Bio-Based Solutions for Agriculture: Foliar Application of Wood Distillate Alone and in Combination with Other Plant-Derived Corroborants Results in Different Effects on Lettuce (Lactuca Sativa L.)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental
2.2. Chlorophyll Content
2.3. Starch Content and Soluble Sugars
2.4. Dry Biomass
2.5. Chemical Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hera, C. The role of inorganic fertilizers and their management practices. Fertil. Res. 1996, 43, 63–81. [Google Scholar] [CrossRef]
- Sharma, N.; Singhvi, R. Effects of chemical fertilizers and pesticides on human health and environment: A review. Int. J. Environ. Agric. Biotech. 2017, 10, 675–680. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Meers, E.; Michels, E.; Buysse, J.; Tack, F.M.G. Ecological and economic benefits of the application of bio-based mineral fertilizers in modern agriculture. Biomass Bioenergy 2013, 49, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Grewal, A.; Abbey, L.; Gunupuru, L.R. Production, prospects and potential application of pyroligneous acid in agriculture. J. Anal. Appl. Pyrol. 2018, 135, 152–159. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U., Jr.; Steele, P.H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels 2016, 20, 848–889. [Google Scholar] [CrossRef]
- Zulkarami, B.; Ashrafuzzaman, M.; Husni, M.O.; Ismail, M.R. Effect of pyroligneous acid on growth, yield and quality improvement of rockmelon in soilless culture. Aust. J. Crop Sci. 2011, 5, 1508–1514. [Google Scholar]
- Mu, J.; Yu, Z.M.; Wu, W.Q.; Wu, Q.L. Preliminary study of application effect of bamboo vinegar on vegetable growth. For. Stud. China 2006, 8, 43–47. [Google Scholar] [CrossRef]
- Mmojieje, J.; Hornung, A. The potential application of pyroligneous acid in the UK agricultural industry. J. Crop Improv. 2015, 29, 228–246. [Google Scholar] [CrossRef]
- Namli, A.; Akça, M.O.; Turgay, E.B.; Soba, M.R. Investigation of potential agricultural use of wood vinegar. Toprak Su Dergisi 2014, 3, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Berahim, Z.; Panhwar, Q.A.; Ismail, M.R.; Saud, H.M.; Monjurul, M.; Mondal, A.; Naher, U.A.; Islam, M.R. Rice yield improvement by foliar application of phytohormone. J. Food Agric. Environ. 2014, 12, 399–404. [Google Scholar]
- Theerakulpisut, P.; Kanawapee, N.; Panwong, B. Seed priming alleviated salt stress effects on rice seedlings by improving Na+/K+ and maintaining membrane integrity. Int. J. Plant Biol. 2016, 7, 6402. [Google Scholar] [CrossRef] [Green Version]
- Mungkunkamchao, T.; Kesmala, T.; Pimratch, S.; Toomsan, B.; Jothityangkoon, D. Wood vinegar and fermented bioextracts: Natural products to enhance growth and yield of tomato (Solanum lycopersicum L.). Sci. Hortic. 2013, 154, 66–72. [Google Scholar] [CrossRef]
- Hagner, M.; Pasanen, T.; Lindqvist, B. Effects of birch tar oils on soil organisms and plants. Agric. Food Sci. 2010, 19, 13–23. [Google Scholar] [CrossRef]
- Hagner, M.; Penttinen, O.P.; Pasanen, T.; Tiilikkala, K.; Setälä, H. Acute toxicity of birch tar oil on aquatic organisms. Agric. Food Sci. 2010, 19, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Fačkovcová, Z.; Vannini, A.; Monaci, F.; Grattacaso, M.; Paoli, L.; Loppi, S. Effects of wood distillate (pyroligneous acid) on sensitive bioindicators (lichen and moss). Ecotoxicol. Environ. Saf. 2020, 204, 111117. [Google Scholar] [CrossRef]
- Fačkovcová, Z.; Vannini, A.; Monaci, F.; Grattacaso, M.; Paoli, L.; Loppi, S. Uptake of trace elements in the water fern Azolla filiculoides after short-term application of chestnut wood distillate (Pyroligneous Acid). Plants 2020, 9, 1179. [Google Scholar] [CrossRef]
- Filippelli, A.; Ciccone, V.; Loppi, S.; Morbidelli, L. Characterization of the safety profile of sweet chestnut wood distillate employed in agriculture. Safety 2021, 7, 79. [Google Scholar] [CrossRef]
- Italian Ministerial Decree 6793. 18/07/2018. Available online: https://www.gazzettaufficiale.it/eli/id/2018/09/05/18A05693/sg (accessed on 21 October 2021).
