Forensic Application of Genetic and Toxicological Analyses for the Identification and Characterization of the Opium Poppy (Papaver somniferum L.)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Morphological Analyses of Plant Material
2.2. Chemical Analysis
2.2.1. Instrumentation
2.2.2. Standard Solutions and Reagents
2.2.3. Sample Preparation for Chemical Component Analysis
2.3. Genetic Analysis
2.3.1. DNA Extraction
2.3.2. DNA Barcoding
2.3.3. RAPD Analysis
2.3.4. Statistics
3. Results
3.1. Morphological Features
3.2. Chemical Component Analysis
3.3. Interpretation of the Genetic Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schulz, H.; Baranska, M.; Quilitzsch, R.; Schütze, W. Determination of alkaloids in capsules, milk and ethanolic extracts of poppy (Papaver somniferum L.) by ATR-FT-IR and FT-Raman spectroscopy. Analyst 2004, 129, 917–920. [Google Scholar] [CrossRef] [PubMed]
- Dittbrenner, A.; Mock, H.-P.; Börner, U.L.A. Variability of alkaloid content in Papaver somniferum L. J. Appl. Bot. Food Qual. 2009, 82, 103–107. [Google Scholar]
- Labanca, F.; Ovesnà, J.; Milella, L. Papaver somniferum L. taxonomy, uses and new insight in poppy alkaloid pathways. Phytochem. Rev. 2018, 17, 853–871. [Google Scholar] [CrossRef]
- Kapoor, L.D. Opium Poppy; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Panicker, S.; Wojno, H.L.; Ziska, L.H. Quantitation of the Major Alkaloids in Opium from Papaver Setigerum DC. Microgram J. 2007, 5, 13–19. [Google Scholar]
- Lee, C.; Choe, S.; Lee, J.W.; Jin, Q.; Lee, M.K.; Hwang, B.Y. Alkaloids from papaver setigerum. Bull. Korean Chem. Soc. 2013, 34, 1290–1292. [Google Scholar] [CrossRef] [Green Version]
- Slavík, J.; Slavíková, L. Alkaloids from Papaver setigerum DC. Collect. Czechoslov. Chem. Commun. 1996, 61, 1047–1052. [Google Scholar] [CrossRef]
- Choe, S.; Lee, E.; Jin, G.-N.; Lee, Y.H.; Kim, S.Y.; Choi, H.; Chung, H.; Hwang, B.Y.; Kim, S. Genetic and chemical components analysis of Papaver setigerum naturalized in Korea. Forensic Sci. Int. 2012, 222, 387–393. [Google Scholar] [CrossRef]
- Choe, S.; Kim, S.; Lee, C.; Yang, W.; Park, Y.; Choi, H.; Chung, H.; Lee, D.; Hwang, B.Y. Species identification of Papaver by metabolite profiling. Forensic Sci. Int. 2011, 211, 51–60. [Google Scholar] [CrossRef]
- Dehghan, E.; Hosseini, B.; Badi, H.N.; Ahmadi, F.S. Application of Conventional and New Biotechnological Approaches for Improving of Morphinane Alkaloids Production. J. Med. Plants 2010, 9, 33–50. [Google Scholar]
- Shukla, S.; Singh, S.P.; Yadav, H.K.; Chatterjee, A. Alkaloid spectrum of different germplasm lines in opium poppy (Papaver somniferum L.). Genet. Resour. Crop Evol. 2006, 53, 533–540. [Google Scholar] [CrossRef]
- Gümüşçü, A.; Arslan, N.; Sarıhan, E.O. Evaluation of selected poppy (Papaver somniferum L.) lines by their morphine and other alkaloids contents. Eur. Food Res. Technol. 2008, 226, 1213–1220. [Google Scholar] [CrossRef]
- Hofman, P.J.; Menary, R.C. Losses, by leaching, of alkaloids from the capsule of the poppy (Papaver somniferum L.) during maturation. Aust. J. Agric. Res. 1984, 35, 253–261. [Google Scholar] [CrossRef]
- Hofman, P.J.; Menary, R.C. Variations in morphine, codeine and thebaine in the capsules of Papaver somniferum L. during maturation. Aust. J. Agric. Res. 1980, 31, 313–326. [Google Scholar] [CrossRef]
- Kušvíé, V. Cultivation of the Opium Poppy and Opium Production in Yugoslavia. United Nations Office on Drugs and Crime (UNODC), 1960. Available online: https://www.unodc.org/unodc/en/data-and-analysis/bulletin/bulletin_1960-01-01_2_page003.html (accessed on 27 October 2021).
