Preservation and Taphonomy of Fossil Insects from the Earliest Eocene of Denmark
Abstract
:Simple Summary
Abstract
1. Introduction
2. Geological Setting
3. Material and Methods
3.1. Fossil Material
3.2. Scanning Electron Microscopy and Elemental Analysis
3.3. Transmission Electron Microscopy
3.4. Time-of-Flight Secondary Ion Mass Spectrometry
4. Results
4.1. FUM-N-17627
4.2. FUM-N-11263 and FUM-N-10904
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonde, N.; Andersen, S.; Hald, N.; Jakobsen, S.L. Danekræ—Danmarks Bedste Fossiler; Gyldendal A/S: Copenhagen, Denmark, 2008; p. 225. [Google Scholar]
- Pedersen, G.K.; Pedersen, S.A.S.; Bonde, N.; Heilmann-Clausen, C.; Larsen, L.M.; Lindow, B.; Madsen, H.; Pedersen, A.K.; Rust, J.; Schultz, B.P.; et al. Molerområdets Geologi—Sedimenter, Fossiler, Askelag og Glacialtektonik; Dansk Geologisk Forening: Copenhagen, Denmark, 2011; p. 135. [Google Scholar]
- Rasmussen, J.A.; Madsen, H.; Schultz, B.P.; Sylvestersen, R.L.; Bonde, N. The lowermost Eocene deposits and biota of the western Limfjord region, Denmark—Field Trip Guidebook. In Proceedings of the 2nd International Mo-Clay Meeting, Nykøbing Mors, Denmark, 2–4 November 2016; p. 35. [Google Scholar]
- Bonde, N. Palaeoenvironment in the ‘North Sea’ as indicated by the fish bearing Mo clay deposit (Paleocene/Eocene), Denmark. Meded. Werkgr. Tert. Kwart. Geol. 1979, 16, 3–16. [Google Scholar]
- Lindgren, J.; Nilsson, D.E.; Sjövall, P.; Jarenmark, M.; Ito, S.; Wakamatsu, K.; Kear, B.P.; Schultz, B.P.; Sylvestersen, R.L.; Madsen, H.; et al. Fossil insect eyes shed light on trilobite optics and the arthropod pigment screen. Nature 2019, 573, 122–125. [Google Scholar] [CrossRef]
- Grimaldi, D.; Engel, M.S. Evolution of the Insects; Cambridge University Press: Cambridge, UK, 2005; p. 755. [Google Scholar]
- Labandeira, C.C.; Beall, B.S.; Hueber, F.M. Early insect diversification: Evidence from a Lower Devonian bristletail from Québec. Science 1988, 242, 913–916. [Google Scholar] [CrossRef]
- Martínez-Delclòs, X.; Briggs, D.E.G.; Peñalver, E. Taphonomy of insects in carbonates and amber. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 203, 19–64. [Google Scholar] [CrossRef]
- McCobb, L.M.E.; Duncan, I.J.; Jarzembowski, E.A.; Stankiewicz, B.A.; Wills, M.A.; Briggs, D.E.G. Taphonomy of the insects from the Insect Bed (Bembridge Marls), late Eocene, Isle of Wight, England. Geol. Mag. 1998, 135, 553–563. [Google Scholar] [CrossRef]
- McNamara, M.E.; Briggs, D.E.G.; Orr, P.J.; Noh, H.; Cao, H. The original colours of fossil beetles. Proc. R. Soc. B 2012, 279, 1114–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNamara, M.E.; Briggs, D.E.G.; Orr, P.J. The controls on the preservation of structural color in fossil insects. Palaios 2012, 27, 443–454. [Google Scholar] [CrossRef]
- McNamara, M.E.; Briggs, D.E.G.; Orr, P.J.; Gupta, N.S.; Locatelli, E.R.; Qiu, L.; Yang, H.; Wang, Z.; Noh, H.; Cao, H. The fossil record of insect color illuminated by maturation experiments. Geology 2013, 41, 487–490. [Google Scholar] [CrossRef] [Green Version]
- McNamara, M.E. The taphonomy of colour in fossil insects and feathers. Palaeontology 2013, 56, 557–575. [Google Scholar] [CrossRef]
- Barling, N.; Martill, D.M.; Heads, S.W.; Gallien, F. High fidelity preservation of fossil insects from the Crato Formation (Lower Cretaceous) of Brazil. Cretac. Res. 2015, 52, 605–622. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Sha, J.; Fürsich, F.T. A model for organic fossilization of the Early Cretaceous Jehol Lagerstätte based on the taphonomy of “Ephemeropsis trisetalis”. Palaios 2014, 29, 363–377. [Google Scholar] [CrossRef]
