrophy. Circ. Res. 1981, 48, 76–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bache, R.J.; Vrobel, T.R.; Arentzen, C.E.; Ring, W.S. Effect of maximal coronary vasodilation on transmural myocardial perfusion during tachycardia in dogs with left ventricular hypertrophy. Circ. Res. 1981, 49, 742–750. [Google Scholar] [CrossRef] [Green Version]
- Breisch, E.A.; Houser, S.R.; Carey, R.A.; Spann, J.F.; Bove, A.A. Myocardial blood flow and capillary density in chronic pressure overload of the feline left ventricle. Cardiovasc. Res. 1980, 14, 469–475. [Google Scholar] [CrossRef]
- Sasayama, S.; Ross, J., Jr.; Franklin, D.; Bloor, C.M.; Bishop, S.; Dilley, R.B. Adaptations of the left ventricle to chronic pressure overload. Circ. Res. 1976, 38, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Serizawa, T.; Mirsky, I.; Carabello, B.A.; Grossman, W. Diastolic myocardial stiffness in gradually developing left ventricular hypertrophy in dog. Am. J. Physiol. 1982, 242, H633–H637. [Google Scholar] [CrossRef]
- Williams, J.F., Jr.; Potter, R.D. Normal contractile state of hypertrophied myocardium after pulmonary artery constriction in the cat. J. Clin. Investig. 1974, 54, 1266–1272. [Google Scholar] [CrossRef] [Green Version]
- Hittinger, L.; Shen, Y.T.; Patrick, T.A.; Hasebe, N.; Komamura, K.; Ihara, T.; Manders, W.T.; Vatner, S.F. Mechanisms of subendocardial dysfunction in response to exercise in dogs with severe left ventricular hypertrophy. Circ. Res. 1992, 71, 423–434. [Google Scholar] [CrossRef] [Green Version]
- Hittinger, L.; Mirsky, I.; Shen, Y.T.; Patrick, T.A.; Bishop, S.P.; Vatner, S.F. Hemodynamic mechanisms responsible for reduced subendocardial coronary reserve in dogs with severe left ventricular hypertrophy. Circulation 1995, 92, 978–986. [Google Scholar] [CrossRef]
- White, F.C.; Sanders, M.; Peterson, T.; Bloor, C.M. Ischemic myocardial injury after exercise stress in the pressure-overloaded heart. Am. J. Pathol. 1979, 97, 473–488. [Google Scholar] [PubMed]
- Hasebe, N.; Shen, Y.T.; Kiuchi, K.; Hittinger, L.; Bishop, S.P.; Vatner, S.F. Enhanced postischemic dysfunction selective to subendocardium in conscious dogs with LV hypertrophy. Am. J. Physiol. 1994, 266, H702–H713. [Google Scholar] [CrossRef] [PubMed]
- Nakano, K.; Corin, W.J.; Spann, J.F., Jr.; Biederman, R.W.; Denslow, S.; Carabello, B.A. Abnormal subendocardial blood flow in pressure overload hypertrophy is associated with pacing-induced subendocardial dysfunction. Circ. Res. 1989, 65, 1555–1564. [Google Scholar] [CrossRef] [PubMed]
- Murakami, Y.; Zhang, Y.; Cho, Y.K.; Mansoor, A.M.; Chung, J.K.; Chu, C.; Francis, G.; Ugurbil, K.; Bache, R.J.; From, A.H.; et al. Myocardial oxygenation during high work states in hearts with postinfarction remodeling. Circulation 1999, 99, 942–948. [Google Scholar] [CrossRef] [Green Version]
- Gong, G.; Liu, J.; Liang, P.; Guo, T.; Hu, Q.; Ochiai, K.; Hou, M.; Ye, Y.; Wu, X.; Mansoor, A.; et al. Oxidative capacity in failing hearts. Am. J. Physiol. Heart Circ. Physiol. 2003, 285, H541–H548. [Google Scholar] [CrossRef] [Green Version]
- Bishop, S.P.; Powell, P.C.; Hasebe, N.; Shen, Y.T.; Patrick, T.A.; Hittinger, L.; Vatner, S.F. Coronary vascular morphology in pressure-overload left ventricular hypertrophy. J. Mol. Cell. Cardiol. 1996, 28, 141–154. [Google Scholar] [CrossRef]
- Tomanek, R.J.; Wessel, T.J.; Harrison, D.G. Capillary growth and geometry during long-term hypertension and myocardial hypertrophy in dogs. Am. J. Physiol. 1991, 261, H1011–H1018. [Google Scholar] [CrossRef]
- Imamura, K. Ultrastructural aspect of left ventricular hypertrophy in spontaneously hypertensive rats: A qualitative and quantitative study. Jpn. Circ. J. 1978, 42, 979–1002. [Google Scholar] [CrossRef]