- Bernáth, J.; Dános, B.; Veres, T.; Szantó, J.; Tétényi, P. Variation in alkaloid production in poppy ecotypes: Responses to different environments. Biochem. Syst. Ecol. 1988, 16, 171–178. [Google Scholar] [CrossRef]
- Matyášová, E.; Novák, J.; Stránská, I.; Hejtmánková, A.; Skalický, M.; Hejnák, V. Production of morphine and variability of significant characters of Papaver somniferum L. Plant Soil Environ. 2011, 57, 423–428. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Singh, S.P. Alkaloid profile in relation to different developmental stages of Papaver somniferum L. Phyt. Ann. Rei. Bot. 2001, 41, 87–96. [Google Scholar]
- Tittarelli, R.; Di Luca, N.M.; Pacifici, R.; Pichini, S.; Del Rio, A.; Busardò, F.P. Commentary—Heroin purity and adulteration: An updated snapshot from the Italian Early Warning System. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 4461–4466. [Google Scholar]
- United Nations Office on Drugs and Crimes (UNODC). World Drug Report 2021. United Nations Publication, Sales No. E.21.XI.8. Available online: https://www.unodc.org/unodc/en/data-and-analysis/wdr2021.html (accessed on 20 March 2022). [CrossRef]
- United Nations Office on Drugs and Crimes (UNODC). The Origins of Opium. 1949. Available online: https://www.unodc.org/unodc/en/data-and-analysis/bulletin/bulletin_1949-01-01_1_page008.html (accessed on 26 October 2021).
- Rakshit, J.N. Morphine, codeine, and narcotine in Indian opium. Analyst 1921, 46, 481b. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.; Casale, E.; Hibbert, D.B.; Panicker, S.; Robertson, J.; Vujic, S. Chemical profiling of heroin recovered from the North Korean merchant vessel Pong Su. J. Forensic Sci. 2006, 51, 597–602. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.J.; Hwang, I.K.; Kim, N.Y.; Lee, K.L.; Han, M.S.; Lee, Y.H.; Kim, M.Y.; Yang, M.S. An assessment of the utility of universal and specific genetic markers for opium poppy identification. J. Forensic Sci. 2010, 55, 1202–1208. [Google Scholar] [CrossRef]
- Mičianová, V.; Ondreičková, K.; Muchová, D.; Klčová, L.; Hudcovicová, M.; Havrlentová, M.; Mihalik, D.; Kraic, J. Forensic application of EST-derived STR markers in opium poppy. Biologia 2017, 72, 587–594. [Google Scholar] [CrossRef]
- Lohwasser, U.; Börner, A.M.F. Intraspecific taxonomy of plant genetic resources—Important for differentiation of medicinal and aromatic plants? Julius-Kühn-Archiv 2016, 453, 53–55. [Google Scholar] [CrossRef]
- Kress, W.J.; Erickson, D.L. A Two-Locus Global DNA Barcode for Land Plants: The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region. PLoS ONE 2007, 2, e508. [Google Scholar] [CrossRef] [Green Version]
- CBOL Plant Working Group; Hollingsworth, P.M.; Forrest, L.L.; Spouge, J.L.; Hajibabaei, M.; Ratnasingham, S.; van der Bank, M.; Chase, M.W.; Cowan, R.S.; Erickson, D.L.; et al. A DNA barcode for land plants. Proc. Natl. Acad. Sci. USA 2009, 106, 12794–12797. [Google Scholar] [CrossRef] [Green Version]
- Seberg, O.; Petersen, G. How many loci does it take to DNA barcode a crocus? PLoS ONE 2009, 4, e4598. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Henry, R.J.; Rossetto, M.; Wang, Y.; Chen, S. Plant DNA barcoding: From gene to genome. Biol. Rev. Camb. Philos. Soc. 2015, 90, 157–166. [Google Scholar] [CrossRef]
- Gismondi, A.; Rolfo, M.F.; Leonardi, D.; Rickards, O.; Canini, A. Identification of ancient Olea europaea L. and Cornus mas L. seeds by DNA barcoding. Comptes Rendus. Biol. 2012, 335, 472–479. [Google Scholar] [CrossRef]
