The Impact of Cropland Abandonment of Post-Soviet Countries on the Terrestrial Carbon Cycle Based on Optimizing the Cropland Distribution Map
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Use Data
2.3. Dynamic Vegetation Model
3. Results
3.1. Optimized Cropland Area and Distribution
3.2. Land Cover Conversion between Croplands and Natural Vegetation
3.3. Vegetation and Soil Carbon Pools
4. Discussion
5. Conclusions
- (1)
- Between 1990 and 2017, the organic carbon sink in the RUB region increased by 9.23 GtC, of which 0.99 GtC was contributed by the cropland abandonment process. In other words, the abandoned area contributed 0.04 GtC per year to the net carbon sink growth of the area.
- (2)
- Most of the carbon sinks contributed by the cropland abandonment process exist mostly in vegetation, where abandoned cropland is replaced by forests, which is the main factor for the growth of the vegetation carbon pool in this region. The soil carbon pool contributes a small part of the above net carbon sink, and it takes a long time for the soil to exceed the accumulation rate of the fixed scenario with no cropland change.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houghton, R.A. Land-use change and the carbon cycle. Glob. Chang. Biol. 1995, 1, 275–287. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [Green Version]
- Watson, R.T.; Noble, I.R.; Bolin, B.; Ravindranath, N.H.; Verardo, D.J.; Dokken, D.J. Land Use, Land-Use Change, and Forestry: A Special Report of the IPCC; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Goldewijk, K.K.; Ramankutty, N. Land cover change over the last three centuries due to human activities: The availability of new global data sets. Geojournal 2004, 61, 335–344. [Google Scholar] [CrossRef]
- Ramankutty, N.; Foley, J.A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob. Biogeochem. Cycles 1999, 13, 997–1027. [Google Scholar] [CrossRef]
- Goldewijk, K.K. Three Centuries of Global Population Growth: A Spatial Referenced Population (Density) Database for 1700–2000. Popul. Environ. 2005, 26, 343–367. [Google Scholar] [CrossRef]
- Baumann, M.; Kuemmerle, T.; Elbakidze, M.; Ozdogan, M.; Radeloff, V.C.; Keuler, N.S.; Prishchepov, A.V.; Kruhlov, I.; Hostert, P. Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy 2011, 28, 552–562. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S.; et al. Spatial patterns and driving forces of land use change in China in the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Hostert, P.; Kuemmerle, T.; Prishchepov, A.; Sieber, A.; Lambin, E.F.; Radeloff, V.C. Rapid land use change after socio-economic disturbances: The collapse of the Soviet Union versus Chernobyl. Environ. Res. Lett. 2011, 6, 045201. [Google Scholar] [CrossRef]
- Turnock, D. Privatization in rural eastern Europe: The process of restitution and restructuring/edited by David Turnock. Privatization in rural Eastern Europe: The process of restitution and restructuring/edited by David Turnock. Slav. Rev. 1998, 59, 889–890. [Google Scholar]
- Lerman, Z.; Csaki, C.; Feder, G. Evolving farm structures and land use patterns in former socialist countries. Q. J. Int. Agric. 2004, 43, 309–335. [Google Scholar]
- Trzeciak-Duval, A. A decade of transition in central and eastern European agriculture. Eur. Rev. Agric. Econ. 1999, 26, 283–304. [Google Scholar] [CrossRef]
- Wegren, S. Agricultural privatization, land reform and farm restructuring in central and eastern Europe. Comp. Econ. Stud. 1998, 40, 137–139. [Google Scholar] [CrossRef]
- Schierhorn, F.; Müller, D.; Beringer, T.; Prishchepov, A.V.; Kuemmerle, T.; Balmann, A. Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus. Comp. Econ. Stud. 2013, 27, 1175–1185. [Google Scholar] [CrossRef]
- Kauppi, P.E.; Ausubel, J.H.; Fang, J.; Mather, A.S.; Sedjo, R.A.; Waggoner, P.E. Returning forests analyzed with the forest identity. Proc. Natl. Acad. Sci. USA 2006, 103, 17574–17579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyfroidt, P.; Lambin, E.F. Global forest transition: Prospects for an end to deforestation. Annu. Rev. Environ. Resour. 2011, 36, 343–371. [Google Scholar] [CrossRef]
- Rudel, T.K.; Coomes, O.T.; Moran, E.; Achard, F.; Angelsen, A.; Xu, J.; Lambin, E. Forest transitions: Towards a global understanding of land use change. Glob. Environ. Chang. 2005, 15, 23–31. [Google Scholar] [CrossRef]
- Silver, W.L.; Ostertag, R.; Lugo, A.E. The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands. Restor. Ecol. 2020, 8, 394–407. [Google Scholar] [CrossRef]
- Grau, H.R.; Aide, T.M.; Zimmerman, J.K.; Thomlinson, J.R. Trends and scenarios of the carbon budget in postagricultural Puerto Rico (1936–2060). Glob. Chang. Biol. 2015, 10, 1163–1179. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Geetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Sieber, A.; Kuemmerle, T.; Prishchepov, A.V.; Wendland, K.J.; Baumann, M.; Radeloff, V.C.; Baskin, L.M.; Hostert, P. Landsat-based mapping of post-Soviet land-use change to assess the effectiveness of the Oksky and Mordovsky protected areas in European Russia. Remote Sens. Environ. 2013, 133, 38–51. [Google Scholar] [CrossRef]
- Estel, S.; Kuemmerle, T.; Alcántara, C.; Levers, C.; Prishchepov, A.; Hostert, P. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sens. Environ. 2015, 163, 312–325. [Google Scholar] [CrossRef]
- Lambin, E.; Veldkamp, A. Key findings of LUCC on its research questions. Glob. Chang. Newsl. 2005, 63, 12–14. [Google Scholar]
- Goldewijk, K.K. Estimating global land use change over the past 300 years: The HYDE Database. Glob. Biogeochem. Cycles 2001, 15, 417–433. [Google Scholar] [CrossRef]
- Ramankutty, N.; Foley, J.A. Characterizing patterns of global land use: An analysis of global croplands data. Glob. Biogeochem. Cycles 1998, 12, 667–685. [Google Scholar] [CrossRef]
- Lesiv, M.; Schepaschenko, D.; Moltchanova, E.; Bun, R.; Dürauer, M.; Prishchepov, A.V.; Schierhorn, F.; Estel, S.; Kuemmerle, T.; Alcántara, C.; et al. Spatial distribution of arable and abandoned land across former Soviet Union countries. Sci. Data 2018, 5, 180056. [Google Scholar] [CrossRef] [PubMed]
- Goldewijk, K.K.; Beusen, A.; Doelman, J.; Stehfest, E. Anthropogenic land use estimates for the Holocene—HYDE 3.2. Earth Syst. Sci. Data 2017, 9, 927–953. [Google Scholar] [CrossRef] [Green Version]
- Definitions and Standards Used in FAOSTAT. Available online: https://www.fao.org/faostat/en/#definitions (accessed on 28 October 2021).
