Polyhydroxybutyrate (PHB) Scaffolds for Peripheral Nerve Regeneration: A Systematic Review of Animal Models
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Eligibility Criteria
2.3. Article Selection
2.4. Data Extraction
2.5. Analysis of Methodology and Results of Selected Studies
2.6. Analysis of the Risk of Bias of Selected Studies
3. Results
Study Selection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Campbell, W.W. Evaluation and management of peripheral nerve injury. Clin. Neurophysiol. 2008, 119, 1951–1965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Modrak, M.; Talukder, M.H.; Gurgenashvili, K.; Noble, M.; Elfar, J.C. Peripheral nerve injury and myelination: Potential therapeutic strategies. J. Neurosci. Res. 2019, 98, 780–795. [Google Scholar] [CrossRef] [PubMed]
- Seddighi, A.; Nikouei, A.; Seddighi, A.S.; Zali, A.R.; Tabatabaei, S.M.; Sheykhi, A.R.; Yourdkhani, F.; Naeimian, S. Peripheral nerve injury: A review article. Int. Clin. Neurosci. J. 2016, 3, 1–6. [Google Scholar] [CrossRef]
- Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Polymeric scaffolds in tissue engineering application: A review. Int. J. Poly. Sci. 2011, 2011, 290602. [Google Scholar] [CrossRef]
- Bitar, K.N.; Zakhem, E. Design strategies of biodegradable scaffolds for tissue regeneration. Biomed. Eng. Comp. Biol. 2014, 6, 13–20. [Google Scholar] [CrossRef]
- Subramanian, A.; Krishnan, U.M.; Sethuraman, S. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. J. Biomed. Sci. 2009, 16, 108. [Google Scholar] [CrossRef] [Green Version]
- Diaferia, C.; Rosa, E.; Balasco, N.; Sibillano, T.; Morelli, G.; Giannini, C.; Vitagliano, L.; Accardo, A. The Introduction of a Cysteine Residue Modulates The Mechanical Properties of Aromatic Based Solid Aggregates and Self-Supporting Hydrogels. Chem. A Eur. J. 2021, 27, 14886–14898. [Google Scholar] [CrossRef]
- Yao, S.; Brahmi, R.; Portier, F.; Putaux, J.; Chen, J.; Halila, S. Hierarchical Self-Assembly of Amphiphilic β-C-Glycosylbarbiturates into Multiresponsive Alginate-Like Supramolecular Hydrogel Fibers and Vesicle Hydrogel. Chem. A Eur. J. 2021, 27, 16716–16721. [Google Scholar] [CrossRef]
- Cho, I.S.; Ooya, T. Cell-Encapsulating Hydrogel Puzzle: Polyrotaxane-Based Self-Healing Hydrogels. Chem. A Eur. J. 2019, 26, 913–920. [Google Scholar] [CrossRef]
- Chiono, V.; Tonda-Turo, C.; Ciardelli, G. Artificial scaffolds for peripheral nerve reconstruction. Int. Rev. Neurobiol. 2009, 87, 173–198. [Google Scholar] [CrossRef]
- Sinha Ray, S. Environmentally friendly polymer nanocomposites using polymer matrices from renewable sources. Environ. Friendly Polym. Nanocomposites 2013, 2013, 89–156. [Google Scholar] [CrossRef]
- Sanhueza, C.; Acevedo, F.; Rocha, S.; Villegas, P.; Seeger, M.; Navia, R. Polyhydroxyalkanoates as biomaterial for electrospun scaffolds. Int. J. Biol. Macromol. 2019, 124, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Borkenhagen, M.; Stoll, R.C.; Neuenschwander, P.; Suter, U.W.; Aebischer, P. In vivo performance of a new biodegradable polyester urethane system used as a nerve guidance channel. Biomaterials 1998, 19, 2155–2165. [Google Scholar] [CrossRef]
- Ljungberg, C.; Johansson-Ruden, G.; Boström, K.J.; Novikov, L.; Wiberg, M. Neuronal survival using a resorbable synthetic conduit as an alternative to primary nerve repair. Microsurgery 1999, 19, 259–264. [Google Scholar] [CrossRef]