- Alyono, D.; Anderson, R.W.; Parrish, D.G.; Dai, X.Z.; Bache, R.J. Alterations of myocardial blood flow associated with experimental canine left ventricular hypertrophy secondary to valvular aortic stenosis. Circ. Res. 1986, 58, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, F.; Flameng, W.; Schaper, J.; Langebartels, F.; Sesto, M.; Hehrlein, F.; Schlepper, M. Myocardial structure and function in patients with aortic valve disease and their relation to postoperative results. Am. J. Cardiol. 1978, 41, 661–669. [Google Scholar] [CrossRef]
- Attarian, D.E.; Jones, R.N.; Currie, W.D.; Hill, R.C.; Sink, J.D.; Olsen, C.O.; Chitwood, W.R., Jr.; Wechsler, A.S. Characteristics of chronic left ventricular hypertrophy induced by subcoronary valvular aortic stenosis. I. Myocardial blood flow and metabolism. J. Thorac. Cardiovasc. Surg. 1981, 81, 382–388. [Google Scholar] [CrossRef]
- Spann, J.F., Jr.; Buccino, R.A.; Sonnenblick, E.H. Production of right ventricular hypertrophy with and without congestive heart failure in the cat. Proc. Soc. Exp. Biol. Med. 1967, 125, 522–524. [Google Scholar] [CrossRef] [PubMed]
- Bishop, S.P.; Melsen, L.R. Myocardial necrosis, fibrosis, and DNA synthesis in experimental cardiac hypertrophy induced by sudden pressure overload. Circ. Res. 1976, 39, 238–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalil, J.E.; Doering, C.W.; Janicki, J.S.; Pick, R.; Shroff, S.G.; Weber, K.T. Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ. Res. 1989, 64, 1041–1050. [Google Scholar] [CrossRef] [Green Version]
- Baicu, C.F.; Li, J.; Zhang, Y.; Kasiganesan, H.; Cooper, G.T.; Zile, M.R.; Bradshaw, A.D. Time course of right ventricular pressure-overload induced myocardial fibrosis: Relationship to changes in fibroblast postsynthetic procollagen processing. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, H1128–H1134. [Google Scholar] [CrossRef] [Green Version]
- Allard, M.F.; Doss, L.K.; Bishop, S.P. Verapamil does not prevent isoproterenol-induced cardiac hypertrophy. Am. J. Cardiovasc. Pathol. 1990, 3, 167–174. [Google Scholar]
- Allard, M.F.; DeVenny, M.F.; Doss, L.K.; Grizzle, W.E.; Bishop, S.P. Alterations in dietary sodium affect isoproterenol-induced cardiac hypertrophy. J. Mol. Cell. Cardiol. 1990, 22, 1135–1145. [Google Scholar] [CrossRef]
- Jacob, R.; Brenner, B.; Ebrecht, G.; Holubarsch, C.; Medugorac, I. Elastic and contractile properties of the myocardium in experimental cardiac hypertrophy of the rat. Methodological and pathophysiological considerations. Basic Res. Cardiol. 1980, 75, 253–261. [Google Scholar] [CrossRef]
- Thiedemann, K.U.; Holubarsch, C.; Medugorac, I.; Jacob, R. Connective tissue content and myocardial stiffness in pressure overload hypertrophy. A combined study of morphologic, morphometric, biochemical, and mechanical parameters. Basic Res. Cardiol. 1983, 78, 140–155. [Google Scholar] [CrossRef]
- Anversa, P.; Vitali-Mazza, L.; Visioli, O.; Marchetti, G. Experimental cardiac hypertrophy: A quantitative ultrastructural study in the compensatory stage. J. Mol. Cell. Cardiol. 1971, 3, 213–227. [Google Scholar] [CrossRef]
- Badenhorst, D.; Maseko, M.; Tsotetsi, O.J.; Naidoo, A.; Brooksbank, R.; Norton, G.R.; Woodiwiss, A.J. Cross-linking influences the impact of quantitative changes in myocardial collagen on cardiac stiffness and remodelling in hypertension in rats. Cardiovasc. Res. 2003, 57, 632–641. [Google Scholar] [CrossRef]
- Yamamoto, K.; Masuyama, T.; Sakata, Y.; Nishikawa, N.; Mano, T.; Yoshida, J.; Miwa, T.; Sugawara, M.; Yamaguchi, Y.; Ookawara, T.; et al. Myocardial stiffness is determined by ventricular fibrosis, but not by compensatory or excessive hypertrophy in hypertensive heart. Cardiovasc. Res. 2002, 55, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Stanton, H.C.; Brenner, G.; Mayfield, E.D., Jr. Studies on isoproterenol-induced cardiomegaly in rats. Am. Heart J. 1969, 77, 72–80. [Google Scholar] [CrossRef]
- Benjamin, I.J.; Jalil, J.E.; Tan, L.B.; Cho, K.; Weber, K.T.; Clark, W.A. Isoproterenol-induced myocardial fibrosis in relation to myocyte necrosis. Circ. Res. 1989, 65, 657–670. [Google Scholar] [CrossRef] [Green Version]
