Higher Responsiveness of Pattern Generation Circuitry to Sensory Stimulation in Healthy Humans Is Associated with a Larger Hoffmann Reflex
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Setup
2.3. Sensory Stimulation Technique
2.4. H-Reflex Measurements
- -
- First, in the stationary limb conditions (Exp 1 and 2), we applied ES of the median or tibial nerve every 2.5–5 s when the subject was relaxed and not stimulated (‘no vibration’) and during vibration. In the latter case, we applied ES after the onset of the vibration but in the absence of non-voluntary movements (normally, we could record 2–3 stimuli since the latency for evoking non-voluntary movements is about several seconds).
- -
- For voluntary movements (Exp 1), we asked the subject to perform rhythmic limb movements with a cycle duration of ~2 s (similar to that during non-voluntary rhythmic oscillations). The electrical stimulus was delivered to the median nerve every 2.5–5 s, which randomly occurred during different phases of the movements, so that we grouped and analyzed the H-reflexes during 4 phases of the movements (see below). The onset of the cycle was defined as the maximum shoulder extension.
- -
- For passive movements (Exp 1), the procedure was similar to that of ‘voluntary movements’ except that the experimenter imposed passive rhythmic (period ~2 s) movements of the suspended limb. The same experimenter performed passive movements and the frequency and angular amplitude of imposed movements in the upper limb joints were comparable for all subjects (see the Results).
2.5. Data Recording and Analysis
2.6. Statistics
3. Results
3.1. Characteristics of Non-Voluntary Upper Limb Oscillations
3.2. Assessments of the H-Reflex in the Upper Limb Muscle
3.3. Non-Voluntary Lower Limb Oscillations
3.4. Soleus H-Reflex
3.5. Effect of Age
4. Discussion
4.1. Methodological Considerations
4.2. Spinal Cord Plasticity
4.3. Inter-Individual Variability in the H-Reflex and Neuromodulation of the Spinal Cord
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gerasimenko, Y.; Gad, P.; Sayenko, D.; McKinney, Z.; Gorodnichev, R.; Puhov, A.; Moshonkina, T.; Savochin, A.; Selionov, V.; Shigueva, T.; et al. Integration of Sensory, Spinal, and Volitional Descending Inputs in Regulation of Human Locomotion. J. Neurophysiol. 2016, 116, 98–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, M.L.; Grahn, P.J.; Calvert, J.S.; Linde, M.B.; Lavrov, I.A.; Strommen, J.A.; Beck, L.A.; Sayenko, D.G.; Van Straaten, M.G.; Drubach, D.I.; et al. Neuromodulation of Lumbosacral Spinal Networks Enables Independent Stepping after Complete Paraplegia. Nat. Med. 2018, 24, 1677–1682. [Google Scholar] [CrossRef] [PubMed]
- Ivanenko, Y.P.; Gurfinkel, V.S.; Selionov, V.A.; Solopova, I.A.; Sylos-Labini, F.; Guertin, P.A.; Lacquaniti, F. Tonic and Rhythmic Spinal Activity Underlying Locomotion. Curr. Pharm. Des. 2017, 23, 1753–1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowald, A.; Komi, S.; Demesmaeker, R.; Baaklini, E.; Hernandez-Charpak, S.D.; Paoles, E.; Montanaro, H.; Cassara, A.; Becce, F.; Lloyd, B.; et al. Activity-Dependent Spinal Cord Neuromodulation Rapidly Restores Trunk and Leg Motor Functions after Complete Paralysis. Nat. Med. 2022, 28, 260–271. [Google Scholar] [CrossRef]