- Hazari, A.; Johansson-Rudén, G.; Junemo-Bostrom, K.; Ljungberg, C.; Terenghi, G.; Green, C.; Wiberg, M. A new resorbable wrap-around implant as an alternative nerve repair technique. J. Hand Surg. Br. 1999, 24, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Hazari, A.; Wiberg, M.; Johansson-Rudén, G.; Green, C.; Terenghi, G. A resorbable nerve conduit as an alternative to nerve autograft in nerve gap repair. Br. J. Plast. Surg. 1999, 52, 653–657. [Google Scholar] [CrossRef] [PubMed]
- Young, R.C.; Terenghi, G.; Wiberg, M. Poly-3-hydroxybutyrate (PHB): A resorbable conduit for long-gap repair in peripheral nerves. Br. J. Plast. Surg. 2002, 55, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Mohanna, P.N.; Young, R.C.; Wiberg, M.; Terenghi, G. A composite poly-hydroxybutyrate–glial growth factor conduit for long nerve gap repairs. J. Anat. 2003, 203, 553–565. [Google Scholar] [CrossRef]
- Hart, A.M.; Wiberg, M.; Terenghi, G. Exogenous leukaemia inhibitory factor enhances nerve regeneration after late secondary repair using a bioartificial nerve conduit. Br. J. Plast. Surg. 2003, 56, 444–450. [Google Scholar] [CrossRef]
- Birchall, M.; Idowu, B.; Murison, P.; Jones, A.; Burt, R.; Ayling, S.; Stokes, C.; Pope, L.; Terenghi, G. Laryngeal abductor muscle reinnervation in a pig model. Acta Oto-Laryngol. 2004, 124, 839–846. [Google Scholar] [CrossRef]
- Mohanna, P.N.; Terenghi, G.; Wiberg, M. Composite PHB-GGF conduit for long nerve gap repair: A long-term evaluation. Scand. J. Plast. Reconstr. Surg. Hand Surg. 2005, 39, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Kalbermatten, D.F.; Erba, P.; Mahay, D.; Wiberg, M.; Pierer, G.; Terenghi, G. Schwann cell strip for peripheral nerve repair. J. Hand Surg. Eur. 2008, 33, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Kalbermatten, D.F.; Kingham, P.J.; Mahay, D.; Mantovani, C.; Pettersson, J.; Raffoul, W.; Balcin, H.; Pierer, G.; Terenghi, G. Fibrin matrix for suspension of regenerative cells in an artificial nerve conduit. J. Plast. Reconstr. Aesthet. Surg. 2008, 61, 669–675. [Google Scholar] [CrossRef]
- Kalbermatten, D.F.; Pettersson, J.; Kingham, P.J.; Pierer, G.; Wiberg, M.; Terenghi, G. New fibrin conduit for peripheral nerve repair. J. Reconstr. Microsurg. 2009, 25, 27–33. [Google Scholar] [CrossRef]
- Bian, Y.Z.; Wang, Y.; Aibaidoula, G.; Chen, G.Q.; Wu, Q. Evaluation of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials 2009, 30, 217–225. [Google Scholar] [CrossRef]
- Åberg, M.; Ljungberg, C.; Edin, E.; Millqvist, H.; Nordh, E.; Theorin, A.; Terenghi, G.; Wiberg, M. Clinical evaluation of a resorbable wrap-around implant as an alternative to nerve repair: A prospective, assessor-blinded, randomised clinical study of sensory, motor and functional recovery after peripheral nerve repair. J. Plast. Reconstr. Aesthet. Surg. 2009, 62, 1503–1509. [Google Scholar] [CrossRef]
- Durgam, H.; Sapp, S.; Deister, C.; Khaing, Z.; Chang, E.; Luebben, S.; Schmidt, C.E. Novel degradable co-polymers of polypyrrole support cell proliferation and enhance neurite out-growth with electrical stimulation. J. Biomater. Sci. Polym. Ed. 2019, 21, 1265–1282. [Google Scholar] [CrossRef]
- Khorasani, M.T.; Mirmohammadi, S.A.; Irani, S. Polyhydroxybutyrate (PHB) scaffolds as a model for nerve tissue engineering application: Fabrication and in vitro assay. Int. J. Polym. Mater. 2011, 60, 562–575. [Google Scholar] [CrossRef]