- Kudej, R.K.; Iwase, M.; Uechi, M.; Vatner, D.E.; Oka, N.; Ishikawa, Y.; Shannon, R.P.; Bishop, S.P.; Vatner, S.F. Effects of chronic beta-adrenergic receptor stimulation in mice. J. Mol. Cell. Cardiol. 1997, 29, 2735–2746. [Google Scholar] [CrossRef]
- Soonpaa, M.H.; Field, L.J. Assessment of cardiomyocyte DNA synthesis during hypertrophy in adult mice. Am. J. Physiol. 1994, 266, H1439–H1445. [Google Scholar] [CrossRef]
- Robbins, R.J.; Swain, J.L. C-myc protooncogene modulates cardiac hypertrophic growth in transgenic mice. Am. J. Physiol. 1992, 262, H590–H597. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Y.; Jia, Q.; Wang, X.; Lu, Y.; Zhang, A.; Lv, S.; Zhang, J. Morphological and Functional Characteristics of Animal Models of Myocardial Fibrosis Induced by Pressure Overload. Int. J. Hypertens. 2020, 2020, 3014693. [Google Scholar] [CrossRef]
- Rockey, D.C.; Bell, P.D.; Hill, J.A. Fibrosis—A common pathway to organ injury and failure. N. Engl. J. Med. 2015, 372, 1138–1149. [Google Scholar] [CrossRef]
- Chaturvedi, R.R.; Herron, T.; Simmons, R.; Shore, D.; Kumar, P.; Sethia, B.; Chua, F.; Vassiliadis, E.; Kentish, J.C. Passive stiffness of myocardium from congenital heart disease and implications for diastole. Circulation 2010, 121, 979–988. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.A. Pathologic fibrosis and connective tissue matrix in left ventricular hypertrophy due to chronic arterial hypertension in humans. J. Hypertens. 1998, 16, 1031–1041. [Google Scholar] [CrossRef]
- Pearlman, E.S.; Weber, K.T.; Janicki, J.S.; Pietra, G.G.; Fishman, A.P. Muscle fiber orientation and connective tissue content in the hypertrophied human heart. Lab. Investig. 1982, 46, 158–164. [Google Scholar] [PubMed]
- Peterson, K.L.; Tsuji, J.; Johnson, A.; DiDonna, J.; LeWinter, M. Diastolic left ventricular pressure-volume and stress-strain relations in patients with valvular aortic stenosis and left ventricular hypertrophy. Circulation 1978, 58, 77–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, K.L.; Ricci, D.; Tsuji, J.; Sasayama, S.; Ross, J., Jr. Evaluation of chamber and myocardial compliance in pressure overload hypertrophy. Eur. J. Cardiol. 1978, 7, 195–211. [Google Scholar] [PubMed]
- Drazner, M.H. The progression of hypertensive heart disease. Circulation 2011, 123, 327–334. [Google Scholar] [CrossRef]
- Rodrigues, J.C.; Amadu, A.M.; Dastidar, A.G.; Szantho, G.V.; Lyen, S.M.; Godsave, C.; Ratcliffe, L.E.; Burchell, A.E.; Hart, E.C.; Hamilton, M.C.; et al. Comprehensive characterisation of hypertensive heart disease left ventricular phenotypes. Heart 2016, 102, 1671–1679. [Google Scholar] [CrossRef] [Green Version]
- Pearlman, E.S.; Weber, K.T.; Janicki, J.S. Quantitative histology of the hypertrophied human heart. Fed. Proc. 1981, 40, 2042–2047. [Google Scholar]
- Spann, J.F., Jr.; Buccino, R.A.; Sonnenblick, E.H.; Braunwald, E. Contractile state of cardiac muscle obtained from cats with experimentally produced ventricular hypertrophy and heart failure. Circ. Res. 1967, 21, 341–354. [Google Scholar] [CrossRef] [Green Version]
- Carabello, B.A.; Mee, R.; Collins, J.J., Jr.; Kloner, R.A.; Levin, D.; Grossman, W. Contractile function in chronic gradually developing subcoronary aortic stenosis. Am. J. Physiol. 1981, 240, H80–H84. [Google Scholar] [CrossRef]
- Cvijic, M.; Bézy, S.; Petrescu, A.; Santos, P.; Orlowska, M.; Chakraborty, B.; Duchenne, J.; Pedrosa, J.; Vanassche, T.; D‘Hooge, J.; et al. Interplay of cardiac remodelling and myocardial stiffness in hypertensive heart disease: A shear wave imaging study using high-frame rate echocardiography. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 664–672. [Google Scholar] [CrossRef]
