Tolerance of Rodents to an Intravenous Bolus Injection of Sodium Nitrate in a High Concentration
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Solution for Intravenous Injection
2.3. Animals
2.4. Experimental Workflow
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Archer, D.L. Evidence that ingested nitrate and nitrite are beneficial to health. J. Food Prot. 2002, 65, 872–875. [Google Scholar] [CrossRef] [PubMed]
- Weitzberg, E.; Hezel, M.; Lundberg, J.O. Nitrate-nitrite-nitric oxide pathway implications for anesthesiology and intensive care. Anesthesiology 2010, 113, 1460–1475. [Google Scholar] [CrossRef] [PubMed]
- Shiva, S. Nitrite: A physiological store of nitric oxide and modulator of mitochondrial function. Redox Biol. 2013, 1, 40–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pluta, R.M.; Oldfield, E.H.; Bakhtian, K.D.; Fathi, A.R.; Smith, R.K.; DeVroom, H.L.; Nahavandi, M.; Woo, S.; Figg, W.D.; Lonser, R.R. Safety and feasibility of long-term intravenous sodium nitrite infusion in healthy volunteers. PLoS ONE 2011, 6, 13. [Google Scholar] [CrossRef]
- Lundberg, J.O.; Weitzberg, E. Biology of nitrogen oxides in the gastrointestinal tract. Gut 2013, 62, 616–629. [Google Scholar] [CrossRef]
- Butler, A.R.; Feelisch, M. Therapeutic uses of inorganic nitrite and nitrate—From the past to the future. Circulation 2008, 117, 2151–2159. [Google Scholar] [CrossRef]
- Sato, E.F.; Choudhury, T.; Nishikawa, T.; Inoue, M. Dynamic aspect of reactive oxygen and nitric oxide in oral cavity. J. Clin. Biochem. Nutr. 2008, 42, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Torregrossa, A.C.; Aranke, M.; Bryan, N.S. Nitric oxide and geriatrics: Implications in diagnostics and treatment of the elderly. J. Geriatr. Cardiol. 2011, 8, 230–242. [Google Scholar] [CrossRef] [Green Version]
- Jansson, E.A.; Huang, L.; Malkey, R.; Govoni, M.; Nihlen, C.; Olsson, A.; Stensdotter, M.; Petersson, J.; Holm, L.; Weitzberg, E.; et al. A mammalian functional nitrate reductase that regulates nitrite and nitric oxide homeostasis. Nat. Chem. Biol. 2008, 4, 411–417. [Google Scholar] [CrossRef]
- Kapil, V.; Milsom, A.B.; Okorie, M.; Maleki-Toyserkani, S.; Akram, F.; Rehman, F.; Arghandawi, S.; Pearl, V.; Benjamin, N.; Loukogeorgakis, S.; et al. Inorganic nitrate supplementation lowers blood pressure in humans role for nitrite-derived NO. Hypertension 2010, 56, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Gamliel, A.; Uppala, S.; Sapir, G.; Harris, T.; Nardi-Schreiber, A.; Shaul, D.; Sosna, J.; Gomori, J.M.; Katz-Brull, R. Hyperpolarized N-15 nitrate as a potential long lived hyperpolarized contrast agent for MRI. J. Magn. Reson. 2019, 299, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Kanda, T.; Ishii, K.; Kawaguchi, H.; Kitajima, K.; Takenaka, D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: Relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 2014, 270, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Kanda, T.; Osawa, M.; Oba, H.; Toyoda, K.; Kotoku, J.; Haruyama, T.; Takeshita, K.; Furui, S. High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: Association with linear versus macrocyclic gadolinium chelate administration. Radiology 2015, 275, 803–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Errante, Y.; Cirimele, V.; Mallio, C.A.; Di Lazzaro, V.; Zobel, B.B.; Quattrocchi, C.C. Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation. Investigat. Radiol. 2014, 49, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Tweedle, M.F. Gadolinium deposition: Is it chelated or dissociated gadolinium? How can we tell? Magn. Reson. Imaging 2016, 34, 1377–1382. [Google Scholar] [CrossRef] [PubMed]
- Kanal, E. Gadolinium based contrast agents (GBCA): Safety overview after 3 decades of clinical experience. Magn. Reson. Imaging 2016, 34, 1341–1345. [Google Scholar] [CrossRef]
- Gulani, V.; Calamante, F.; Shellock, F.G.; Kanal, E.; Reeder, S.B. Gadolinium deposition in the brain: Summary of evidence and recommendations. Lancet Neurol. 2017, 16, 564–570. [Google Scholar] [CrossRef]
- Ardenkjaer-Larsen, J.H.; Fridlund, B.; Gram, A.; Hansson, G.; Hansson, L.; Lerche, M.H.; Servin, R.; Thaning, M.; Golman, K. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc. Natl. Acad. Sci. USA 2003, 100, 10158–10163. [Google Scholar] [CrossRef] [Green Version]
- Speijers, G.J.A.; van den Brandt, P.A. NITRATE (and Potential Endogenous Formation of N-Nitroso Compounds). Available online: https://inchem.org/documents/jecfa/jecmono/v50je06.htm (accessed on 27 February 2022).