- Genchi, G.G.; Ciofani, G.; Polini, A.; Liakos, I.; Iandolo, D.; Athanassiou, A.; Pisignano, D.; Mattoli, V.; Menciassi, A. PC12 neuron-like cell response to electrospun poly (3-hydroxybutyrate) substrates. J. Tissue Eng. Regen. Med. 2015, 9, 151–161. [Google Scholar] [CrossRef]
- Kuo, Y.C.; Wang, C.T. Neuronal differentiation of induced pluripotent stem cells in hybrid polyester scaffolds with heparinized surface. Colloids Surf. B 2012, 100, 9–15. [Google Scholar] [CrossRef]
- Chan, R.T.; Russell, R.A.; Marçal, H.; Lee, T.H.; Holden, P.J.; Foster, J.R. BioPEGylation of polyhydroxybutyrate promotes nerve cell health and migration. Biomacromolecules 2014, 15, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Daranarong, D.; Chan, R.T.; Wanandy, N.S.; Molloy, R.; Punyodom, W.; Foster, L.J. Electrospun polyhydroxybutyrate and poly (L-lactide-co-ε-caprolactone) composites as nanofibrous scaffolds. BioMed. Res. Int. 2014, 2014, 741408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaakxs, D.; Kalbermatten, D.F.; Pralong, E.; Raffoul, W.; Wiberg, M.; Kingham, P.J. Poly-3-hydroxybutyrate strips seeded with regenerative cells are effective promoters of peripheral nerve repair. J. Tissue Eng. Regen. Med. 2017, 11, 812–821. [Google Scholar] [CrossRef]
- Ozer, H.; Bozkurt, H.; Bozkurt, G.; Demirbilek, M. Regenerative potential of chitosan-coated poly-3-hydroxybutyrate conduits seeded with mesenchymal stem cells in a rat sciatic nerve injury model. Int. J. Neurosci. 2018, 128, 828–834. [Google Scholar] [CrossRef]
- Cheng, G.Q.; Wu, Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 2005, 26, 6565–6578. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.K.; Valappil, S.P.; Roy, I.; Boccaccini, A.R. Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications. Biomacromolecules 2006, 7, 2249–2258. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.F.; Martin, D.P. Applications of PHAs in medicine and pharmacy. Biopolymers 2002, 4, 91–127. [Google Scholar]
- Ray, S.; Kalia, V.C. Biomedical applications of polyhydroxyalkanoates. Indian, J. Microbiol. 2017, 57, 261–269. [Google Scholar] [CrossRef]
- Riaz, S.; Raza, Z.A.; Majeed, M.I.; Jan, T. Synthesis of zinc sulfide nanoparticles and their incorporation into poly (hydroxybutyrate) matrix in the formation of a novel nanocomposite. Mater. Res. Express 2018, 5, 055027. [Google Scholar] [CrossRef]
- Tanideh, N.; Azarpira, N.; Sarafraz, N.; Zare, S.; Rowshanghiyas, A.; Farshidfar, N.; Iraji, A.; Zarei, M.; El Fray, M. Poly(3-Hydroxybutyrate)-Multiwalled Carbon Nanotubes Electrospun Scaffolds Modified with Curcumin. Polymers 2020, 12, 2588. [Google Scholar] [CrossRef]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef] [PubMed]
- Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAdam, B.; Brennan Fournet, M.; McDonald, P.; Mojicevic, M. Production of Polyhydroxybutyrate (PHB) and Factors Impacting Its Chemical and Mechanical Characteristics. Polymers 2020, 12, 2908. [Google Scholar] [CrossRef] [PubMed]
- Masaeli, E.; Morshed, M.; Nasr-Esfahani, M.H.; Sadri, S.; Hilderink, J.; van Apeldoorn, A.; van Blitterswijk, C.A.; Moroni, L. Fabrication, characterization and cellular compatibility of poly(hydroxy alkanoate) composite nanofibrous scaffolds for nerve tissue engineering. PLoS ONE 2013, 8, e57157. [Google Scholar] [CrossRef] [PubMed]