- Selionov, V.A.; Ivanenko, Y.P.; Solopova, I.A.; Gurfinkel, V.S. Tonic Central and Sensory Stimuli Facilitate Involuntary Air-Stepping in Humans. J. Neurophysiol. 2009, 101, 2847–2858. [Google Scholar] [CrossRef] [Green Version]
- Orlovsky, G.; Deliagina, T.; Grillner, S. Neuronal Control of Locomotion: From Mollusc to Man; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Edgerton, V.R.; Courtine, G.; Gerasimenko, Y.P.; Lavrov, I.; Ichiyama, R.M.; Fong, A.J.; Cai, L.L.; Otoshi, C.K.; Tillakaratne, N.J.K.; Burdick, J.W.; et al. Training Locomotor Networks. Brain Res. Rev. 2008, 57, 241–254. [Google Scholar] [CrossRef] [Green Version]
- Hofstoetter, U.S.; Knikou, M.; Guertin, P.A.; Minassian, K. Probing the Human Spinal Locomotor Circuits by Phasic Step-Induced Feedback and by Tonic Electrical and Pharmacological Neuromodulation. Curr. Pharm. Des. 2017, 23, 1805–1820. [Google Scholar] [CrossRef] [Green Version]
- Solopova, I.A.; Selionov, V.A.; Sylos-Labini, F.; Gurfinkel, V.S.; Lacquaniti, F.; Ivanenko, Y.P. Tapping into Rhythm Generation Circuitry in Humans during Simulated Weightlessness Conditions. Front. Syst. Neurosci. 2015, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Gurfinkel, V.S.; Levik, Y.S.; Kazennikov, O.V.; Selionov, V.A. Locomotor-like Movements Evoked by Leg Muscle Vibration in Humans. Eur. J. Neurosci. 1998, 10, 1608–1612. [Google Scholar] [CrossRef]
- Solopova, I.A.; Selionov, V.A.; Kazennikov, O.V.; Ivanenko, Y.P. Effects of Transcranial Magnetic Stimulation during Voluntary and Non-Voluntary Stepping Movements in Humans. Neurosci. Lett. 2014, 579, 64–69. [Google Scholar] [CrossRef]
- Solopova, I.A.; Selionov, V.A.; Zhvansky, D.S.; Gurfinkel, V.S.; Ivanenko, Y. Human Cervical Spinal Cord Circuitry Activated by Tonic Input Can Generate Rhythmic Arm Movements. J. Neurophysiol. 2016, 115, 1018–1030. [Google Scholar] [CrossRef] [PubMed]
- Zehr, E.P.; Barss, T.S.; Dragert, K.; Frigon, A.; Vasudevan, E.V.; Haridas, C.; Hundza, S.; Kaupp, C.; Klarner, T.; Klimstra, M.; et al. Neuromechanical Interactions between the Limbs during Human Locomotion: An Evolutionary Perspective with Translation to Rehabilitation. Exp. Brain Res. 2016, 234, 3059–3081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerasimenko, Y.; Gorodnichev, R.; Machueva, E.; Pivovarova, E.; Semyenov, D.; Savochin, A.; Roy, R.R.; Edgerton, V.R. Novel and Direct Access to the Human Locomotor Spinal Circuitry. J. Neurosci. 2010, 30, 3700–3708. [Google Scholar] [CrossRef] [PubMed]
- Sylos-Labini, F.; Ivanenko, Y.P.; Maclellan, M.J.; Cappellini, G.; Poppele, R.E.; Lacquaniti, F. Locomotor-like Leg Movements Evoked by Rhythmic Arm Movements in Humans. PLoS ONE 2014, 9, e90775. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.A.; Pulverenti, T.S.; Knikou, M. Neuronal Actions of Transspinal Stimulation on Locomotor Networks and Reflex Excitability during Walking in Humans with and without Spinal Cord Injury. Front. Hum. Neurosci. 2021, 15, 620414. [Google Scholar] [CrossRef]