- Zile, M.R.; Baicu, C.F.; Ikonomidis, J.S.; Stroud, R.E.; Nietert, P.J.; Bradshaw, A.D.; Slater, R.; Palmer, B.M.; Buren, P.V.; Meyer, M.; et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: Contributions of collagen and titin. Circulation 2015, 131, 1247–1259. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Shah, G.; Wu, Y.; Torre-Amione, G.; King, N.M.; Lahmers, S.; Witt, C.C.; Becker, K.; Labeit, S.; Granzier, H.L. Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation 2004, 110, 155–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granzier, H.; Wu, Y.; Siegfried, L.; LeWinter, M. Titin: Physiological function and role in cardiomyopathy and failure. Heart Fail. Rev. 2005, 10, 211–223. [Google Scholar] [CrossRef]
- Mazumder, R.; Schroeder, S.; Mo, X.; Clymer, B.D.; White, R.D.; Kolipaka, A. In vivo quantification of myocardial stiffness in hypertensive porcine hearts using MR elastography. J. Magn. Reson. Imaging 2017, 45, 813–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Li, F.; Campbell, S.E.; Gerdes, A.M. Chronic pressure overload cardiac hypertrophy and failure in guinea pigs: II. Cytoskeletal remodeling. J. Mol. Cell. Cardiol. 1999, 31, 319–331. [Google Scholar] [CrossRef]
- Tagawa, H.; Koide, M.; Sato, H.; Zile, M.R.; Carabello, B.A.; Cooper, G.T. Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading. Circ. Res. 1998, 82, 751–761. [Google Scholar] [CrossRef]
- Bishu, K.; Hamdani, N.; Mohammed, S.F.; Kruger, M.; Ohtani, T.; Ogut, O.; Brozovich, F.V.; Burnett, J.C., Jr.; Linke, W.A.; Redfield, M.M. Sildenafil and B-type natriuretic peptide acutely phosphorylate titin and improve diastolic distensibility in vivo. Circulation 2011, 124, 2882–2891. [Google Scholar] [CrossRef] [Green Version]
- Hamdani, N.; Franssen, C.; Lourenco, A.; Falcao-Pires, I.; Fontoura, D.; Leite, S.; Plettig, L.; Lopez, B.; Ottenheijm, C.A.; Becher, P.M.; et al. Myocardial titin hypophosphorylation importantly contributes to heart failure with preserved ejection fraction in a rat metabolic risk model. Circ. Heart Fail. 2013, 6, 1239–1249. [Google Scholar] [CrossRef] [Green Version]
- Zile, M.R.; Baicu, C.F.; Stroud, R.E.; Laer, A.V.; Arroyo, J.; Mukherjee, R.; Jones, J.A.; Spinale, F.G. Pressure overload-dependent membrane type 1-matrix metalloproteinase induction: Relationship to LV remodeling and fibrosis. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H1429–H1437. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, M.A.; Sordahl, L.A.; Schwartz, A. Ultrastructural analysis of left ventricular hypertrophy in rabbits. J. Mol. Cell. Cardiol. 1974, 6, 265–273. [Google Scholar] [CrossRef]
- Kruger, M.; Linke, W.A. Titin-based mechanical signalling in normal and failing myocardium. J. Mol. Cell. Cardiol. 2009, 46, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, B.C.; Weeks, K.L.; Pretorius, L.; McMullen, J.R. Molecular distinction between physiological and pathological cardiac hypertrophy: Experimental findings and therapeutic strategies. Pharmacol. Ther. 2010, 128, 191–227. [Google Scholar] [CrossRef] [PubMed]
- Lyon, R.C.; Zanella, F.; Omens, J.H.; Sheikh, F. Mechanotransduction in cardiac hypertrophy and failure. Circ. Res. 2015, 116, 1462–1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCollum, W.B.; Crow, C.; Harigaya, S.; Bajusz, E.; Schwartz, A. Calcium binding by cardiac relaxing system isolated from myopathic Syrian hamsters (strains 14.6, 82.62 and 40.54). J. Mol. Cell. Cardiol. 1970, 1, 445–457. [Google Scholar] [CrossRef]
- Meyer, M.; Schillinger, W.; Pieske, B.; Holubarsch, C.; Heilmann, C.; Posival, H.; Kuwajima, G.; Mikoshiba, K.; Just, H.; Hasenfuss, G.; et al. Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 1995, 92, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Hasenfuss, G.; Meyer, M.; Schillinger, W.; Preuss, M.; Pieske, B.; Just, H. Calcium handling proteins in the failing human heart. Basic Res. Cardiol. 1997, 92, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Schwinger, R.H.; Bohm, M.; Schmidt, U.; Karczewski, P.; Bavendiek, U.; Flesch, M.; Krause, E.G.; Erdmann, E. Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca2+-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 1995, 92, 3220–3228. [Google Scholar] [CrossRef]
- Sordahl, L.A.; McCollum, W.B.; Wood, W.G.; Schwartz, A. Mitochondria and sarcoplasmic reticulum function in cardiac hypertrophy and failure. Am. J. Physiol. 1973, 224, 497–502. [Google Scholar] [CrossRef] [Green Version]