- Gismondi, A.; Di Marco, G.; Martini, F.; Sarti, L.; Crespan, M.; Martínez-Labarga, C.; Rickards, O.; Canini, A. Grapevine carpological remains revealed the existence of a Neolithic domesticated Vitis vinifera L. specimen containing ancient DNA partially preserved in modern ecotypes. J. Archaeol. Sci. 2016, 69, 75–84. [Google Scholar] [CrossRef]
- Pignatti, S. Flora d’Italia; Edagricole-New Business Media: Milan, Italy, 1982. [Google Scholar]
- Gismondi, A.; Fanali, F.; Martínez Labarga, J.M.; Caiola, M.G.; Canini, A. Crocus sativus L. Genomics and different DNA barcode applications. Plant Syst. Evol. 2013, 299, 1859–1863. [Google Scholar] [CrossRef]
- Gismondi, A.; Di Marco, G.; Delorenzo, M.; Canini, A. Upgrade of Castanea sativa (Mill.) genetic resources by sequencing of barcode markers. J. Genet. 2015, 94, 519–524. [Google Scholar] [CrossRef]
- Schiff, P.L. Opium and its alkaloids. Am. J. Pharm. Educ. 2002, 66, 186–194. [Google Scholar]
- Annett, H.E. Factors influencing Alkaloidal Content and Yield of Latex in the Opium Poppy (Papaver somniferum L.). Biochem. J. 1920, 14, 618–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remberg, B.; Sterrantino, A.F.; Artner, R.; Janitsch, C.; Krenn, L. Science in Drug Control: The Alkaloid Content of Afghan Opium. Chem. Biodivers. 2008, 5, 1770–1779. [Google Scholar] [CrossRef] [PubMed]
- Dittbrenner, A.; Lohwasser, U.; Mock, H.P.; Börner, A. Molecular and phytochemical studies of Papaver somniferum in the context of infraspecific classification. Acta Hortic. 2008, 799, 81–88. [Google Scholar] [CrossRef]
- Cameron, S.A.; Quicke, D.L.J. Principles and Techniques of Contemporary Taxonomy. Syst. Biol. 1995, 44, 120. [Google Scholar] [CrossRef]
- Morton, B.R. The influence of neighboring base composition on substitutions in plant chioroplast coding sequences. Mol. Biol. Evol. 1997, 14, 189–194. [Google Scholar] [CrossRef] [Green Version]
Alkaloid | Retention Time (minutes) | Ions |
---|---|---|
Meconin | 7.54 | 165-194(80)-147(70)-176(40) |
Hydrocotarnine | 8.00 | 220-178(70)-221(50)-205(30) |
O-demethyl-hydrocotarnine | 8.32 | 164-206(90)-207(50)-106(20) |
Codeine | 11.97 | 299-162(40)-229(30)-115(20) |
Neopine | 12.03 | 299-254(90)-284(20)-255(30) |
Morphine | 12.43 | 285-162(30)-215(30)-124(20) |
Thebaol | 12.47 | 254-239(90)-139(60)-127(40) |
Thebaine | 12.71 | 311-296(70)-268-(20)327(10) |
Papaverine 1,2,3,4-tetrahydro- | 12.78 | 192-176(10)-206(10)-343(5) |
Laudanosine | 13.35 | 206-190(20)-207(20) |
Reticuline | 13.82 | 192-177(25)-193(10) |
Ethaverine (ISTD) | 14.99 | 366-395(60)-367(30)-394(25) |
Noscapine | 17.38 | 220-205(20)-221(20) |
matK SEQUENCE (614 bp) | |
AGCCGGCTTACTAATGGGATGCCCTGAAACGTTACAAAATTTCGTTTTAGCCAACGACCCAACCAAAGAAATAATTGGGACTTTGGTATCAAACTTCTTAATACAAATATCCATTATAAATGTACTTTCTATCATTTGACTCCTTACCACCGAAGGGTTAAGTCGTACACTTGCAAGATAGCTCAAAAGCTCGAGGGAATGATTGGATAATTTATTTATCTTAATTCTATCTGGTTGAGACCACAAGGAAAAATTACATTGCCATAAATTTACAAGATTCCATTTCCATTTATTCATCAAAAGAGTACTTCCCTTTGAAGCCAGAATTGATTTTCCTTGATATCTGACATAATGCATAAAAGGATCCTTGAACAACCATAGGAAGGTCTGAAAATCATTACTAAACACTACTGCAGGATGCTCCATTTTTCCATAGAAATTTATTCGCTCAAGAAGGATTCTAAAAGATGTTGATCGTAAACGAAAAGATTGTTTACGAAGAAAAACTAATATGGATTCGCATTCATATACATGAGAATTATATAGGAAGAAGAAAAAGCGTTGATTCTCCTTTGAAAAAAAAGGGAAATTGCCTTTATATTTTGAAAGTATTA | |
GenBank best results (max score: 1077, total score: 1077, query cover: 98%, E-value: 0.0, Identity: 99%) | |
Description | Accession |
Papaver rhoeas | NC_037831.1 |
Papaver somniferum voucher QRI 504 | MH287273.1 |