- Vannini, A.; Moratelli, F.; Monaci, F.; Loppi, S. Effects of wood distillate and soy lecithin on the photosynthetic performance and growth of lettuce (Lactuca sativa L.). SN Appl. Sci. 2021, 3, 1–6. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Buschmann, C.; Lichtenthaler, H.K. The chlorophyll fluorescence ratio F735/F700 as an accurate measure of the chlorophyll content in plants. Remote Sens. Environ. 1999, 69, 296–302. [Google Scholar] [CrossRef]
- Loppi, S.; Fedeli, R.; Canali, G.; Guarnieri, M.; Biagiotti, S.; Vannini, A. Comparison of the mineral and nutraceutical of elephant garlic (Allium ampeloprasum L.) grown in organic and conventional fields of Valdichiana, a traditional cultivation area of Tuscany, Italy. Biology 2021, 10, 1058. [Google Scholar] [CrossRef]
- Clarke, M. Carbohydrates, Industrial; Wiley-VCH: New York, NY, USA, 1995. [Google Scholar]
- Markert, B. Multi-Element Analysis in Plant Materials—Analytical Tools and Biological Questions. In Biogeochemistry of Trace Metals; CRC Press: Boca Raton, FL, USA, 1992; pp. 413–440. [Google Scholar] [CrossRef]
- Helsel, D.R. Advantages of nonparametric procedures for analysis of water quality data. Hydrol. Sci. J. 1987, 32, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multipletesting. J. R. Stat. Soc. Ser. B Stat. Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Liu, C.; Liu, Y.; Lu, Y.; Liao, Y.; Nie, J.; Yuan, X.; Chen, F. Use of a leaf chlorophyll content index to improve the prediction of above-ground biomass and productivity. PeerJ 2019, 6, e6240. [Google Scholar] [CrossRef] [PubMed]
- Benzon, H.R.L.; Lee, S.C. Pyroligneous acids enhance phytoremediation of heavy metal-contaminated soils using mustard. Commun. Soil Sci. Plant Anal. 2017, 48, 2061–2073. [Google Scholar] [CrossRef]
- Cheon-Soon, J.; In-Ju, Y.; Jong-Nam, P.; Jang-Hun, K.; Jung-Phil, K.; Sung-Jae, L.; Tae-Su, J.; Byoung-Ju, J. Effect of wood vinegar and charcoal on growth and quality of sweet pepper. Korean J. Hort. Sci. Technol. 2006, 24, 177–180. [Google Scholar]
- Zhou, C.; Lang, Y.; Zhou, C. Study on application effects of pyroligneous liquid on tomato. Heilongjiang Agric. Sci. 2011, 3. [Google Scholar]
- Zhou, C.; Zhou, C.Y.; Xu, T.; Wu, L.L.; Tan, K.F.; Xu, J.; Chai, L.L. Effect of wood vinegar on eggplant in greenhouse. Heilongjiang Agric. Sci. 2013, 4. [Google Scholar]
- Paul, M.J.; Jhurreea, D.; Zhang, Y.; Primavesi, L.F.; Delatte, T.; Schluepmann, H.; Wingler, A. Up-regulation of biosynthetic processes associated with growth by trehalose 6-phosphate. Plant Signal. Behav. 2010, 5, 386–392. [Google Scholar] [CrossRef] [Green Version]
- O’Hara, L.E.; Paul, M.J.; Wingler, A. How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate. Mol. Plant 2013, 6, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.T.; Batt, R.F. Studies on plant cuticle: I. the waxy coverings of leaves. Ann. Appl. Biol. 1958, 46, 375–387. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Liu, B.; Liu, Q.; Zheng, H.; You, X.; Sun, K.; Luo, X.; Li, F. Comparative study of individual and Co-Application of biochar and wood vinegar on blueberry fruit yield and nutritional quality. Chemosphere 2020, 246, 125699. [Google Scholar] [CrossRef] [PubMed]