- Masaeli, E.; Wieringa, P.A.; Morshed, M.; Nasr-Esfahani, M.H.; Sadri, S.; van Blitterswijk, C.A.; Moroni, L. Peptide functionalized polyhydroxyalkanoate nanofibrous scaffolds enhance Schwann cells activity. Nanomedicine 2014, 10, 1559–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lizarraga-Valderrama, L.R.; Taylor, C.S.; Claeyssens, F.; Haycock, J.W.; Knowles, J.C.; Roy, I. Unidirectional neuronal cell growth and differentiation on aligned polyhydroxyalkanoate blend microfibres with varying diameters. J. Tissue Eng. Regen. Med. 2019, 13, 1581–1594. [Google Scholar] [CrossRef]
- Zamanifard, M.; Khorasani, M.T.; Daliri, M.; Parvazinia, M. Preparation and modeling of electrospun polyhydroxybutyrate/polyaniline composite scaffold modified by plasma and printed by an inkjet method and its cellular study. J. Biomater. Sci. Polym. Ed. 2020, 31, 1515–1537. [Google Scholar] [CrossRef]
- Austin, C.P. Opportunities and challenges in translational science. Clin. Transl. Sci. 2021, 14, 1629–1647. [Google Scholar] [CrossRef]
- Dalamagkas, K.; Tsintou, M.; Seifalian, A.; Seifalian, A.M. Translational Regenerative Therapies for Chronic Spinal Cord Injury. Int. J. Mol. Sci. 2018, 19, 1776. [Google Scholar] [CrossRef] [Green Version]
- Djurhuus, J.C.; Wu, H.Y.; Fossum, M. A conversation on how animal experimental studies allies with translational medicine. J. Pediatr. Urol. 2021, 17, 622–629. [Google Scholar] [CrossRef]
- Bellamkonda, R.V. Peripheral nerve regeneration: An opinion on channels, scaffolds and anisotropy. Biomaterials 2006, 27, 3515–3518. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Murugan, R.; Ramakrishna, S.; Wang, X.; Ma, Y.X.; Wang, S. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 2004, 25, 1891–1900. [Google Scholar] [CrossRef] [PubMed]
- Wood, M.D.; Kemp, S.W.; Weber, C.; Borschel, G.H.; Gordon, T. Outcome measures of peripheral nerve regeneration. Ann. Anat. 2011, 193, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Raimondo, S.; Fornaro, M.; Di Scipio, F.; Ronchi, G.; Giacobini-Robecchi, M.G.; Geuna, S. Chapter 5: Methods and protocols in peripheral nerve regeneration experimental research: Part II-morphological techniques. Int. Rev. Neurobiol. 2009, 87, 81–103. [Google Scholar] [CrossRef]
- Gordon, T.; Sulaiman, O.; Boyd, J.G. Experimental strategies to promote functional recovery after peripheral nerve injuries. J. Peripher. Nerv. Syst. 2003, 8, 236–250. [Google Scholar] [CrossRef] [PubMed]
- Houschyar, K.S.; Momeni, A.; Pyles, M.N.; Cha, J.Y.; Maan, Z.N.; Duscher, D.; Jew, O.S.; Siemers, F.; van Schoonhoven, J. The Role of Current Techniques and Concepts in Peripheral Nerve Repair. Plast. Surg. Int. 2016, 2016, 4175293. [Google Scholar] [CrossRef] [Green Version]
- Eggers, R.; de Winter, F.; Tannemaat, M.R.; Malessy, M.J.A.; Verhaagen, J. GDNF Gene Therapy to Repair the Injured Peripheral Nerve. Front. Bioeng. Biotechnol. 2020, 8, 583184. [Google Scholar] [CrossRef]
- Gordon, T. Peripheral Nerve Regeneration and Muscle Reinnervation. Int. J. Mol. Sci. 2020, 2, 8652. [Google Scholar] [CrossRef]
- Edwards, J.; Thomas, R.; Guilliatt, R. Regenerative medicine: From the laboratory looking out. Palgrave Commun. 2017, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pithon, M.M. Importance of the control group in scientific research. Dental. Press, J. Orthod. 2013, 18, 13–14. [Google Scholar] [CrossRef] [Green Version]