- Schieppati, M. The Hoffmann Reflex: A Means of Assessing Spinal Reflex Excitability and Its Descending Control in Man. Prog. Neurobiol. 1987, 28, 345–376. [Google Scholar] [CrossRef]
- Solopova, I.A.; Selionov, V.A.; Blinov, E.O.; Zhvansky, D.S.; Ivanenko, Y.P. Rhythmic Wrist Movements Facilitate the Soleus H-Reflex and Non-Voluntary Air-Stepping in Humans. Neurosci. Lett. 2017, 638, 39–45. [Google Scholar] [CrossRef]
- Anderson, D.I.; Lohse, K.R.; Lopes, T.C.V.; Williams, A.M. Individual Differences in Motor Skill Learning: Past, Present and Future. Hum. Mov. Sci. 2021, 78, 102818. [Google Scholar] [CrossRef]
- Vidal, P.-P.; Lacquaniti, F. Perceptual-Motor Styles. Exp. Brain Res. 2021, 239, 1359–1380. [Google Scholar] [CrossRef]
- Dietz, V.; Grillner, S.; Trepp, A.; Hubli, M.; Bolliger, M. Changes in Spinal Reflex and Locomotor Activity after a Complete Spinal Cord Injury: A Common Mechanism? Brain 2009, 132, 2196–2205. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.K.; Wolpaw, J.R. Operant Conditioning of Spinal Reflexes: From Basic Science to Clinical Therapy. Front. Integr. Neurosci. 2014, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Skinner, R.D.; Houle, J.D.; Reese, N.B.; Berry, C.L.; Garcia-Rill, E. Effects of Exercise and Fetal Spinal Cord Implants on the H-Reflex in Chronically Spinalized Adult Rats. Brain Res. 1996, 729, 127–131. [Google Scholar] [CrossRef]
- Shapkova, E.Y. Spinal Locomotor Capabality Revealed by Electrical Stimulation of the Lumbar Enlargement in Paraplegic Patients. In Progress in Motor Control; Latash, M., Levin, M., Eds.; Human Kinetics: Champaign, IL, USA, 2004; Volume 3, pp. 253–289. [Google Scholar]
- Shapkova, E.Y.; Pismennaya, E.V.; Emelyannikov, D.V.; Ivanenko, Y. Exoskeleton Walk Training in Paralyzed Individuals Benefits From Transcutaneous Lumbar Cord Tonic Electrical Stimulation. Front. Neurosci. 2020, 14, 416. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.K.; Pomerantz, F.R.; Wolpaw, J.R. Operant Conditioning of a Spinal Reflex Can Improve Locomotion after Spinal Cord Injury in Humans. J. Neurosci. 2013, 33, 2365–2375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roll, J.P.; Vedel, J.P.; Ribot, E. Alteration of Proprioceptive Messages Induced by Tendon Vibration in Man: A Microneurographic Study. Exp. Brain Res. 1989, 76, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Domingo, A.; Klimstra, M.; Nakajima, T.; Lam, T.; Hundza, S.R. Walking Phase Modulates H-Reflex Amplitude in Flexor Carpi Radialis. J. Mot. Behav. 2014, 46, 49–57. [Google Scholar] [CrossRef]
- Capaday, C.; Stein, R.B. Difference in the Amplitude of the Human Soleus H Reflex during Walking and Running. J. Physiol. 1987, 392, 513–522. [Google Scholar] [CrossRef]
- Kuhtz-Buschbeck, J.P.; Jing, B. Activity of Upper Limb Muscles during Human Walking. J. Electromyogr. Kinesiol. 2012, 22, 199–206. [Google Scholar] [CrossRef]
- Knikou, M. The H-Reflex as a Probe: Pathways and Pitfalls. J. Neurosci. Methods 2008, 171, 1–12. [Google Scholar] [CrossRef]