- Komuro, I.; Kurabayashi, M.; Shibazaki, Y.; Takaku, F.; Yazaki, Y. Molecular cloning and characterization of a Ca2+ + Mg2+-dependent adenosine triphosphatase from rat cardiac sarcoplasmic reticulum. Regulation of its expression by pressure overload and developmental stage. J. Clin. Investig. 1989, 83, 1102–1108. [Google Scholar] [CrossRef] [Green Version]
- Arai, M.; Suzuki, T.; Nagai, R. Sarcoplasmic reticulum genes are upregulated in mild cardiac hypertrophy but downregulated in severe cardiac hypertrophy induced by pressure overload. J. Mol. Cell. Cardiol. 1996, 28, 1583–1590. [Google Scholar] [CrossRef]
- Hisamatsu, Y.; Ohkusa, T.; Kihara, Y.; Inoko, M.; Ueyama, T.; Yano, M.; Sasayama, S.; Matsuzaki, M. Early changes in the functions of cardiac sarcoplasmic reticulum in volume-overloaded cardiac hypertrophy in rats. J. Mol. Cell. Cardiol. 1997, 29, 1097–1109. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, K.; Gregory, K.N.; Kranias, E.G. Sarcoplasmic reticulum Ca-ATPase-phospholamban interactions and dilated cardiomyopathy. Biochem. Biophys. Res. Commun. 2004, 322, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Dhalla, N.S.; Saini-Chohan, H.K.; Rodriguez-Leyva, D.; Elimban, V.; Dent, M.R.; Tappia, P.S. Subcellular remodelling may induce cardiac dysfunction in congestive heart failure. Cardiovasc. Res. 2009, 81, 429–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alpert, N.R.; Mulieri, L.A.; Warshaw, D. The failing human heart. Cardiovasc. Res. 2002, 54, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Movsesian, M.A.; Schwinger, R.H. Calcium sequestration by the sarcoplasmic reticulum in heart failure. Cardiovasc. Res. 1998, 37, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Alpert, N.R.; Mulieri, L.A. Functional consequences of altered cardiac myosin isoenzymes. Med. Sci. Sports Exerc. 1986, 18, 309–313. [Google Scholar] [CrossRef]
- Litten, R.Z., 3rd; Martin, B.J.; Low, R.B.; Alpert, N.R. Altered myosin isozyme patterns from pressure-overloaded and thyrotoxic hypertrophied rabbit hearts. Circ. Res. 1982, 50, 856–864. [Google Scholar] [CrossRef] [Green Version]
- Mercadier, J.J.; Bouveret, P.; Gorza, L.; Schiaffino, S.; Clark, W.A.; Zak, R.; Swynghedauw, B.; Schwartz, K. Myosin isoenzymes in normal and hypertrophied human ventricular myocardium. Circ. Res. 1983, 53, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Bugaisky, L.B.; Anderson, P.G.; Hall, R.S.; Bishop, S.P. Differences in myosin isoform expression in the subepicardial and subendocardial myocardium during cardiac hypertrophy in the rat. Circ. Res. 1990, 66, 1127–1132. [Google Scholar] [CrossRef] [Green Version]
- Bishop, S.P.; Altschuld, R.A. Increased glycolytic metabolism in cardiac hypertrophy and congestive failure. Am. J. Physiol. 1970, 218, 153–159. [Google Scholar] [CrossRef]
- Fox, A.C.; Reed, G.E. Changes in lactate dehydrogenase composition of hearts with right ventricular hypertrophy. Am. J. Physiol. 1969, 216, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- York, J.W.; Penney, D.G.; Weeks, T.A.; Stagno, P.A. Lactate dehydrogenase changes following several cardiac hypertrophic stresses. J. Appl. Physiol. 1976, 40, 923–926. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Wang, C.; Zhang, J.; Cho, Y.K.; Gong, G.; Murakami, Y.; Bache, R.J. Myocardial creatine kinase kinetics and isoform expression in hearts with severe LV hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 2001, 281, H376–H386. [Google Scholar] [CrossRef] [PubMed]
- Ingwall, J.S. The hypertrophied myocardium accumulates the MB-creatine kinase isozyme. Eur. Heart J. 1984, 5, 129–139. [Google Scholar] [CrossRef]
