Interleukin-6-Production Is Responsible for Induction of Hepatic Synthesis of Several Chemokines as Acute-Phase Mediators in Two Animal Models: Possible Significance for Interpretation of Laboratory Changes in Severely Ill Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Induction of APR and Harvesting Blood and Liver Tissue
2.2. Enzyme-Linked Immunosorbent Assay (ELISA) for IL6 and Chemokines
2.3. RNA Isolation and Real-Time-PCR
2.4. Protein Isolation and Western Blot Analysis
2.5. Immunohistochemical Study
3. Results
3.1. Measurement of Serum Cytokine and Chemokines Level
3.2. Study of Gene Expression of Chemokines in TO-Treated Rat Liver by RT-PCR
3.3. Changes in Gene Expression Levels of Chemokine in Wild-Type (WT) and IL6-Knock-Out (KO) in TO-Injected Mice
- A.
- Chemokine-genes are constitutively expressed in liver tissue at different magnitudes;
- B.
- Changes in the expression of various chemokines in the liver can be divided into three groups:
- (a)
- IL6-strongly upregulated (up to 150-fold) chemokines: CXCL1 and CXCL8 (independent of the constitutive amount of their mRNA);
- (b)
- IL6-moderately upregulated chemokines: CXCL5 and CXCL2;
- (c)
- IL6-unaffected chemokines: CXCL10 and CCL2.
3.4. Changes in Hepatic Gene Expression Level of Chemokines in WT and IL6-KO LPS-Injected Mice (Intraperitoneal)
3.5. Detection and Change in Chemokines and STAT-3-Protein Levels in Liver Tissue of WT and IL6-KO Mice after Intramuscular TO or Intraperitoneal LPS Administration
3.6. Immunohistochemical Detection of Neutrophil Granulocytes in the Rat Liver after Intramuscular TO-Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramadori, G.; Christ, B. Cytokines and the Hepatic Acute-Phase Response. Semin. Liver Dis. 1999, 19, 141–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisinger, F.; Patzelt, J.; Langer, H.F. The Platelet Response to Tissue Injury. Front. Med. 2018, 5, 317. [Google Scholar] [CrossRef] [Green Version]
- Ramadori, G.; Moriconi, F.; Malik, I.; Dudas, J. Physiology and pathophysiology of liver inflammation, damage and repair. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2008, 59, 107–117. [Google Scholar]
- Moshage, H. Cytokines and the hepatic acute phase response. J. Pathol. 1997, 181, 257–266. [Google Scholar] [CrossRef]
- Gruys, E.; Toussaint, M.J.M.; Niewold, T.A.; Koopmans, S.J. Acute phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. B 2005, 6, 1045–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whicher, J.T.; Chambers, R.E.; Higginson, J.; Nashef, L.; Higgins, P.G. Acute phase response of serum amyloid A protein and C reactive protein to the common cold and influenza. J. Clin. Pathol. 1985, 38, 312–316. [Google Scholar] [CrossRef] [Green Version]
- Nemeth, E.; Valore, E.V.; Territo, M.; Schiller, G.; Lichtenstein, A.; Ganz, T. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 2003, 101, 2461–2463. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, G.; Sial, G.Z.K.; Ramadori, P.; Dudas, J.; Batusic, D.S.; Ramadori, G. Changes of hepatic lactoferrin gene expression in two mouse models of the acute phase reaction. Int. J. Biochem. Cell Biol. 2011, 43, 1822–1832. [Google Scholar] [CrossRef]
- Sultan, S.; Pascucci, M.; Ahmad, S.; Malik, I.A.; Bianchi, A.; Ramadori, P.; Ahmad, G.; Ramadori, G. LIPOCALIN-2 Is a Major Acute-Phase Protein in a Rat and Mouse Model of Sterile Abscess. Shock 2012, 37, 191–196. [Google Scholar] [CrossRef]