- Frigon, A.; Collins, D.F.; Zehr, E.P. Effect of Rhythmic Arm Movement on Reflexes in the Legs: Modulation of Soleus H-Reflexes and Somatosensory Conditioning. J. Neurophysiol. 2004, 91, 1516–1523. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, L.; Lundbye-Jensen, J.; Perez, M.A.; Nielsen, J.B. How Plastic Are Human Spinal Cord Motor Circuitries? Exp. Brain Res. 2017, 235, 3243–3249. [Google Scholar] [CrossRef] [PubMed]
- Marder, E.; Goaillard, J.-M. Variability, Compensation and Homeostasis in Neuron and Network Function. Nat. Rev. Neurosci. 2006, 7, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Hultborn, H. State-Dependent Modulation of Sensory Feedback. J. Physiol. 2001, 533, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Fukson, O.I.; Berkinblit, M.B.; Feldman, A.G. The Spinal Frog Takes into Account the Scheme of Its Body during the Wiping Reflex. Science 1980, 209, 1261–1263. [Google Scholar] [CrossRef]
- Giszter, S.F.; McIntyre, J.; Bizzi, E. Kinematic Strategies and Sensorimotor Transformations in the Wiping Movements of Frogs. J. Neurophysiol. 1989, 62, 750–767. [Google Scholar] [CrossRef]
- Poppele, R.; Bosco, G. Sophisticated Spinal Contributions to Motor Control. Trends Neurosci. 2003, 26, 269–276. [Google Scholar] [CrossRef]
- Windhorst, U. The Spinal Cord and Its Brain: Representations and Models. To What Extent Do Forebrain Mechanisms Appear at Brainstem Spinal Cord Levels? Prog. Neurobiol. 1996, 49, 381–414. [Google Scholar] [CrossRef]
- Levine, A.J.; Hinckley, C.A.; Hilde, K.L.; Driscoll, S.P.; Poon, T.H.; Montgomery, J.M.; Pfaff, S.L. Identification of a Cellular Node for Motor Control Pathways. Nat. Neurosci. 2014, 17, 586–593. [Google Scholar] [CrossRef] [Green Version]
- Cowley, K.C.; Zaporozhets, E.; Joundi, R.A.; Schmidt, B.J. Contribution of Commissural Projections to Bulbospinal Activation of Locomotion in the in Vitro Neonatal Rat Spinal Cord. J. Neurophysiol. 2009, 101, 1171–1178. [Google Scholar] [CrossRef]
- Pham, B.N.; Luo, J.; Anand, H.; Kola, O.; Salcedo, P.; Nguyen, C.; Gaunt, S.; Zhong, H.; Garfinkel, A.; Tillakaratne, N.; et al. Redundancy and Multifunctionality among Spinal Locomotor Networks. J. Neurophysiol. 2020, 124, 1469–1479. [Google Scholar] [CrossRef]
- Gerasimenko, Y.; Gorodnichev, R.; Puhov, A.; Moshonkina, T.; Savochin, A.; Selionov, V.; Roy, R.R.; Lu, D.C.; Edgerton, V.R. Initiation and Modulation of Locomotor Circuitry Output with Multisite Transcutaneous Electrical Stimulation of the Spinal Cord in Noninjured Humans. J. Neurophysiol. 2015, 113, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Minassian, K.; Persy, I.; Rattay, F.; Pinter, M.M.; Kern, H.; Dimitrijevic, M.R. Human Lumbar Cord Circuitries Can Be Activated by Extrinsic Tonic Input to Generate Locomotor-like Activity. Hum. Mov. Sci. 2007, 26, 275–295. [Google Scholar] [CrossRef]
- Roaf, H.E.; Sherrington, C.S. Further Remarks on the Mammalian Spinal Preparation. Quart. J. Exp. Physiol. 1910, 3, 209–211. [Google Scholar] [CrossRef]
- Eklund, G.; Hagbarth, K.E. Normal Variability of Tonic Vibration Reflexes in Man. Exp. Neurol. 1966, 16, 80–92. [Google Scholar] [CrossRef]