- Hu, C.L.; Chandra, R.; Ge, H.; Pain, J.; Yan, L.; Babu, G.; Depre, C.; Iwatsubo, K.; Ishikawa, Y.; Sadoshima, J.; et al. Adenylyl cyclase type 5 protein expression during cardiac development and stress. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H1776–H1782. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; D‘Andrea, M.; Seethapathy, M. Atrial natriuretic peptide and its messenger ribonucleic acid in overloaded and overload-released ventricles of rat. Endocrinology 1989, 125, 2066–2074. [Google Scholar] [CrossRef]
- Schwartz, K.; Apstein, C.; Mercadier, J.J.; Lecarpentier, Y.; Bastie, D.D.L.; Bouveret, P.; Wisnewsky, C.; Swynghedauw, B. Left ventricular isomyosins in normal and hypertrophied rat and human hearts. Eur. Heart J. 1984, 5, 77–83. [Google Scholar] [CrossRef]
- Waldenstrom, A.; Schwartz, K.; Swynghedauw, B. Cardiac hypertrophy: From fetal to fatal? Clin. Physiol. 1989, 9, 315–320. [Google Scholar] [CrossRef]
- Izumo, S.; Nadal-Ginard, B.; Mahdavi, V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc. Natl. Acad. Sci. USA 1988, 85, 339–343. [Google Scholar] [CrossRef] [Green Version]
- Oldfield, C.J.; Duhamel, T.A.; Dhalla, N.S. Mechanisms for the transition from physiological to pathological cardiac hypertrophy. Can. J. Physiol. Pharmacol. 2020, 98, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Murphy, E.; Ardehali, H.; Balaban, R.S.; DiLisa, F.; Dorn, G.W., 2nd; Kitsis, R.N.; Otsu, K.; Ping, P.; Rizzuto, R.; Sack, M.N.; et al. Mitochondrial Function, Biology, and Role in Disease: A Scientific Statement From the American Heart Association. Circ. Res. 2016, 118, 1960–1991. [Google Scholar] [CrossRef] [PubMed]
- Pennanen, C.; Parra, V.; López-Crisosto, C.; Morales, P.E.; Campo, A.D.; Gutierrez, T.; Rivera-Mejías, P.; Kuzmicic, J.; Chiong, M.; Zorzano, A.; et al. Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway. J. Cell Sci. 2014, 127, 2659–2671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, J.W.; Tandler, B.; Hoppel, C.L. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J. Biol. Chem. 1977, 252, 8731–8739. [Google Scholar] [CrossRef]
- Kasumov, T.; Dabkowski, E.R.; Shekar, K.C.; Li, L.; Ribeiro, R.F., Jr.; Walsh, K.; Previs, S.F.; Sadygov, R.G.; Willard, B.; Stanley, W.C. Assessment of cardiac proteome dynamics with heavy water: Slower protein synthesis rates in interfibrillar than subsarcolemmal mitochondria. Am. J. Physiol. Heart Circ. Physiol. 2013, 304, H1201–H1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shekar, K.C.; Li, L.; Dabkowski, E.R.; Xu, W.; Ribeiro, R.F., Jr.; Hecker, P.A.; Recchia, F.A.; Sadygov, R.G.; Willard, B.; Kasumov, T.; et al. Cardiac mitochondrial proteome dynamics with heavy water reveals stable rate of mitochondrial protein synthesis in heart failure despite decline in mitochondrial oxidative capacity. J. Mol. Cell. Cardiol. 2014, 75, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Hollander, J.M.; Thapa, D.; Shepherd, D.L. Physiological and structural differences in spatially distinct subpopulations of cardiac mitochondria: Influence of cardiac pathologies. Am. J. Physiol. Heart Circ. Physiol. 2014, 307, H1–H14. [Google Scholar] [CrossRef] [Green Version]
- Caporizzo, M.A.; Chen, C.Y.; Prosser, B.L. Cardiac microtubules in health and heart disease. Exp. Biol. Med. 2019, 244, 1255–1272. [Google Scholar] [CrossRef]
- Aschenbrenner, B.; Druyan, R.; Albin, R.; Rabinowitz, M. Haem a, cytochrome c and total protein turnover in mitochondria from rat heart and liver. Biochem. J. 1970, 119, 157–160. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.G.; Bishop, S.P. Mitochondrial function and structure in experimental canine congestive heart failure. Cardiovasc. Res. 1971, 5, 444–450. [Google Scholar] [CrossRef]
- Rosca, M.G.; Hoppel, C.L. Mitochondria in heart failure. Cardiovasc. Res. 2010, 88, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, A.; Sordahl, L.A.; Entman, M.L.; Allen, J.C.; Reddy, Y.S.; Goldstein, M.A.; Luchi, R.J.; Wyborny, L.E. Abnormal biochemistry in myocardial failure. Am. J. Cardiol. 1973, 32, 407–422. [Google Scholar] [CrossRef]
- Conway, M.A.; Allis, J.; Ouwerkerk, R.; Niioka, T.; Rajagopalan, B.; Radda, G.K. Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet 1991, 338, 973–976. [Google Scholar] [CrossRef]