- Moser, P. Out of Control? Managing Baseline Variability in Experimental Studies with Control Groups. Handb. Exp. Pharmacol. 2020, 257, 101–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Authors and Year of Publication | Nerve (Type)/Gap Size/Time Periods | Animal (n) | PHB Formula Used | Scaffold Fabrication Method | Additive (If Any) | Methods Used | Conclusion or Main Outcome |
---|---|---|---|---|---|---|---|
Borkenhagen et al., 1998 [13] | Sciatic nerve (mixed)/8 mm/4, 12, 24 weeks | Rats (26) | Poly[glycolide-co-(ε-caprolactone)]-diol & poly[(R)-3-hydroxybutyric acid-co-(R)-3-hydroxyvaleric acid]-diol (all polymers had a molecular weight higher than 100 KDa) | Melt extrusion (tube) | No additive | Macroscopic morphology, histology | PHB holds promises for its utilization as nerve guidance channels. |
Ljungberg et al., 1999 [14] | Superficial radial nerve (sensory)/~2–3 mm/6, 12 months | Cats (20) | Polyhydroxybutyrate (PHB) (molecular weight 150 KDa) | Rolled sheets (tube) and fibrin glue. | No additive | Histology, quantitative immunohistochem. (IHC) | No differences between wrapping the nerve ends in PHB sheet or epineurally suturing of the nerve. |
Hazari et al., 1999a [15] | Radial Nerve (mixed)/2–3 mm/6, 12 months | Cats (20) | Poly-3-hydroxbutyrate (PHB) (molecular weight 150 KDa) | Rolled PHB sheet wrapped around the nerve ends & Tissue Glue | No additive | Histology, quantitative IHC | No differences beetwen PHB tube and Epineural Repair |
Hazari et al., 1999b [16] | Sciatic nerve (mixed)/10 mm/7, 14, 30 days | Rats (36) | Poly-3-hydroxybutyrate (molecular weight 150 KDa) | Rolled sheets sealed longitudinallywith cyanoacrylate (tube) | No additive | Quantitative IHC, morphometry | Good nerve regeneration in comparison with nerve grafts. |
Young et al., 2002 [17] | Common peroneal nerve (Mixed)/2, 3, 4 cm/2, 3, 6, 9 weeks | Rabbit (90) | Poly-3-hydroxybutyrate (PHB) (molecular weight 150 KDa) | Sterile PHB sheets with unidirectional fiber orientation (long axes) | No additive | IHC, histology, macroscopic morphology | PHB conduits support peripheral nerve regeneration up to 63 days. They are suitable for long-gap nerve injury repair. |
Mohanna et al., 2003 [18] | Common peroneal nerve (Mixed)/2, 4 cm/3, 6, 9 weeks | Rabbit (90) | Poly 3-hydroxybutyrate (PHB) (molecular weight 150 KDa) | Rolled PHB sheet around (16 G) cannula, long axes fiber orientation | Glial growth factor (rhGGF2, 1.29 mg mL−1, 80 kDa) diluted in 1 mL of 50:50 alginate fibronectin solution | Quantitative IHC | Inhibition of regeneration of nerve regeneration was partially reversed by the addition of GGF to the PHB conduits. PHB-GGF stimulates a progressive and sustainable regeneration increase in long nerve gap conduits. |
Hart et al., 2003 [19] | Sciatic nerve (mixed)/10 mm/2, 4 months | Rats (30) | Poly-3-hydroxybutyrate (PHB) (molecular weight 150 KDa) | Rolled sheets (tube) PHB sheets—compressed PHB fibers (2–20 µm Ø) | Leukemia inhibitory factor (recombinant murine rhLIF 100 ng/mL) hosted in a matrix of hydrogel comprising 2% ultra-pure low-molecular-weight high-mannuronic-acid-content calcium alginate and 0.05% bovine fibronectin | Quantitative IHC, macro morphometry | rhLIF has a potential role in promoting peripheral nerve regeneration after secondary repair and can be effectively delivered within PHB conduits for nerve repair. |