- Chi, Y.; Ge, Y.; Wu, B.; Zhang, W.; Wu, T.; Wen, T.; Liu, J.; Guo, X.; Huang, C.; Jiao, Y.; et al. Serum Cytokine and Chemokine Profile in Relation to the Severity of Coronavirus Disease 2019 in China. J. Infect. Dis. 2020, 222, 746–754. [Google Scholar] [CrossRef]
- Coperchini, F.; Chiovato, L.; Croce, L.; Magri, F.; Rotondi, M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020, 53, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Kox, M.; Waalders, N.J.B.; Kooistra, E.J.; Gerretsen, J.; Pickkers, P. Cytokine Levels in Critically Ill Patients with COVID-19 and Other Conditions. JAMA 2020, 324, 1565–1567. [Google Scholar] [CrossRef]
- Jafarzadeh, A.; Chauhan, P.; Saha, B.; Jafarzadeh, S.; Nemati, M. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life Sci. 2020, 257, 118102. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jiang, M.; Chen, X.; Montaner, L.J. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J. Leukoc. Biol. 2020, 108, 17–41. [Google Scholar] [CrossRef]
- Lucas, C.; Wong, P.; Klein, J.; Castro, T.B.R.; Silva, J.; Sundaram, M.; Ellingson, M.K.; Mao, T.; Oh, J.E.; Israelow, B.; et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020, 584, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Hue, S.; Beldi-Ferchiou, A.; Bendib, I.; Surenaud, M.; Fourati, S.; Frapard, T.; Rivoal, S.; Razazi, K.; Carteaux, G.; Delfau-Larue, M.-H.; et al. Uncontrolled Innate and Impaired Adaptive Immune Responses in Patients with COVID-19 Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2020, 202, 1509–1519. [Google Scholar] [CrossRef] [PubMed]
- Zlotnik, A.; Yoshie, O. Chemokines: A New Classification System and Their Role in Immunity. Immunity 2000, 12, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Bone-Larson, C.L.; Simpson, K.J.; Colletti, L.M.; Lukacs, N.W.; Chen, S.-C.; Lira, S.; Kunkel, S.L.; Hogaboam, C.M. The role of chemokines in the immunopathology of the liver. Immunol. Rev. 2000, 177, 8–20. [Google Scholar] [CrossRef]
- Karlmark, K.R.; Wasmuth, H.E.; Trautwein, C.; Tacke, F. Chemokine-directed immune cell infiltration in acute and chronic liver disease. Expert Rev. Gastroenterol. Hepatol. 2008, 2, 233–242. [Google Scholar] [CrossRef]
- Malik, I.A.; Moriconi, F.; Sheikh, N.; Naz, N.; Khan, S.; Dudas, J.; Mansuroglu, T.; Hess, C.F.; Rave-Fränk, M.; Christiansen, H.; et al. Single-Dose Gamma-Irradiation Induces Up-Regulation of Chemokine Gene Expression and Recruitment of Granulocytes into the Portal Area but Not into Other Regions of Rat Hepatic Tissue. Am. J. Pathol. 2010, 176, 1801–1815. [Google Scholar] [CrossRef] [Green Version]
- Amanzada, A.; Moriconi, F.; Mansuroglu, T.; Cameron, S.; Ramadori, G.; Malik, I.A. Induction of chemokines and cytokines before neutrophils and macrophage recruitment in different regions of rat liver after TAA administration. Lab. Investig. 2013, 94, 235–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Filippo, K.; Henderson, R.B.; Laschinger, M.; Hogg, N. Neutrophil Chemokines KC and Macrophage-Inflammatory Protein-2 Are Newly Synthesized by Tissue Macrophages Using Distinct TLR Signaling Pathways. J. Immunol. 2008, 180, 4308–4315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheikh, N.; Tron, K.; Dudas, J.; Ramadori, G. Cytokine-induced neutrophil chemoattractant-1 is released by the noninjured liver in a rat acute-phase model. Lab. Investig. 2006, 86, 800–814. [Google Scholar] [CrossRef] [Green Version]