- NCBI. PubChem Compound Summary for CID 24268, Sodium Nitrate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Sodium-nitrate (accessed on 27 February 2022).
- Ellen, G.; Schuller, P.L.; Bruijns, E.; Froeling, P.; Baadenhuijsen, H. Volatile n-nitrosamines, nitrate and nitrite in urine and saliva of healthy-volunteers after administration of large amounts of nitrate. IARC Sci. Publ. 1982, 41, 365–378. [Google Scholar]
- Duranski, M.R.; Greer, J.J.M.; Dejam, A.; Jaganmohan, S.; Hogg, N.; Langston, W.; Patel, R.P.; Yet, S.F.; Wang, X.D.; Kevil, C.G.; et al. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J. Clin. Investig. 2005, 115, 1232–1240. [Google Scholar] [CrossRef] [Green Version]
- Maekawa, A.; Ogiu, T.; Onodera, H.; Furuta, K.; Matsuoka, C.; Ohno, Y.; Odashima, S. Carcinogenicity studies of sodium-nitrite and sodium-nitrate in F344 rats. Food Chem. Toxic. 1982, 20, 25–33. [Google Scholar] [CrossRef]
- Gilchrist, M.; Shore, A.C.; Benjamin, N. Inorganic nitrate and nitrite and control of blood pressure. Cardiovasc. Res. 2011, 89, 492–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damacena-Angelis, C.; Oliveira-Paula, G.H.; Pinheiro, L.C.; Crevelin, E.J.; Portella, R.L.; Moraes, L.A.B.; Tanus-Santos, J.E. Nitrate decreases xanthine oxidoreductase-mediated nitrite reductase activity and attenuates vascular and blood pressure responses to nitrite. Redox Biol. 2017, 12, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Roberts, L.D.; Ashmore, T.; Kotwica, A.O.; Murfitt, S.A.; Fernandez, B.O.; Feelisch, M.; Murray, A.J.; Griffin, J.L. Inorganic nitrate promotes the browning of white adipose tissue through the nitrate-nitrite-nitric oxide pathway. Diabetes 2015, 64, 471–484. [Google Scholar] [CrossRef] [Green Version]
- Loudon, B.L.; Noordali, H.; Gollop, N.D.; Frenneaux, M.P.; Madhani, M. Present and future pharmacotherapeutic agents in heart failure: An evolving paradigm. Br. J. Pharmacol. 2016, 173, 1911–1924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Animal Group | Rat/ Mouse | Male/ Female | Weight (g) ** | Breath Rate before Injection | Breath Rate during Injection | Breath Rate Following Injection |
---|---|---|---|---|---|---|
1 | Rat | M | 247 (5) | 81 (5) | 63 (9) a | 60 (7) b |
2 | Rat | F | 239 (9) | 85 (10) | 77 (15) | 51 (6) c |
3 | Mouse | M | 25 | 105 (34) | 95 (10) | 88 (16) |
4 | Mouse | F | 25 | 140 (17) | 128 (29) | 105 (28) |
Animal Group | Rat/ Mouse | Male/ Female | Weight (g) | Breath Rate before Injection | Breath Rate during Injection | Breath Rate Following Injection |
---|---|---|---|---|---|---|
1 | Rat | M | 246 (3) | 87 (7) | 81 (6) | 77 (8) |
2 | Rat | F | 244 (3) | 52 (8) | 47 (2) | 47 (10) |
3 | Mouse | M | 24 (1) | 119 (35) | 120 (4) | 107 (30) |
4 | Mouse | F | 22 (1) | 117 (34) | 116 (17) | 111 (27) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katz-Brull, R. Tolerance of Rodents to an Intravenous Bolus Injection of Sodium Nitrate in a High Concentration. Biology 2022, 11, 794. https://doi.org/10.3390/biology11050794
Katz-Brull R. Tolerance of Rodents to an Intravenous Bolus Injection of Sodium Nitrate in a High Concentration. Biology. 2022; 11(5):794. https://doi.org/10.3390/biology11050794
Chicago/Turabian StyleKatz-Brull, Rachel. 2022. "Tolerance of Rodents to an Intravenous Bolus Injection of Sodium Nitrate in a High Concentration" Biology 11, no. 5: 794. https://doi.org/10.3390/biology11050794
APA StyleKatz-Brull, R. (2022). Tolerance of Rodents to an Intravenous Bolus Injection of Sodium Nitrate in a High Concentration. Biology, 11(5), 794. https://doi.org/10.3390/biology11050794