- Cramer, W.; Bondeau, A.; Woodward, F.I.; Prentice, I.C.; Betts, R.A.; Brovkin, V.; Cox, P.M.; Fisher, V.; Foley, J.A.; Friend, A.D.; et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Glob. Chang. Biol. 2001, 7, 357–373. [Google Scholar] [CrossRef] [Green Version]
- Zeng, N.; Zhao, F.; Collatz, G.J.; Kalnay, E.; Salawitch, R.J.; West, T.O.; Guanter, L. Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude. Nature 2014, 515, 394–397. [Google Scholar] [CrossRef]
- Sitch, S.; Friedlingstein, P.; Gruber, N.; Jones, S.D.; Murray-Tortarolo, G.; Ahlström, A.; Doney, S.C.; Graven, H.; Heinze, C.; Huntingford, C.; et al. Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades. Biogeosci. 2015, 12, 653–679. [Google Scholar] [CrossRef] [Green Version]
- Collatz, G.J.; Berry, J.A.; Clark, J.S. Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: Present, past, and future. Oecologia 1998, 114, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Vuichard, N.; Ciais, P.; Belelli, L.; Smith, P.; Valentini, R. Carbon sequestration due to the abandonment of agriculture in the former USSR since 1990. Glob. Biogeochem. Cycles 2008, 22, GB4018. [Google Scholar] [CrossRef]
- Anpilogova, D.; Pakina, A. Assessing ecosystem services of abandoned agricultural lands: A case study in the forested zone of European Russia. One Ecosyst. 2022, 7, e77969. [Google Scholar] [CrossRef]
- Lyuri, D.I.; Goryachkin, S.V.; Karavaeva, N.A.; Denisenko, E.A.; Nefedova, T.G. Dynamics of Agricultural Lands of Russia in XX Century and Postagrogenic Restoration of Vegetation and Soils; GEOS: Moscow, Russia, 2010; 416p, ISBN 978-5-89118-500-5. (In Russian) [Google Scholar]
- Lu, F.; Hu, H.; Sun, W.; Zhu, J.; Liu, G.; Zhou, W.; Zhang, Q.; Shi, P.; Liu, X.; Wu, X.; et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, X.; Zhang, T.; Shao, C. Afforestation increases ecosystem productivity and carbon storage in China during the 2000s. Agric. For. Meteorol. 2021, 296, 108227. [Google Scholar] [CrossRef]
- Country-Level Arable Land and Land Under Permanent Crops Statistics of the Russian Federation from FAO. Available online: https://www.fao.org/faostat/en/#country/185 (accessed on 21 October 2019).
- Historical Database of the Global Environment. Available online: https://themasites.pbl.nl/tridion/en/themasites/hyde (accessed on 23 November 2020).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Chen, T.; Zeng, N.; Cai, Q.; Zhao, F.; Han, P.; Yan, Q. The Impact of Cropland Abandonment of Post-Soviet Countries on the Terrestrial Carbon Cycle Based on Optimizing the Cropland Distribution Map. Biology 2022, 11, 620. https://doi.org/10.3390/biology11050620
Zhou S, Chen T, Zeng N, Cai Q, Zhao F, Han P, Yan Q. The Impact of Cropland Abandonment of Post-Soviet Countries on the Terrestrial Carbon Cycle Based on Optimizing the Cropland Distribution Map. Biology. 2022; 11(5):620. https://doi.org/10.3390/biology11050620
Chicago/Turabian StyleZhou, Shengjie, Tiexi Chen, Ning Zeng, Qixiang Cai, Fang Zhao, Pengfei Han, and Qingyun Yan. 2022. "The Impact of Cropland Abandonment of Post-Soviet Countries on the Terrestrial Carbon Cycle Based on Optimizing the Cropland Distribution Map" Biology 11, no. 5: 620. https://doi.org/10.3390/biology11050620
APA StyleZhou, S., Chen, T., Zeng, N., Cai, Q., Zhao, F., Han, P., & Yan, Q. (2022). The Impact of Cropland Abandonment of Post-Soviet Countries on the Terrestrial Carbon Cycle Based on Optimizing the Cropland Distribution Map. Biology, 11(5), 620. https://doi.org/10.3390/biology11050620