- Zhang, J.; Merkle, H.; Hendrich, K.; Garwood, M.; From, A.H.; Ugurbil, K.; Bache, R.J. Bioenergetic abnormalities associated with severe left ventricular hypertrophy. J. Clin. Investig. 1993, 92, 993–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J. Myocardial energetics in cardiac hypertrophy. Clin. Exp. Pharmacol. Physiol. 2002, 29, 351–359. [Google Scholar] [CrossRef]
- Zhang, J.; McDonald, K.M. Bioenergetic consequences of left ventricular remodeling. Circulation 1995, 92, 1011–1019. [Google Scholar] [CrossRef]
- Bache, R.J.; Zhang, J.; Path, G.; Merkle, H.; Hendrich, K.; From, A.H.; Ugurbil, K. High-energy phosphate responses to tachycardia and inotropic stimulation in left ventricular hypertrophy. Am. J. Physiol. 1994, 266, H1959–H1970. [Google Scholar] [CrossRef]
- Allard, M.F.; Henning, S.L.; Wambolt, R.B.; Granleese, S.R.; English, D.R.; Lopaschuk, G.D. Glycogen metabolism in the aerobic hypertrophied rat heart. Circulation 1997, 96, 676–682. [Google Scholar] [CrossRef]
- Leong, H.S.; Brownsey, R.W.; Kulpa, J.E.; Allard, M.F. Glycolysis and pyruvate oxidation in cardiac hypertrophy—Why so unbalanced? Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2003, 135, 499–513. [Google Scholar] [CrossRef]
- Zhang, J.; Duncker, D.J.; Ya, X.; Zhang, Y.; Pavek, T.; Wei, H.; Merkle, H.; Ugurbil, K.; From, A.H.; Bache, R.J. Effect of left ventricular hypertrophy secondary to chronic pressure overload on transmural myocardial 2-deoxyglucose uptake. A 31P NMR spectroscopic study. Circulation 1995, 92, 1274–1283. [Google Scholar] [CrossRef]
- Massie, B.M.; Schaefer, S.; Garcia, J.; McKirnan, M.D.; Schwartz, G.G.; Wisneski, J.A.; Weiner, M.W.; White, F.C. Myocardial high-energy phosphate and substrate metabolism in swine with moderate left ventricular hypertrophy. Circulation 1995, 91, 1814–1823. [Google Scholar] [CrossRef]
- Bache, R.J.; Zhang, J.; Murakami, Y.; Zhang, Y.; Cho, Y.K.; Merkle, H.; Gong, G.; From, A.H.; Ugurbil, K. Myocardial oxygenation at high workstates in hearts with left ventricular hypertrophy. Cardiovasc. Res. 1999, 42, 616–626. [Google Scholar] [CrossRef]
- Bishop, S.P.; Cole, C.R. Ultrastructural changes in the canine myocardium with right ventricular hypertrophy and congestive heart failure. Lab. Investig. 1969, 20, 219–229. [Google Scholar] [PubMed]
- Breisch, E.A.; Bove, A.A.; Phillips, S.J. Myocardial morphometrics in pressure overload left ventricular hypertrophy and regression. Cardiovasc. Res. 1980, 14, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.F. Turnover of cardiac troponin subunits. Kinetic evidence for a precursor pool of troponin-I. J. Biol. Chem. 1981, 256, 964–968. [Google Scholar] [CrossRef]
- Ehler, E.; Perriard, J.C. Cardiomyocyte cytoskeleton and myofibrillogenesis in healthy and diseased heart. Heart Fail. Rev. 2000, 5, 259–269. [Google Scholar] [CrossRef]
- Sato, H.; Nagai, T.; Kuppuswamy, D.; Narishige, T.; Koide, M.; Menick, D.R.; Cooper, G.T. Microtubule stabilization in pressure overload cardiac hypertrophy. J Cell Biol. 1997, 139, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Cooper, G.T. Cytoskeletal networks and the regulation of cardiac contractility: Microtubules, hypertrophy, and cardiac dysfunction. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H1003–H1014. [Google Scholar] [CrossRef] [Green Version]
- Cartwright, J., Jr.; Goldstein, M.A. Microtubules in the heart muscle of the postnatal and adult rat. J. Mol. Cell. Cardiol. 1985, 17, 1–7. [Google Scholar] [CrossRef]
- Goldstein, M.A.; Entman, M.L. Microtubules in mammalian heart muscle. J. Cell Biol. 1979, 80, 183–195. [Google Scholar] [CrossRef]
- Walker, P.R.; Whitfield, J.F. Cytoplasmic microtubules are essential for the formation of membrane-bound polyribosomes. J. Biol. Chem. 1985, 260, 765–770. [Google Scholar] [CrossRef]
