Antagonization of Ghrelin Suppresses Muscle Protein Deposition by Altering Gut Microbiota and Serum Amino Acid Composition in a Pig Model
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Sample Collection
2.3. Analysis of Feeding Behavior
2.4. Morphometric Analysis
2.5. Concentrations of Ghrelin and Amino Acids in Serum
2.6. Short-Chain Fatty Acid (SCFA) Concentration
2.7. DNA Extraction, MiSeq Sequencing and Data Processing
2.8. RNA Extraction, cDNA Synthesis and Quantitative Real-Time PCR
2.9. Statistical Analysis
3. Results
3.1. The Growth Performance and Muscle Morphological Changes
3.2. Concentrations of Ghrelin and Amino Acids in Serum
3.3. Feeding Behavior
3.4. SCFA Concentrations and Microbial Composition
3.5. Expression of Protein-Deposition-Related Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bass, J.; Oldham, J.; Sharma, M.; Kambadur, R. Growth factors controlling muscle development. Domest. Anim. Endocrin. 1999, 17, 191–197. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.-Y.; Jiang, Q.; Zhou, X.-Q.; Feng, L.; Liu, Y.; Jiang, W.-D.; Wu, P.; Zhou, J.; Zhao, J. Leucine improved growth performance, muscle growth, and muscle protein deposition through AKT/TOR and AKT/FOXO3a signaling pathways in hybrid catfish Pelteobagrus vachelli× Leiocassis longirostris. Cells 2020, 9, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.-S.; Wei, Q.; Wang, H.; Kim, D.M.; Balderas, M.; Wu, G.; Lawler, J.; Safe, S.; Guo, S.; Devaraj, S. Protective effects of ghrelin on fasting-induced muscle atrophy in aging mice. J. Gerontol. Ser. A 2020, 75, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Agosti, E.; De Feudis, M.; Angelino, E.; Belli, R.; Teixeira, M.A.; Zaggia, I.; Tamiso, E.; Raiteri, T.; Scircoli, A.; Ronzoni, F.L. Both ghrelin deletion and unacylated ghrelin overexpression preserve muscles in aging mice. Aging 2020, 12, 13939. [Google Scholar] [CrossRef]
- Porporato, P.E.; Filigheddu, N.; Reano, S.; Ferrara, M.; Angelino, E.; Gnocchi, V.F.; Prodam, F.; Ronchi, G.; Fagoonee, S.; Fornaro, M. Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice. J. Clin. Investig. 2013, 123, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Davis, E.A.; Wald, H.S.; Suarez, A.N.; Zubcevic, J.; Liu, C.M.; Cortella, A.M.; Kamitakahara, A.K.; Polson, J.W.; Arnold, M.; Grill, H.J. Ghrelin signaling affects feeding behavior, metabolism, and memory through the vagus nerve. Curr. Biol. 2020, 30, 4510–4518.e4516. [Google Scholar] [CrossRef]
- Wertz-Lutz, A.; Knight, T.; Pritchard, R.; Daniel, J.; Clapper, J.; Smart, A.; Trenkle, A.; Beitz, D. Circulating ghrelin concentrations fluctuate relative to nutritional status and influence feeding behavior in cattle. J. Anim. Sci. 2006, 84, 3285–3300. [Google Scholar] [CrossRef] [Green Version]
- Cummings, D.E.; Purnell, J.Q.; Frayo, R.S.; Schmidova, K.; Wisse, B.E.; Weigle, D.S. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001, 50, 1714–1719. [Google Scholar] [CrossRef] [Green Version]
- Stevanovic, D.; Trajkovic, V.; Mueller-Luehlhoff, S.; Brandt, E.; Abplanalp, W.; Bumke-Vogt, C.; Liehl, B.; Wiedmer, P.; Janjetovic, K.; Starcevic, V.; et al. Ghrelin-induced food intake and adiposity depend on central mTORC1/S6K1 signaling. Mol. Cell Endocrinol. 2013, 381, 280–290. [Google Scholar] [CrossRef]