- Lashari, M.S.; Ye, Y.; Ji, H.; Li, L.; Kibue, G.W.; Lu, H.; Zheng, J.; Pan, G. Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: A 2-year field experiment. J. Sci. Food Agric. 2014, 95, 1321–1327. [Google Scholar] [CrossRef] [PubMed]
- Ratanapisit, J.; Apiraksakul, S.; Rerngnarong, A.; Chungsiriporn, J.; Bunyakarn, C. Preliminary evaluation of production and characterization of wood vinegar from rubberwood. Warasan Songkhla Nakharin 2009, 31, 343–349. [Google Scholar]
- Mourant, D.; Yang, D.Q.; Lu, X.; Roy, C. Anti-fungal properties of the pyroligneous liquors from the pyrolysis of softwood bark. Wood Fiber Sci. 2005, 37, 542–548. [Google Scholar]
- Misuri, F.; Marri, L. Antibacterial activity of wood distillate from residual virgin chestnut biomass. Eur. J. Wood Wood Prod. 2021, 79, 237–239. [Google Scholar] [CrossRef]
- Zeeman, S.C.; Kossmann, J.; Smith, A.M. Starch: Its metabolism, evolution, and biotechnological modification in plants. Annu. Rev. Plant Biol. 2010, 61, 209–234. [Google Scholar] [CrossRef] [Green Version]
- Fincher, G.B. Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annu. Rev. Plant Biol. 1989, 40, 305–346. [Google Scholar] [CrossRef]
- Razem, F.A.; Davis, A.R. Anatomical and ultrastructural changes of the floral nectary of Pisum sativum L. during flower development. Protoplasma 1999, 206, 57–72. [Google Scholar] [CrossRef]
- Sun-Ok, J.; Dong-Hoon, C. Effect of pyroligneous liquor on the content and activity of endogenous substances of Neofinetia falcata cultured in vitro. J. Life Sci. 2005, 15, 673–677. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Li, P.; Lu, S.; Sun, Y.; Meng, L.; Hao, J.; Fan, S. Phosphoproteomic analysis of lettuce (Lactuca sativa L.) reveals starch and sucrose metabolism functions during bolting induced by high temperature. PLoS ONE 2020, 15, e0244198. [Google Scholar] [CrossRef]
- Freitas, M.; Azevedo, J.; Pinto, E.; Neves, J.; Campos, A.; Vasconcelos, V. Effects of microcystin-LR, cylindrospermopsin and a microcystin-LR/cylindrospermopsin mixture on growth, oxidative stress and mineral content in lettuce plants (Lactuca sativa L.). Ecotoxicol. Environ. Saf. 2015, 116, 59–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camejo, D.; Frutos, A.; Mestre, T.C.; del Carmen Piñero, M.; Rivero, R.M.; Martínez, V. Artificial light impacts the physical and nutritional quality of lettuce plants. Hortic. Environ. Biotechnol. 2020, 61, 69–82. [Google Scholar] [CrossRef]
- Pinto, E.; Almeida, A.A.; Aguiar, A.A.; Ferreira, I.M. Changes in macrominerals, trace elements and pigments content during lettuce (Lactuca sativa L.) growth: Influence of soil composition. Food Chem. 2014, 152, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in FoodStuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32006R1881 (accessed on 14 October 2021).