Birchall et al., 2004 [20] | Recurrent laryngeal nerve (mixed)/4 mm/30, 60, 120 days | Minipig (6) | Polyhydroxybutyrate (PHB) (molecular weight 150 KDa) | PHB sheet rolled to form a conduit | No additive | IHC; morphometry; histologic quantif.; macroscopic morphology | Functional and histological recovery within 2–4 months and appears to sustain abductor muscle fiber morphology. Recovery occurs despite a complex inflammatory response. |
Mohanna et al., 2005 [21] | Peroneal (mixed)/20, 40 mm/120 days | Rabbit (30) | Poly-3-hydroxybutyrate (PHB) (molecular weight 150 KDa) | Rolled sheets (tube) PHB sheets—compressed PHB fibers (2–20 µm Ø) | Glial growth factor (rthGGF2, 1.29 mg mL−1, 80 kDa) diluted in 1 mL of 50:50 alginate fibronectin solution | Histology, quant. IHC, ultrastructure (TEM), muscle atrophy | GGF-containing PHB conduits promoted sustained axonal regeneration and improved target muscle reinnervation. |
Kalbermatten et al., 2008a [22] | Sciatic (mixed)/10 mm/2 weeks | Rats (24) | Poly-3-hydroxybutyrate (PHB) (molecular weight 150 KDa) | PHB sheets rolled (16 G) 14 mm long, 2 mm diameter | A fibrinogen-cell solution was made in 1:10 dilution from Tisseel® containing 9 mg/mL fibrinogen and 80 × 106 Schwann cells/mL. This solution (25 mL) was used to coat PHB that was treated with 25 mL of diluted thrombin solution (5 IU/mL) for 10 min. | Histology, IHC, macroscopic morphology | Beneficial combinatory effect of an optimized matrix, cells and conduit material (PHB) as a step towards bridging nerve gaps. |
Kalbermatten et al., 2008b [23] | Sciatic (mixed)/10 mm/2 weeks | Rats (12) | Poly-3-hydroxybutyrate (PHB) (molecular weight 150 KDa) | Rolled sheets of compressed PHB fibers soaked in fibrin glue (tube) | About 80 × 106 Schwann cells/mL were suspended in 25 mL of fibrinogen solution. PHB conduits were coated with 25 mL of a diluted thrombin (5 IU/mL) solution for 10 min and then the fibrinogen/cell solution was added. | Histology, IHC, macroscopic morphology | PHB showed significant advantage in rapidly connecting a nerve gap lesion. |
Kalbermatten et al., 2008c [24] | Sciatic (mixed)/10 mm/2, 4 weeks | Rodents (12) | Poly-3-hydroxybutyrate (PHB) (molecular weight 150 KDa) | PHB sheets wrapped around a cannula and heat sealed (tube) vs. Fibrin conduits. | No additive | Quantitative IHC, morphology | Advantage of the new fibrin conduit for the important initial phase of peripheral nerve regeneration in comparison with PHB conduit. |
Bian et al., 2009 [25] | Sciatic (mixed)/10 mm/1, 2, 3 months | Rats (60) | Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) (molecular weight 610 KDa) | Dipping–leaching | No additive | Electrophysiol. analysis, histology, ultrastructure (TEM) | PHBHHx nerve conduits showed proper mechanical strengths and biodegradability artificial nerve conduits to repair nerve damages. |
Durgam et al., 2010 [27] | Sciatic (mixed)/10 mm/8 weeks | Rats (11) | Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-HV) (no information on molecular weight) | Rolled sheets of PCL and PECA glued with a PHB-HV solution (tube) | Co-polymers of polypyrrole (PPy) with poly (ε-caprolactone) (PCL) and poly (ethyl cyanoacrylate) (PECA). Melt-pressed PHB-HV films were airbrushed with a PPy co-polymer (PPy–PCL or PPy–PECA) and pressed. | Histology | Biomaterials (PCL, PECA and PHB-HV) have good biocompatibility and support proliferation and growth neurons in vivo (without electrical stimulation). |