- Castaneda, T.R.; Tong, J.; Datta, R.; Culler, M.; Tschoep, M.H. Ghrelin in the regulation of body weight and metabolism. Front. Neuroendocrinol. 2010, 31, 44–60. [Google Scholar] [CrossRef]
- Suryawan, A.; El-Kadi, S.W.; Nguyen, H.V.; Fiorotto, M.L.; Davis, T.A. Intermittent Bolus Compared With Continuous Feeding Enhances Insulin and Amino Acid Signaling to Translation Initiation in Skeletal Muscle of Neonatal Pigs. J. Nutr. 2021, 151, 2636–2645. [Google Scholar] [CrossRef] [PubMed]
- Filigheddu, N.; Gnocchi, V.F.; Coscia, M.; Cappelli, M.; Porporato, P.E.; Taulli, R.; Traini, S.; Baldanzi, G.; Chianale, F.; Cutrupi, S.; et al. Ghrelin and des-acyl ghrelin promote differentiation and fusion of C2C12 skeletal muscle cells. Mol. Biol. Cell 2007, 18, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Sheriff, S.; Kadeer, N.; Joshi, R.; Friend, L.A.; James, J.H.; Balasubramaniam, A. Des-acyl ghrelin exhibits pro-anabolic and anti-catabolic effects on C2C12 myotubes exposed to cytokines and reduces burn-induced muscle proteolysis in rats. Mol. Cell Endocrinol. 2012, 351, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Grosicki, G.J.; Fielding, R.A.; Lustgarten, M.S. Gut Microbiota Contribute to Age-Related Changes in Skeletal Muscle Size, Composition, and Function: Biological Basis for a Gut-Muscle Axis. Calcif. Tissue Int. 2018, 102, 433–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frampton, J.; Murphy, K.G.; Frost, G.; Chambers, E.S. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat. Metab. 2020, 2, 840–848. [Google Scholar] [CrossRef]
- Yan, H.; Diao, H.; Xiao, Y.; Li, W.; Yu, B.; He, J.; Yu, J.; Zheng, P.; Mao, X.; Luo, Y.; et al. Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice. Sci. Rep. 2016, 6, 31786. [Google Scholar] [CrossRef] [Green Version]
- Lahiri, S.; Kim, H.; Garcia-Perez, I.; Reza, M.M.; Martin, K.A.; Kundu, P.; Cox, L.M.; Selkrig, J.; Posma, J.M.; Zhang, H.; et al. The gut microbiota influences skeletal muscle mass and function in mice. Sci. Transl. Med. 2019, 11, eaan5662. [Google Scholar] [CrossRef] [Green Version]
- Davie, J.R. Inhibition of histone deacetylase activity by butyrate. J. Nutr. 2003, 133, 2485S–2493S. [Google Scholar] [CrossRef]
- Soliman, M.L.; Rosenberger, T.A. Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression. Mol. Cell. Biochem. 2011, 352, 173–180. [Google Scholar] [CrossRef]
- Beharry, A.W.; Sandesara, P.B.; Roberts, B.M.; Ferreira, L.F.; Senf, S.M.; Judge, A.R. HDAC1 activates FoxO and is both sufficient and required for skeletal muscle atrophy. J. Cell Sci. 2014, 127, 1441–1453. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Cheung, W.-H.; Li, J.; Chow, S.K.-H.; Yu, J.; Wong, S.H.; Ip, M.; Sung, J.J.Y.; Wong, R.M.Y. Understanding the gut microbiota and sarcopenia: A systematic review. J. Cachexia Sarcopenia Muscle 2021, 12, 1393–1407. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-H.; Xu, T.-T.; Liu, Y.-J.; Zhu, W.-Y.; Mao, S.-Y. A high-grain diet causes massive disruption of ruminal epithelial tight junctions in goats. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 2013, 305, R232–R241. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Fang, L.; Sun, Y.; Su, Y.; Zhu, W. Effects of the dietary protein level on the microbial composition and metabolomic profile in the hindgut of the pig. Anaerobe 2016, 38, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.-L.; Zhang, J.; Wu, G.; Zhu, W.-Y. Utilization of amino acids by bacteria from the pig small intestine. Amino Acids 2010, 39, 1201–1215. [Google Scholar] [CrossRef] [PubMed]