- Ramadori, P.; Ahmad, G.; Ramadori, G. Cellular and molecular mechanisms regulating the hepatic erythropoietin expression during acute-phase response: A role for IL-6. Lab. Investig. 2010, 90, 1306–1324. [Google Scholar] [CrossRef] [PubMed]
- Malik, G.; Wilting, J.; Hess, C.F.; Ramadori, G.; Malik, I.A. PECAM -1 modulates liver damage induced by synergistic effects of TNF-α and irradiation. J. Cell. Mol. Med. 2019, 23, 3336–3344. [Google Scholar] [CrossRef] [PubMed]
- Santos, I.; Colaço, H.G.; Neves-Costa, A.; Seixas, E.; Velho, T.R.; Pedroso, D.; Barros, A.; Martins, R.; Carvalho, N.; Payen, D.; et al. CXCL5-mediated recruitment of neutrophils into the peritoneal cavity of Gdf15-deficient mice protects against abdominal sepsis. Proc. Natl. Acad. Sci. USA 2020, 117, 12281–12287. [Google Scholar] [CrossRef] [PubMed]
- Ramadori, G. Hypoalbuminemia: An Underestimated, Vital Characteristic of Hospitalized COVID-19 Positive Patients? Hepatoma Res. 2020, 6, 28. [Google Scholar] [CrossRef]
- Baruch, Y.; Neubauer, K.; Ritzel, A.; Wilfling, T.; Lorf, T.; Ramadori, G. Von Willebrand gene expression in damaged human liver. Hepatogastroenterology 2004, 51, 684–688. [Google Scholar]
- Hummel, M.; Czerlinski, S.; Friedel, N.; Liebenthal, C.; Hasper, D.; von Baehr, R.; Hetzer, R.; Volk, H.-D. Interleukin-6 and interleukin-8 concentrations as predictors of outcome in ventricular assist device patients before heart transplantation. Crit. Care Med. 1994, 22, 448–454. [Google Scholar] [CrossRef]
- Patzwahl, R.; Meier, V.; Ramadori, G.; Mihm, S. Enhanced Expression of Interferon-Regulated Genes in the Liver of Patients with Chronic Hepatitis C Virus Infection: Detection by Suppression-Subtractive Hybridization. J. Virol. 2001, 75, 1332–1338. [Google Scholar] [CrossRef] [Green Version]
- Mihm, S.; Schweyer, S.; Ramadori, G. Expression of the chemokine IP-10 correlates with the accumulation of hepatic IFN-? and IL-18 mRNA in chronic hepatitis C but not in hepatitis B. J. Med Virol. 2003, 70, 562–570. [Google Scholar] [CrossRef]
- Schett, G.; Neurath, M.F. Resolution of chronic inflammatory disease: Universal and tissue-specific concepts. Nat. Commun. 2018, 9, 3261. [Google Scholar] [CrossRef]
- Neubauer, K.; Lindhorst, A.; Tron, K.; Ramadori, G.; Saile, B. Decrease of PECAM-1-gene-expression induced by proinflammatory cytokines IFN-γ and IFN-α is reversed by TGF-β in sinusoidal endothelial cells and hepatic mononuclear phagocytes. BMC Physiol. 2008, 8, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olesen, J.; Biensø, R.S.; Meinertz, S.; Van Hauen, L.; Rasmussen, S.M.; Gliemann, L.; Plomgaard, P.; Pilegaard, H. Impact of training status on LPS-induced acute inflammation in humans. J. Appl. Physiol. 2015, 118, 818–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrone, L.; Bondet, V.; Vanini, V.; Cuzzi, G.; Palmieri, F.; Palucci, I.; Delogu, G.; Ciccosanti, F.; Fimia, G.M.; Blauenfeldt, T.; et al. First description of agonist and antagonist IP-10 in urine of patients with active TB. Int. J. Infect. Dis. 2019, 78, 15–21. [Google Scholar] [CrossRef]
- Vazirinejad, R.; Ahmadi, Z.; Kazemi Arababadi, M.; Hassanshahi, G.; Kennedy, D. The Biological Functions, Structure and Sources of CXCL10 and Its Outstanding Part in the Pathophysiology of Multiple Sclerosis. Neuroimmunomodulation 2014, 21, 322–330. [Google Scholar] [CrossRef]