Soil Characteristics | |
---|---|
pH | 8.07 ± 0.01 |
CaCO3 (%) | 20.3 ± 0.3 |
Carbon (%) | 1.8 ± 0.1 |
Nitrogen (%) | 1.6 ± 0.1 |
Ca2+ (mg/kg) | 4013 ± 19 |
Mg2+ (mg/kg) | 124 ± 1 |
Na+ (mg/kg) | 324 ±16 |
K+ (mg/kg) | 168 ± 4 |
CEC (meq/100 g) | 23 ± 0.1 |
Starch | Sucrose | Glucose | Fructose | Pectin | TSI | |
---|---|---|---|---|---|---|
CTRL | 7 ± 0.7 a | 0.27 ± 0.05 a | 0.25 ± 0.01 a | 0.25 ± 0.01 a | 8.5 ± 0.4 a | 0.93 ± 0.02 a |
WD 0.25% | 15 ± 0.8 b | 0.23 ± 0.03 a | 3.49 ± 0.67 c | 3.47 ± 0.62 c | 9.0 ± 0.3 a | 7.16 ± 1.67 c |
WD 0.50% | 15 ± 1.7 b | 0.22 ± 0.04 a | 0.18 ± 0.02 b | 0.18 ± 0.01 b | 10.2 ± 1.6 a | 0.66 ± 0.06 b |
BF 0.25% | 16 ± 2.2 b | 0.27± 0.04 a | 0.26 ± 0.06 a | 0.27 ± 0.05 a | 11.0 ± 1.1 a | 0.80 ± 0.08 a |
BF 0.50% | 16 ± 1.4 b | 0.28 ± 0.03 a | 0.23 ± 0.02 a | 0.36 ± 0.06 a | 11.0 ± 1.3 a | 1.20 ± 0.13 a |
Cd | Cu | Fe | Pb | Zn | |
---|---|---|---|---|---|
CTRL | 0.007 ± 0.01 | 0.44 ± 0.08 | 3.5 ± 0.3 | 0.022 ± 0.002 | 4.4 ± 0.5 |
WD 0.25% | 0.008 ± 0.01 | 0.50 ± 0.07 | 3.6 ± 0.4 | 0.022 ± 0.003 | 3.6 ± 0.2 |
WD 0.50% | 0.008 ± 0.01 | 0.40 ± 0.04 | 4.3 ± 0.7 | 0.025 ± 0.009 | 3.4 ± 0.4 |
BF 0.25% | 0.009 ± 0.01 | 0.52 ± 0.06 | 3.9 ± 0.4 | 0.021 ± 0.006 | 4.4 ± 0.5 |
BF 0.50% | 0.008 ± 0.01 | 0.52 ± 0.05 | 3.5 ± 0.3 | 0.022 ± 0.007 | 4.0 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedeli, R.; Vannini, A.; Guarnieri, M.; Monaci, F.; Loppi, S. Bio-Based Solutions for Agriculture: Foliar Application of Wood Distillate Alone and in Combination with Other Plant-Derived Corroborants Results in Different Effects on Lettuce (Lactuca Sativa L.). Biology 2022, 11, 404. https://doi.org/10.3390/biology11030404
Fedeli R, Vannini A, Guarnieri M, Monaci F, Loppi S. Bio-Based Solutions for Agriculture: Foliar Application of Wood Distillate Alone and in Combination with Other Plant-Derived Corroborants Results in Different Effects on Lettuce (Lactuca Sativa L.). Biology. 2022; 11(3):404. https://doi.org/10.3390/biology11030404
Chicago/Turabian StyleFedeli, Riccardo, Andrea Vannini, Massimo Guarnieri, Fabrizio Monaci, and Stefano Loppi. 2022. "Bio-Based Solutions for Agriculture: Foliar Application of Wood Distillate Alone and in Combination with Other Plant-Derived Corroborants Results in Different Effects on Lettuce (Lactuca Sativa L.)" Biology 11, no. 3: 404. https://doi.org/10.3390/biology11030404