- Hjelmso, M.H.; Hansen, L.H.; Baelum, J.; Feld, L.; Holben, W.E.; Jacobsen, C.S. High-Resolution Melt Analysis for Rapid Comparison of Bacterial Community Compositions. Appl. Environ. Microbiol. 2014, 80, 3568–3575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amato, K.R.; Yeoman, C.J.; Kent, A.; Righini, N.; Carbonero, F.; Estrada, A.; Gaskins, H.R.; Stumpf, R.M.; Yildirim, S.; Torralba, M.; et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 2013, 7, 1344–1353. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [Green Version]
- Lozupone, C.; Lladser, M.E.; Knights, D.; Stombaugh, J.; Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J. 2011, 5, 169–172. [Google Scholar] [CrossRef] [Green Version]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Luo, Y.H.; Zhang, L.L.; Smidt, H.; Zhu, W.Y. Responses in gut microbiota and fat metabolism to a halogenated methane analogue in S prague D awley rats. Microb. Biotechnol. 2015, 8, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Mohammadabadi, M.; Bordbar, F.; Jensen, J.; Du, M.; Guo, W. Key genes regulating skeletal muscle development and growth in farm animals. Animals 2021, 11, 835. [Google Scholar] [CrossRef] [PubMed]
- Balasubramaniam, A.; Joshi, R.; Su, C.; Friend, L.A.; Sheriff, S.; Kagan, R.J.; James, J.H. Ghrelin inhibits skeletal muscle protein breakdown in rats with thermal injury through normalizing elevated expression of E3 ubiquitin ligases MuRF1 and MAFbx. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 2009, 296, R893–R901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, J.M.; Cata, J.P.; Dougherty, P.M.; Smith, R.G. Ghrelin prevents cisplatin-induced mechanical hyperalgesia and cachexia. Endocrinology 2008, 149, 455–460. [Google Scholar] [CrossRef]
- Angus, P.Y.; Pei, X.M.; Sin, T.K.; Yip, S.P.; Yung, B.Y.; Chan, L.W.; Wong, C.S.; Siu, P.M. [D-Lys3]-GHRP-6 exhibits pro-autophagic effects on skeletal muscle. Mol. Cell Endocrinol. 2015, 401, 155–164. [Google Scholar]
- Liu, C.; Huang, J.; Li, H.; Yang, Z.; Zeng, Y.; Liu, J.; Hao, Y.; Li, R. Ghrelin accelerates wound healing through GHS-R1a-mediated MAPK-NF-κB/GR signaling pathways in combined radiation and burn injury in rats. Sci. Rep. 2016, 6, 27499. [Google Scholar] [CrossRef] [Green Version]
- Madhavadas, S.; Kutty, B.M.; Subramanian, S. Amyloid ß Lowering and Cognition Enhancing Effects of Ghrelin Receptor Analog [D-Lys (3)] GHRP-6 in Rat Model of Obesity. Indian J. Biochem. Biophys. 2014, 51, 257–262. [Google Scholar]
- Zhang, H.; Yan, X.; Lin, A.; Xia, P.; Jia, M.; Su, Y. Effect of feeding regimen on circadian activity rhythms of food anticipatory by ghrelin hormone in a pig model. Nutr. Neurosci. 2022, 1–19. [Google Scholar] [CrossRef]
- Shahryar, H.A.; Lotfi, A. Effects of peripheral administration of ghrelin antagonist [D-Lys(3)]-GHRP-6 on growth performance and blood biochemical indices in broiler chickens. Arch. Anim. Breed. 2016, 59, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.J.; Tian, L.X.; Yang, H.J.; Liang, G.Y.; Yue, Y.R.; Liu, Y.J. The influence of ghrelin and des-ghrelin on feed intake, growth performance and hypothalamic NPY mRNA expression of grouper Epinephelus coioides. Aquaculture 2012, 364, 19–24. [Google Scholar] [CrossRef]