- Dufour, J.H.; Dziejman, M.; Liu, M.T.; Leung, J.H.; Lane, T.E.; Luster, A.D. IFN-γ-Inducible Protein 10 (IP-10; CXCL10)-Deficient Mice Reveal a Role for IP-10 in Effector T Cell Generation and Trafficking. J. Immunol. 2002, 168, 3195–3204. [Google Scholar] [CrossRef] [Green Version]
- Neville, L.F.; Mathiak, G.; Bagasra, O. The immunobiology of interferon-gamma inducible protein 10 kD (IP-10): A novel, pleiotropic member of the C-X-C chemokine superfamily. Cytokine Growth Factor Rev. 1997, 8, 207–219. [Google Scholar] [CrossRef]
- Nabavizadeh, N.; Mitin, T.; Dawson, L.; Hong, T.S.; Thomas, C.R. Stereotactic body radiotherapy for patients with hepatocellular carcinoma and intermediate grade cirrhosis. Lancet Oncol. 2017, 18, e192. [Google Scholar] [CrossRef] [Green Version]
- Pastor, L.; Casellas, A.; Rupérez, M.; Carrillo, J.; Maculuve, S.; Jairoce, C.; Paredes, R.; Blanco, J.; Naniche, D. Interferon-γ–Inducible Protein 10 (IP-10) as a Screening Tool to Optimize Human Immunodeficiency Virus RNA Monitoring in Resource-Limited Settings. Clin. Infect. Dis. 2017, 65, 1670–1675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayney, M.S.; Henriquez, K.M.; Barnet, J.H.; Ewers, T.; Champion, H.M.; Flannery, S.; Barrett, B. Serum IFN-γ-induced protein 10 (IP-10) as a biomarker for severity of acute respiratory infection in healthy adults. J. Clin. Virol. 2017, 90, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Vaninov, N. In the eye of the COVID-19 cytokine storm. Nat. Rev. Immunol. 2020, 20, 277. [Google Scholar] [CrossRef]
- Yang, Y.; Shen, C.; Li, J.; Yuan, J.; Wei, J.; Huang, F.; Wang, F.; Li, G.; Li, Y.; Xing, L.; et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. J. Allergy Clin. Immunol. 2020, 146, 119–127.e4. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Melo, D.; Nilsson-Payant, B.E.; Liu, W.-C.; Uhl, S.; Hoagland, D.; Møller, R.; Jordan, T.X.; Oishi, K.; Panis, M.; Sachs, D.; et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 2020, 181, 1036–1045.e9. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-Y. The severe COVID-19: A sepsis induced by viral infection? And its immunomodulatory therapy. Chin. J. Traumatol. 2020, 23, 190–195. [Google Scholar] [CrossRef]
- Joynt, G.M.; Wu, W.K. Understanding COVID-19: What does viral RNA load really mean? Lancet Infect. Dis. 2020, 20, 635–636. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Yan, L.; Wang, N.; Yang, S.; Wang, L.; Tang, Y.; Gao, G.; Wang, S.; Ma, C.; Xie, R.; et al. Quantitative Detection and Viral Load Analysis of SARS-CoV-2 in Infected Patients. Clin. Infect. Dis. 2020, 71, 793–798. [Google Scholar] [CrossRef] [Green Version]
- Lescure, F.-X.; Bouadma, L.; Nguyen, D.; Parisey, M.; Wicky, P.-H.; Behillil, S.; Gaymard, A.; Bouscambert-Duchamp, M.; Donati, F.; Le Hingrat, Q.; et al. Clinical and virological data of the first cases of COVID-19 in Europe: A case series. Lancet Infect. Dis. 2020, 20, 697–706, Correction in Lancet Infect. Dis. 2020, 20, e148. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, L.; Sang, L.; Ye, F.; Ruan, S.; Zhong, B.; Song, T.; Alshukairi, A.N.; Chen, R.; Zhang, Z.; et al. Kinetics of viral load and antibody response in relation to COVID-19 severity. J. Clin. Investig. 2020, 130, 5235–5244. [Google Scholar] [CrossRef]