Schaakxs et al., 2017 [33] | Sciatic (mixed)/10 mm/12 weeks | Rats (15) | Poly-3-hydroxybutyrate (PHB) (molecular weight 150 KDa) | Rolled sheets of compressed PHB fibers soaked in fibrin glue (tube) | Primary Schwann cells (SCs) isolated from adult rat sciatic nerves or SC-like differentiated adipose-derived stem cells (dASCs) from rats were trypsinised and 80 × 106 cells/mL were suspended in 25 μL diluted fibrinogen solution. The PHB strips were coated with 25 μL diluted thrombin (5 IU/mL) solution for 10 min and then the cell solution was added. | Functional gait test EMG, morphometry | The PHB strip seeded with cells provides a beneficial environment for nerve regeneration. |
Ozer et al., 2018 [34] | Sciatic (mixed)/10 mm/8 weeks | Rats (30) | Poly-3-hydroxybutyrate (PHB) (molecular weight 454 kDa) | PHB (5 wt%) in chloroform by electrospinning method | Chitosan-coated PHB conduits were seeded with mesenchymal stem cells harvested from human iliac bone marrow (hMSC-bm) | Functional gait test, EMG, histology | PHB/chitosan-hMSC-bm nerve conduits may be a useful artificial guide for nerve regeneration. |
Study | Ethics | Control | Control 2 | PHB Type | PHB Origin | Scaffold Fabric. Method | Nerve Gap Size | Nerve Studied | Period Evaluated | Surgical Procedure | Euthanasia Method | Species | Sex/Weight | Group Size & Distribution | Group Size Just. | Statistics | Complete Results | Precision Measures | Limitations | Conclusion > Objectives |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Borkenhagen et al., 1998 [13] | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||
Ljungberg et al., 1999 [14] | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||
Hazari et al., 1999a [15] | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||
Hazari et al., 1999b [16] | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||
Young et al., 2002 [17] | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||
Mohanna et al., 2003 [18] | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||
Hart et al., 2003 [19] | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||
Birchall et al., 2004 [20] | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||
Mohanna et al., 2005 [21] | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||
Kalbermatten et al., 2008a [22] | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||
Kalbermatten et al., 2008b [23] | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||
Kalbermatten et al., 2008c [24] | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||
Bian et al., 2009 [25] | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||
Durgam et al., 2010 [27] | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||
Schaakxs et al., 2017 [33] | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||
Ozer et al., 2018 [34] | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● |
STUDY | Selection Bias | Performance Bias | Detection Bias | Attrition Bias | Reporting Bias | Other | ||||
---|---|---|---|---|---|---|---|---|---|---|
Sequence | Baseline | Allocation | Random Housing | Housing Blinding | Random Outcome Asses. | Outcome Asses. Blinding | Incomplete Outcome Addr. | Sel. Outcome Rep. | Free of Other Problems | |