- Bodine, S.C.; Latres, E.; Baumhueter, S.; Lai, V.K.M.; Nunez, L.; Clarke, B.A.; Poueymirou, W.T.; Panaro, F.J.; Na, E.Q.; Dharmarajan, K.; et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001, 294, 1704–1708. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; McGlone, F.; Bedrossian, D.; Dagher, A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 2008, 7, 400–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakazato, M.; Murakami, N.; Kojima, M.; Matsuo, H.; Kangawa, K.; Matsukura, S. A role for ghrelin in the central regulation of feeding. Nature 2001, 409, 194–198. [Google Scholar] [CrossRef] [PubMed]
- El-Kadi, S.W.; Gazzaneo, M.C.; Suryawan, A.; Orellana, R.A.; Torrazza, R.M.; Srivastava, N.; Kimball, S.R.; Nguyen, H.V.; Fiorotto, M.L.; Davis, T.A. Viscera and muscle protein synthesis in neonatal pigs is increased more by intermittent bolus than by continuous feeding. Pediatric Res. 2013, 74, 154–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Kadi, S.W.; Suryawan, A.; Gazzaneo, M.C.; Srivastava, N.; Orellana, R.A.; Nguyen, H.V.; Lobley, G.E.; Davis, T.A. Anabolic signaling and protein deposition are enhanced by intermittent compared with continuous feeding in skeletal muscle of neonates. Am. J. Physiol. -Endocrinol. Metab. 2012, 302, E674–E686. [Google Scholar] [CrossRef]
- Apelo, S.A.; Singer, L.; Lin, X.; McGilliard, M.; St-Pierre, N.; Hanigan, M. Isoleucine, leucine, methionine, and threonine effects on mammalian target of rapamycin signaling in mammary tissue. J. Dairy Sci. 2014, 97, 1047–1056. [Google Scholar] [CrossRef]
- Wolfson, R.L.; Sabatini, D.M. The dawn of the age of amino acid sensors for the mTORC1 pathway. Cell Metab. 2017, 26, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Robinson, J.L.; Bertolo, R.F. The pediatric methionine requirement should incorporate remethylation potential and transmethylation demands. Adv. Nutr. 2016, 7, 523–534. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Luo, Z.; Cao, C.; Sun, S.; Ma, Q.; Li, Z.; Shi, B.; Shan, A. Weaning alters intestinal gene expression involved in nutrient metabolism by shaping gut microbiota in pigs. Front. Microbiol. 2020, 11, 694. [Google Scholar] [CrossRef]
- Shin, D.; Chang, S.Y.; Bogere, P.; Won, K.; Choi, J.-Y.; Choi, Y.-J.; Lee, H.K.; Hur, J.; Park, B.-Y.; Kim, Y. Beneficial roles of probiotics on the modulation of gut microbiota and immune response in pigs. PLoS ONE 2019, 14, e0220843. [Google Scholar] [CrossRef] [Green Version]
- Donohoe, D.R.; Wali, A.; Brylawski, B.P.; Bultman, S.J. Microbial regulation of glucose metabolism and cell-cycle progression in mammalian colonocytes. PLoS ONE 2012, 7, e46589. [Google Scholar] [CrossRef] [PubMed]
- van der Beek, C.M.; Dejong, C.H.; Troost, F.J.; Masclee, A.A.; Lenaerts, K. Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutr. Rev. 2017, 75, 286–305. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, J.; Perry, R.L.; Asakura, A.; Rudnicki, M.A. MyoD induces myogenic differentiation through cooperation of its NH2-and COOH-terminal regions. J. Cell Biol. 2005, 171, 471–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gumucio, J.P.; Mendias, C.L. Atrogin-1, MuRF-1, and sarcopenia. Endocrine 2013, 43, 12–21. [Google Scholar] [CrossRef]
Item | CON | GHRP | p-Value |
---|---|---|---|