- Pujadas, E.; Chaudhry, F.; McBride, R.; Richter, F.; Zhao, S.; Wajnberg, A.; Nadkarni, G.; Glicksberg, B.S.; Houldsworth, J.; Cordon-Cardo, C. SARS-CoV-2 viral load predicts COVID-19 mortality. Lancet Respir. Med. 2020, 8, e70. [Google Scholar] [CrossRef]
- Beasley, M.B. Acute lung injury—From cannabis to COVID. Mod. Pathol. 2022, 35, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Konopka, K.E.; Nguyen, T.; Jentzen, J.M.; Rayes, O.; Schmidt, C.J.; Wilson, A.M.; Farver, C.F.; Myers, J.L. Diffuse alveolar damage (DAD) resulting from coronavirus disease 2019 Infection is Morphologically Indistinguishable from Other Causes of DAD. Histopathology 2020, 77, 570–578. [Google Scholar] [CrossRef] [PubMed]
- Hopfer, H.; Herzig, M.C.; Gosert, R.; Menter, T.; Hench, J.; Tzankov, A.; Hirsch, H.H.; Miller, S.E. Hunting coronavirus by transmission electron microscopy—A guide to SARS-CoV-2-associated ultrastructural pathology in COVID-19 tissues. Histopathology 2020, 78, 358–370. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.C. Acute Respiratory Distress Syndrome as an Organ Phenotype of Vascular Microthrombotic Disease: Based on Hemostatic Theory and Endothelial Molecular Pathogenesis. Clin. Appl. Thromb. 2019, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramadori, G.; Sipe, J.D.; Colten, H.R. Expression and regulation of the murine serum amyloid A (SAA) gene in extrahepatic sites. J. Immunol. 1985, 135, 3645–3647. [Google Scholar]
- Salem, F.; Li, X.Z.; Hindi, J.; Casablanca, N.M.; Zhong, F.; El Jamal, S.M.; Al Rasheed, M.R.H.; Li, L.; Lee, K.; Chan, L.; et al. Activation of STAT3 signaling pathway in the kidney of COVID-19 patients. J. Nephrol. 2021, 9, 1–9. [Google Scholar] [CrossRef]
- Can, F.K.; Özkurt, Z.; Öztürk, N.; Sezen, S. Effect of IL-6, IL-8/CXCL8, IP-10/CXCL 10 levels on the severity in COVID 19 infection. Int. J. Clin. Pr. 2021, 75, e14970. [Google Scholar] [CrossRef]
- Nikolich-Zugich, J.; Knox, K.S.; Rios, C.T.; Natt, B.; Bhattacharya, D.; Fain, M.J. SARS-CoV-2 and COVID-19 in older adults: What we may expect regarding pathogenesis, immune responses, and outcomes. GeroScience 2020, 42, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Guerrero, S.; Ramírez-Pacheco, A.; Rocha-Ramírez, L.; Hernández-Pliego, G.; Eguía-Aguilar, P.; Escobar-Sánchez, M.; Reyes-López, A.; Juárez-Villegas, L.; Sienra-Monge, J. Association of Genetic Polymorphisms and Serum Levels of IL-6 and IL-8 with the Prognosis in Children with Neuroblastoma. Cancers 2021, 13, 529. [Google Scholar] [CrossRef]
- Lu, Y.-R.; Rao, Y.-B.; Mou, Y.-J.; Chen, Y.; Lou, H.-F.; Zhang, Y.; Zhang, D.-X.; Xie, H.-Y.; Hu, L.-W.; Fang, P. High concentrations of serum interleukin-6 and interleukin-8 in patients with bipolar disorder. Medicine 2019, 98, e14419. [Google Scholar] [CrossRef]
- Lane, D.; Matte, I.; Rancourt, C.; Piché, A. Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients. BMC Cancer 2011, 11, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.; Cameron, S.; Blaschke, M.; Moriconi, F.; Naz, N.; Amanzada, A.; Ramadori, G.; Malik, I.A. Differential gene expression of chemokines in KRAS and BRAF mutated colorectal cell lines: Role of cytokines. World J. Gastroenterol. 2014, 20, 2979–2994. [Google Scholar] [CrossRef] [PubMed]
- Della-Torre, E.; Criscuolo, E.; Lanzillotta, M.; Locatelli, M.; Clementi, N.; Mancini, N.; Dagna, L.; COVID-BioB Study Group. IL-1 and IL-6 inhibition affects the neutralising activity of anti-SARS-CoV-2 antibodies in patients with COVID-19. Lancet Rheumatol. 2021, 3, e829–e831. [Google Scholar] [CrossRef]