Papaver rhoeas | MF943221.1 |
Papaver somniferum voucher JK 028 | MG221004.1 |
Papaver rhoeas voucher Hosam00241 | KX783729.1 |
Papaver somniferum | KU204905.1 |
Papaver somniferum voucher SBB-0468 | JN114767.1 |
Papaver rhoeas subsp. rhoeas | HE966959.1 |
Papaver rhoeas isolate NMW601 | JN896019.1 |
Papaver somniferum isolate NMW602 | JN896016.1 |
Papaver rhoeas isolate NMW3961 | JN895411.1 |
Papaver somniferum isolate NMW3962 | JN895410.1 |
Papaver somniferum isolate NMW3963 | JN895409.1 |
Papaver rhoeas isolate NMW3959 | JN894132.1 |
Papaver rhoeas isolate NMW5261 | JN893897.1 |
Papaver somniferum subsp. setigerum | HM851028.1 |
Papaver rhoeas voucher USDA PI533721 | GQ248175.1 |
Papaver rhoeas | FJ626525.1 |
rbcL SEQUENCE (546 bp) | |
CCTGACGAGATGCTCCTCAACCTGGAGTTCCACCTGAGGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGAAGATGCTACGACATCGAGCCCGTTGCTGGAGAAGACAATCAATATATTTGTTATGTAGCTTATCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATCGTGGGTAATGTATTTGGGTTCAAAGCGCTTCGTGCTCTACGTCTGGAGGATCTGCGAATTCCTGTTGCTTATGTTAAAACTTTCCAAGGACCACCTCACGGTATCCAAGTTGAAAGAGATAAATTGAATAAGTATGGTCGTCCCCTATTGGGATGTACTATTAAACCAAAATTGGGGGTTATCTGCTAAGAACTACGGTAGGGCGGTTTATGAATGTCTACGTGGTGCACTTTGATTTTTACCAAGGGATGATGAAAAACGTGAACTCACAACCCTTTTATGCGTTGGAGAGATCGATTTC | |
GenBank best results (max score: 931, total score: 931, query cover: 99%, E-value: 0.0, Identity: 98%) | |
Description | Accession |
Papaver somniferum voucher QRI 509 | MH287278.1 |
Papaver somniferum | KU204905.1 |
Papaver somniferum subsp. setigerum | HM850231.1 |
trnH-psbA SEQUENCE (312 bp) | |
TATATTTAATTTCTATATCACTCAAGGTTAGATATTTGAGTAGTTATCTATTAACTTTATTAATACTTAAATAAGTATAAGTATGTTGTACAAAAAAAGTAAATCCTTTCAATAAAAGGTACACTTTTTTATGGAAATAAAACAATACTAAAACTAAATGAAGGAGCAATACCGACCCTCTTATTCTATCAAGAGGGTCGGTATTGCTCCTTCAACTTCAACGCTTCATATACACTAAGACGGAAGTCTTATCCGTTTGTGGATGGAGCTTCAACAGCAGCTAGGTCTAGAGGGAAGTTGTGAGCATTACGT | |
GenBank best results (max score: 564, total score: 564, query cover: 99%, E-value: 7e-157, Identity: 99%) | |
Description | Accession |
Papaver somniferum | KU204905.1 |
Papaver somniferum | JN584668.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tittarelli, R.; Gismondi, A.; Di Marco, G.; Mineo, F.; Vernich, F.; Russo, C.; Marsella, L.T.; Canini, A. Forensic Application of Genetic and Toxicological Analyses for the Identification and Characterization of the Opium Poppy (Papaver somniferum L.). Biology 2022, 11, 672. https://doi.org/10.3390/biology11050672
Tittarelli R, Gismondi A, Di Marco G, Mineo F, Vernich F, Russo C, Marsella LT, Canini A. Forensic Application of Genetic and Toxicological Analyses for the Identification and Characterization of the Opium Poppy (Papaver somniferum L.). Biology. 2022; 11(5):672. https://doi.org/10.3390/biology11050672
Chicago/Turabian StyleTittarelli, Roberta, Angelo Gismondi, Gabriele Di Marco, Federico Mineo, Francesca Vernich, Carmelo Russo, Luigi Tonino Marsella, and Antonella Canini. 2022. "Forensic Application of Genetic and Toxicological Analyses for the Identification and Characterization of the Opium Poppy (Papaver somniferum L.)" Biology 11, no. 5: 672. https://doi.org/10.3390/biology11050672
APA StyleTittarelli, R., Gismondi, A., Di Marco, G., Mineo, F., Vernich, F., Russo, C., Marsella, L. T., & Canini, A. (2022). Forensic Application of Genetic and Toxicological Analyses for the Identification and Characterization of the Opium Poppy (Papaver somniferum L.). Biology, 11(5), 672. https://doi.org/10.3390/biology11050672