Concentration (mmol/g) | |||
Acetate | 33.58 ± 2.48 | 26.93 ± 1.61 | 0.048 |
Propionate | 13.79 ± 1.59 | 15.47 ± 1.51 | 0.462 |
Iso-butyrate | 0.96 ± 0.08 | 1.29 ± 0.20 | 0.158 |
Butyrate | 5.52 ± 0.67 | 5.56 ± 0.45 | 0.965 |
Iso-valerate | 1.70 ± 0.15 | 2.13 ± 0.34 | 0.275 |
Valerate | 1.06 ± 0.05 | 2.34 ± 0.42 | 0.029 |
Total SCFAs | 56.62 ± 4.49 | 53.73 ± 2.49 | 0.585 |
Molar proportions of SCFAs (mol%) | |||
Acetate | 59.44 ± 0.84 | 50.23 ± 2.21 | 0.003 |
Propionate | 24.04 ± 1.01 | 28.57 ± 1.91 | 0.072 |
Iso-butyrate | 1.80 ± 0.27 | 2.46 ± 0.39 | 0.195 |
Butyrate | 9.65 ± 0.58 | 10.32 ± 0.64 | 0.454 |
Iso-valerate | 3.14 ± 0.43 | 4.08 ± 0.68 | 0.270 |
Valerate | 1.93 ± 0.17 | 4.34 ± 0.74 | 0.022 |
OTU ID | LDA−score | Deseq−FC | CON | GHRP | Annotation |
---|---|---|---|---|---|
Significantly enriched in CON group | |||||
OTU28 | −3.35 | −3.32 | 1.04 ± 0.44 | 0.22 ± 0.18 | [Ruminococcus] gauvreauii group |
OTU24 | −3.36 | −5.28 | 1.00 ± 0.48 | 0.06 ± 0.04 | Oscillospiraceae UCG−005 |
OTU21 | −3.58 | −8.47 | 1.49 ± 0.50 | 0.01 ± 0.01 | uncultured Muribaculaceae |
OTU63 | −3.25 | −5.01 | 0.72 ± 0.22 | 0.04 ± 0.03 | uncultured Ruminococcaceae |
OTU9 | −3.90 | −7.72 | 3.87 ± 2.32 | 0.05 ± 0.04 | Oscillospiraceae UCG−005 |
OTU7 | −3.81 | −3.42 | 2.96 ± 0.98 | 0.50 ± 0.39 | Parabacteroides |
OTU2 | −3.99 | −4.93 | 5.14 ± 3.27 | 0.44 ± 0.40 | Prevotella |
OTU51 | −3.22 | −4.92 | 0.74 ± 0.22 | 0.06 ± 0.04 | Oscillospiraceae NK4A214 group |
OTU52 | −3.27 | −4.47 | 0.79 ± 0.33 | 0.05 ± 0.02 | Lachnoclostridium |
OTU57 | −3.34 | −4.91 | 1.07 ± 0.39 | 0.07 ± 0.06 | Rikenellaceae gut group |
Significantly enriched in GHRP group | |||||
OTU25 | 3.84 | 10.45 | 0.00 ± 0.00 | 2.29 ± 1.32 | Megasphaera |
OTU27 | 3.52 | 4.50 | 0.07 ± 0.03 | 1.52 ± 0.63 | Prevotella_9 |
OTU26 | 3.49 | 8.67 | 0.00 ± 0.00 | 1.66 ± 0.60 | Sharpea |
OTU20 | 3.61 | 5.92 | 0.02 ± 0.00 | 2.02 ± 0.64 | Ligilactobacillus |
OTU23 | 3.63 | 4.10 | 0.07 ± 0.04 | 1.74 ± 1.07 | Anaerovibrio |
OTU6 | 4.09 | 4.53 | 0.20 ± 0.08 | 5.17 ± 2.23 | Prevotella_9 |
OTU4 | 4.04 | 4.69 | 0.21 ± 0.07 | 5.35 ± 2.60 | Prevotella_9 |
OTU58 | 3.64 | 9.97 | 0.00 ± 0.00 | 1.44 ± 0.79 | Olsenella |
OTU54 | 3.63 | 9.96 | 0.00 ± 0.00 | 1.50 ± 1.03 | [Ruminococcus] gauvreauii group |
OTU34 | 3.47 | 3.02 | 0.09 ± 0.02 | 1.21 ± 0.58 | Limosilactobacillus |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Zhang, H.; Lin, A.; Su, Y. Antagonization of Ghrelin Suppresses Muscle Protein Deposition by Altering Gut Microbiota and Serum Amino Acid Composition in a Pig Model. Biology 2022, 11, 840. https://doi.org/10.3390/biology11060840
Yan X, Zhang H, Lin A, Su Y. Antagonization of Ghrelin Suppresses Muscle Protein Deposition by Altering Gut Microbiota and Serum Amino Acid Composition in a Pig Model. Biology. 2022; 11(6):840. https://doi.org/10.3390/biology11060840
Chicago/Turabian StyleYan, Xiaoxi, He Zhang, Ailian Lin, and Yong Su. 2022. "Antagonization of Ghrelin Suppresses Muscle Protein Deposition by Altering Gut Microbiota and Serum Amino Acid Composition in a Pig Model" Biology 11, no. 6: 840. https://doi.org/10.3390/biology11060840
APA StyleYan, X., Zhang, H., Lin, A., & Su, Y. (2022). Antagonization of Ghrelin Suppresses Muscle Protein Deposition by Altering Gut Microbiota and Serum Amino Acid Composition in a Pig Model. Biology, 11(6), 840. https://doi.org/10.3390/biology11060840