- Wilson, A.J.; Schoenauer, R.; Ehler, E.; Agarkova, I.; Bennett, P.M. Cardiomyocyte growth and sarcomerogenesis at the intercalated disc. Cell. Mol. Life Sci. 2014, 71, 165–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, M.A.; Schroeter, J.P.; Michael, L.H. Role of the Z band in the mechanical properties of the heart. FASEB J. 1991, 5, 2167–2174. [Google Scholar] [CrossRef] [PubMed]
- Legato, M.J. Sarcomerogenesis in human myocardium. J. Mol. Cell. Cardiol. 1970, 1, 425–437. [Google Scholar] [CrossRef]
- Schaper, J.; Thiedemann, K.U.; Flameng, W.; Schaper, W. The ultrastructure of sarcomeres in hypertrophied canine myocardium in spontaneous subaortic stenosis. Basic Res. Cardiol. 1974, 69, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Michele, D.E.; Albayya, F.P.; Metzger, J.M. Thin filament protein dynamics in fully differentiated adult cardiac myocytes: Toward a model of sarcomere maintenance. J. Cell Biol. 1999, 145, 1483–1495. [Google Scholar] [CrossRef] [PubMed]
- Reimer, K.A.; Jennings, R.B. The changing anatomic reference base of evolving myocardial infarction. Underestimation of myocardial collateral blood flow and overestimation of experimental anatomic infarct size due to tissue edema, hemorrhage and acute inflammation. Circulation 1979, 60, 866–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharov, V.G.; Sabbah, H.N.; Shimoyama, H.; Goussev, A.V.; Lesch, M.; Goldstein, S. Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am. J. Pathol. 1996, 148, 141–149. [Google Scholar]
- Olivetti, G.; Abbi, R.; Quaini, F.; Kajstura, J.; Cheng, W.; Nitahara, J.A.; Quaini, E.; Loreto, C.D.; Beltrami, C.A.; Krajewski, S.; et al. Apoptosis in the failing human heart. N. Engl. J. Med. 1997, 336, 1131–1141. [Google Scholar] [CrossRef]
- Narula, J.; Haider, N.; Virmani, R.; DiSalvo, T.G.; Kolodgie, F.D.; Hajjar, R.J.; Schmidt, U.; Semigran, M.J.; Dec, G.W.; Khaw, B.A. Apoptosis in myocytes in end-stage heart failure. N. Engl. J. Med. 1996, 335, 1182–1189. [Google Scholar] [CrossRef]
- Teiger, E.; Than, V.D.; Richard, L.; Wisnewsky, C.; Tea, B.S.; Gaboury, L.; Tremblay, J.; Schwartz, K.; Hamet, P. Apoptosis in pressure overload-induced heart hypertrophy in the rat. J. Clin. Investig. 1996, 97, 2891–2897. [Google Scholar] [CrossRef] [Green Version]
- You, J.; Wu, J.; Zhang, Q.; Ye, Y.; Wang, S.; Huang, J.; Liu, H.; Wang, X.; Zhang, W.; Bu, L.; et al. Differential cardiac hypertrophy and signaling pathways in pressure versus volume overload. Am. J. Physiol. Heart Circ. Physiol. 2018, 314, H552–H562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, S.A.; Poole-Wilson, P.A. Cardiac myocyte apoptosis. Eur. Heart J. 1999, 20, 1619–1629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohno, M.; Takemura, G.; Ohno, A.; Misao, J.; Hayakawa, Y.; Minatoguchi, S.; Fujiwara, T.; Fujiwara, H. “Apoptotic” myocytes in infarct area in rabbit hearts may be oncotic myocytes with DNA fragmentation: Analysis by immunogold electron microscopy combined with In situ nick end-labeling. Circulation 1998, 98, 1422–1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buja, L.M.; Entman, M.L. Modes of myocardial cell injury and cell death in ischemic heart disease. Circulation 1998, 98, 1355–1357. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bishop, S.P.; Zhang, J.; Ye, L. Cardiomyocyte Proliferation from Fetal- to Adult- and from Normal- to Hypertrophy and Failing Hearts. Biology 2022, 11, 880. https://doi.org/10.3390/biology11060880
Bishop SP, Zhang J, Ye L. Cardiomyocyte Proliferation from Fetal- to Adult- and from Normal- to Hypertrophy and Failing Hearts. Biology. 2022; 11(6):880. https://doi.org/10.3390/biology11060880
Chicago/Turabian StyleBishop, Sanford P., Jianyi Zhang, and Lei Ye. 2022. "Cardiomyocyte Proliferation from Fetal- to Adult- and from Normal- to Hypertrophy and Failing Hearts" Biology 11, no. 6: 880. https://doi.org/10.3390/biology11060880
APA StyleBishop, S. P., Zhang, J., & Ye, L. (2022). Cardiomyocyte Proliferation from Fetal- to Adult- and from Normal- to Hypertrophy and Failing Hearts. Biology, 11(6), 880. https://doi.org/10.3390/biology11060880