- Brumley, M.R.; Guertin, P.A.; Taccola, G. Multilevel Analysis of Locomotion in Immature Preparations Suggests Innovative Strategies to Reactivate Stepping after Spinal Cord Injury. Curr. Pharm. Des. 2017, 23, 1764–1777. [Google Scholar] [CrossRef] [Green Version]
- Guertin, P.A. Preclinical Evidence Supporting the Clinical Development of Central Pattern Generator-Modulating Therapies for Chronic Spinal Cord-Injured Patients. Front. Hum. Neurosci. 2014, 8, 272. [Google Scholar] [CrossRef] [Green Version]
- Knikou, M.; Angeli, C.A.; Ferreira, C.K.; Harkema, S.J. Flexion Reflex Modulation during Stepping in Human Spinal Cord Injury. Exp. Brain Res. 2009, 196, 341–351. [Google Scholar] [CrossRef]
- Plaza, A.; Hernandez, M.; Puyuelo, G.; Garces, E.; Garcia, E. Wearable Rehabilitation Exoskeletons of the Lower Limb: Analysis of Versatility and Adaptability. Disabil. Rehabil. Assist. Technol. 2020, 1–15. [Google Scholar] [CrossRef]
- Cappellini, G.; Sylos-Labini, F.; Dewolf, A.H.; Solopova, I.A.; Morelli, D.; Lacquaniti, F.; Ivanenko, Y. Maturation of the Locomotor Circuitry in Children with Cerebral Palsy. Front. Bioeng. Biotechnol. 2020, 8, 998. [Google Scholar] [CrossRef]
- Friel, K.M.; Williams, P.T.J.A.; Serradj, N.; Chakrabarty, S.; Martin, J.H. Activity-Based Therapies for Repair of the Corticospinal System Injured during Development. Front. Neurol. 2014, 5, 229. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.F.; Livingstone, D.; Brunton, K.; Kim, D.; Lopetinsky, B.; Roy, F.; Zewdie, E.; Patrick, S.K.; Andersen, J.; Kirton, A.; et al. Training to Enhance Walking in Children with Cerebral Palsy: Are We Missing the Window of Opportunity? Semin. Pediatr. Neurol. 2013, 20, 106–115. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solopova, I.A.; Selionov, V.A.; Blinov, E.O.; Dolinskaya, I.Y.; Zhvansky, D.S.; Lacquaniti, F.; Ivanenko, Y. Higher Responsiveness of Pattern Generation Circuitry to Sensory Stimulation in Healthy Humans Is Associated with a Larger Hoffmann Reflex. Biology 2022, 11, 707. https://doi.org/10.3390/biology11050707
Solopova IA, Selionov VA, Blinov EO, Dolinskaya IY, Zhvansky DS, Lacquaniti F, Ivanenko Y. Higher Responsiveness of Pattern Generation Circuitry to Sensory Stimulation in Healthy Humans Is Associated with a Larger Hoffmann Reflex. Biology. 2022; 11(5):707. https://doi.org/10.3390/biology11050707
Chicago/Turabian StyleSolopova, Irina A., Victor A. Selionov, Egor O. Blinov, Irina Y. Dolinskaya, Dmitry S. Zhvansky, Francesco Lacquaniti, and Yury Ivanenko. 2022. "Higher Responsiveness of Pattern Generation Circuitry to Sensory Stimulation in Healthy Humans Is Associated with a Larger Hoffmann Reflex" Biology 11, no. 5: 707. https://doi.org/10.3390/biology11050707
APA StyleSolopova, I. A., Selionov, V. A., Blinov, E. O., Dolinskaya, I. Y., Zhvansky, D. S., Lacquaniti, F., & Ivanenko, Y. (2022). Higher Responsiveness of Pattern Generation Circuitry to Sensory Stimulation in Healthy Humans Is Associated with a Larger Hoffmann Reflex. Biology, 11(5), 707. https://doi.org/10.3390/biology11050707