Borkenhagen et al., 1998 [13] | U | U | U | U | U | U | U | U | Y | N |
Ljungberg et al., 1999 [14] | U | Y | N | U | U | U | U | Y | Y | N |
Hazari et al., 1999a [15] | U | Y | U | U | U | U | U | U | U | N |
Hazari et al., 1999b [16] | U | U | U | U | U | U | U | U | U | N |
Young et al., 2002 [17] | U | U | U | U | U | U | U | U | U | Y |
Mohanna et al., 2003 [18] | U | Y | U | U | U | U | U | U* | Y | Y |
Hart et al., 2003 [19] | U | U | U | U | U | U | U | U* | U | N |
Birchall et al., 2004 [20] | U | Y | U | U | U | U | U | U* | Y | Y |
Mohanna et al., 2005 [21] | U | Y | U | U | U | U | U | U* | Y | N |
Kalbermatten et al., 2008a [22] | U | U | U | U | U | U | U | U | U | N |
Kalbermatten et al., 2008b [23] | U | U | U | U | U | U | U | Y | Y | Y |
Kalbermatten et al., 2008c [24] | U | U | U | U | U | U | U | Y | U | Y |
Bian et al., 2009 [25] | U | U | U | U | U | U | U | U | U | Y |
Durgam et al., 2010 [27] | U | Y | U | U | U | U | U | U | Y | Y |
Schaakxs et al., 2017 [33] | U | U | U | U | U | U | U | U* | Y | Y |
Ozer et al., 2018 [34] | U* | Y | U | U | U | U | U | Y | Y | Y |
Y = There are explanations of the assignment | Y = reports sex, weight and species | Y = There are explanations of allocation concealment | Y = There are explanations of how the accommodation was hidden | Y = There are explanations of blinding of caregivers and/or researchers | Y = There are explanations of blinded analysis of animals | Y = Informs blinded evaluation of results | Y = Animal losses explained or states no animal losses. | Y = Reports positive and negative results | Y = Nothing unsual (bias) | |
U = No explanation of the assignment. U* = mentions “randomly allocated” | U = Lack of baseline data | U = No explanation of allocation concealment | U = No explanation of accommodation concealment | U = No explanations of blinding of caregivers and/or researchers | U = No explanations of blinded analysis of animals | U = No information from blinded evaluation of the results. | U = Animal losses not declared. U* = Declared postoperative condition. | U = Does not report negative results |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lezcano, M.F.; Álvarez, G.; Chuhuaicura, P.; Godoy, K.; Alarcón, J.; Acevedo, F.; Gareis, I.; Dias, F.J. Polyhydroxybutyrate (PHB) Scaffolds for Peripheral Nerve Regeneration: A Systematic Review of Animal Models. Biology 2022, 11, 706. https://doi.org/10.3390/biology11050706
Lezcano MF, Álvarez G, Chuhuaicura P, Godoy K, Alarcón J, Acevedo F, Gareis I, Dias FJ. Polyhydroxybutyrate (PHB) Scaffolds for Peripheral Nerve Regeneration: A Systematic Review of Animal Models. Biology. 2022; 11(5):706. https://doi.org/10.3390/biology11050706
Chicago/Turabian StyleLezcano, Maria Florencia, Giannina Álvarez, Priscila Chuhuaicura, Karina Godoy, Josefa Alarcón, Francisca Acevedo, Iván Gareis, and Fernando José Dias. 2022. "Polyhydroxybutyrate (PHB) Scaffolds for Peripheral Nerve Regeneration: A Systematic Review of Animal Models" Biology 11, no. 5: 706. https://doi.org/10.3390/biology11050706
APA StyleLezcano, M. F., Álvarez, G., Chuhuaicura, P., Godoy, K., Alarcón, J., Acevedo, F., Gareis, I., & Dias, F. J. (2022). Polyhydroxybutyrate (PHB) Scaffolds for Peripheral Nerve Regeneration: A Systematic Review of Animal Models. Biology, 11(5), 706. https://doi.org/10.3390/biology11050706