- Nicola, M.; O’Neill, N.; Sohrabi, C.; Khan, M.; Agha, M.; Agha, R. Evidence based management guideline for the COVID-19 pandemic—Review article. Int. J. Surg. 2020, 77, 206–216. [Google Scholar] [CrossRef]
- Violi, F.; Ceccarelli, G.; Loffredo, L.; Alessandri, F.; Cipollone, F.; D’Ardes, D.; D’Ettorre, G.; Pignatelli, P.; Venditti, M.; Mastroianni, C.M.; et al. Albumin Supplementation Dampens Hypercoagulability in COVID-19: A Preliminary Report. Thromb. Haemost. 2020, 121, 102–105. [Google Scholar] [CrossRef]
- Neil, D.; Moran, L.; Horsfield, C.; Curtis, E.; Swann, O.; Barclay, W.; Hanley, B.; Hollinshead, M.; Roufosse, C. Ultrastructure of cell trafficking pathways and coronavirus: How to recognise the wolf amongst the sheep. J. Pathol. 2020, 252, 346–357. [Google Scholar] [CrossRef]
Primer | 5 → 3 Forward | 5 → 3 Reverse |
---|---|---|
(A) Rat primers | ||
CXCL1/Kc | GGCAGGGATTCACTTCAAGA | GCCATCGGTGCAATCTATCT |
CXCL2/Mip2 | ATCCAGAGCTTGACGGTGAC | AGGTACGATCCAGGCTTCCT |
CXCL5/Lix | CTCAAGCTGCTCCTTTCTCG | GCGATCATTTTGGGGTTAAT |
CXCL8/lL8 | CCCCCATGGTTCAGAAGATTG | TTGTCAGAAGCCAGCGTTCAC |
CXCL10/Ip10 | CTGTCGTTCTCTGCCTCGTG | GGATCCCTTGAGTCCCACTCA |
CCL2/Mcp1 | AGGCAGATGCAGTTAATGCCC | ACACCTGCTGCTGGTGATTCTC |
β-actin | ACCACCATGTACCCAGGCATT | CCACACAGAGTACTTGCGCTCA |
Ubc | CACCAAGAAGGTCAAACAGGAA | AAGACACCTCCCCATCAAACC |
(B) Mouse primers | ||
CXCL1/Kc | GGATTCACCTCAAGAACATCCAGAG | CACCCTTCTACTAGCACAGTGGTTG |
CXCL2/Mip2 | CTCTCAAGGGCGGTCAAAAAGTT | TCAGACAGCGAGGCACATCAGGTA |
CXCL5/Lix | GGTCCACAGTGCCCTACG | GCGAGTGCATTCCGCTTA |
CXCL8/IL8 | GCTGGGATTCACCTCAAGAA | CTTTTGGACAATTTTCTGAACCA |
CXCL10/Ip10 | AAGTGCTGCCGTCATTTTCT | GTGGCAATGATCTCAACACG |
CCl2/Mcp1 | CCCACTCACCTGCTGCTACT | TCTGGACCCATTCCTTCTTG |
β-actin | ATTGTTACCAACTGGGACGACATG | CGAAGTCTAGAGCAACATAGCACA |
GAPDH | AGAACATCATCCCTGCATCC | CACATTGGGGGTAGGAACAC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, I.A.; Ramadori, G. Interleukin-6-Production Is Responsible for Induction of Hepatic Synthesis of Several Chemokines as Acute-Phase Mediators in Two Animal Models: Possible Significance for Interpretation of Laboratory Changes in Severely Ill Patients. Biology 2022, 11, 470. https://doi.org/10.3390/biology11030470
Malik IA, Ramadori G. Interleukin-6-Production Is Responsible for Induction of Hepatic Synthesis of Several Chemokines as Acute-Phase Mediators in Two Animal Models: Possible Significance for Interpretation of Laboratory Changes in Severely Ill Patients. Biology. 2022; 11(3):470. https://doi.org/10.3390/biology11030470
Chicago/Turabian StyleMalik, Ihtzaz Ahmed, and Giuliano Ramadori. 2022. "Interleukin-6-Production Is Responsible for Induction of Hepatic Synthesis of Several Chemokines as Acute-Phase Mediators in Two Animal Models: Possible Significance for Interpretation of Laboratory Changes in Severely Ill Patients" Biology 11, no. 3: 470. https://doi.org/10.3390/biology11030470
APA StyleMalik, I. A., & Ramadori, G. (2022). Interleukin-6-Production Is Responsible for Induction of Hepatic Synthesis of Several Chemokines as Acute-Phase Mediators in Two Animal Models: Possible Significance for Interpretation of Laboratory Changes in Severely Ill Patients. Biology, 11(3), 470. https://doi.org/10.3390/biology11030470