- Greenwalt, D.E.; Rose, T.R.; Siljestrom, S.M.; Goreva, Y.S.; Constenius, K.N.; Wingerath, G. Taphonomy of the fossil insects of the middle Eocene Kishenehn Formation. Acta Palaeontol. Pol. 2015, 60, 931–947. [Google Scholar]
- Bezerra, F.I.; da Silva, J.H.; Miguel, E.D.C.; Paschoal, A.R.; Nascimento, D.R., Jr.; Freire, P.T.C.; Viana, B.C.; Mendes, M. Chemical and mineral comparison of fossil insect cuticles from Crato Konservat Lagerstätte, Lower Cretaceous of Brazil. J. Iber. Geol. 2020, 46, 61–76. [Google Scholar] [CrossRef]
- Dias, J.J.; Carvalho, I.S. Remarkable fossil crickets preservation from Crato Formation (Aptian, Araripe Basin), a Lagerstätten from Brazil. J. South Am. Earth Sci. 2020, 98, 102443. [Google Scholar] [CrossRef]
- Osés, G.L.; Petri, S.; Becker-Kerber, B.; Romero, G.R.; Rizzutto, M.A.; Rodrigues, F.; Galante, D.; Silva, T.F.; Curado, J.F.; Rangel, E.C.; et al. Deciphering the preservation of fossil insects: A case study from the Crato Member, Early Cretaceous of Brazil. PeerJ 2016, 4, e2756. [Google Scholar] [CrossRef]
- Larsson, S.G. Palaeobiology and mode of burial of the insects of the Lower Eocene Mo-clay of Denmark. Bull. Geol. Soc. Denmark 1975, 24, 193–209. [Google Scholar]
- Rust, J. Biostratinomie von Insekten aus der Fur-Formation von Dänemark (Moler, oberes Paleozän/unteres Eozän). PalZ 1998, 72, 41–58. [Google Scholar] [CrossRef]
- Rust, J.; Andersen, N.M. Giant ants from the Paleogene of Denmark with a discussion of the fossil history and early evolution of ants (Hymenoptera: Formicidae). Zool. J. Linn. Soc. 1999, 125, 331–348. [Google Scholar] [CrossRef]
- Archibald, S.B.; Makarkin, V.N. Tertiary giant lacewings (Neuroptera: Polystoechotidae): Revision and description of new taxa from western north America and Denmark. J. Syst. Palaeontol. 2006, 4, 119–155. [Google Scholar] [CrossRef] [Green Version]
- Andersen, N.M. A fossil water measurer (Insects, Hemiptera, Hydrometridae) from the Paleocene/Eocene of Denmark and its phylogenetic relationships. Bull. Geol. Soc. Denmark 1982, 30, 91–96. [Google Scholar] [CrossRef]
- Andersen, N.M. Water Striders from the Paleogene of Denmark with a Review of the Fossil Record and Evolution of Semiaquatic Bugs (Hemiptera, Gerromorpha); Biologiske Skrifter: Copenhagen, Denmark, 1998; 157p. [Google Scholar]
- Rust, J. Fossil record of mass moth migration. Nature 2000, 405, 530–531. [Google Scholar] [CrossRef] [PubMed]
- Bechly, G. A new fossil dragonfly (Anisoptera: Corduliidae) from the Paleocene Fur Formation (Mo clay) of Denmark. Stutt. Beitr. Naturkd. B 2005, 358, 1–7. [Google Scholar]
- Engel, M.S.; Kinzelbach, R.K. A primitive moth from the earliest Eocene Fur Formation (“Mo-clay”) of Denmark (Lepidoptera: Micropterigidae). Linzer Biol. Beitr. 2008, 40, 1443–1448. [Google Scholar]
- Lindgren, J.; Uvdal, P.; Sjövall, P.; Nilsson, D.E.; Engdahl, A.; Schultz, B.P.; Thiel, V. Molecular preservation of the pigment melanin in fossil melanosomes. Nat. Commun. 2012, 3, 824–831. [Google Scholar] [CrossRef] [Green Version]
- Lindgren, J.; Moyer, A.; Schweitzer, M.H.; Sjövall, P.; Uvdal, P.; Nilsson, D.E.; Heimdal, J.; Engdahl, A.; Gren, J.A.; Schultz, B.P.; et al. Interpreting melanin-based coloration through deep time: A critical review. Proc. R. Soc. B 2015, 282, 20150614. [Google Scholar] [CrossRef]
- Lindgren, J.; Kuriyama, T.; Madsen, H.; Sjövall, P.; Zheng, W.; Uvdal, P.; Engdahl, A.; Moyer, A.E.; Gren, J.A.; Kamezaki, N.; et al. Biochemistry and adaptive colouration of an exceptionally preserved juvenile fossil sea turtle. Sci. Rep. 2017, 7, 13324. [Google Scholar] [CrossRef] [Green Version]
- Vinther, J.; Briggs, D.E.G.; Prum, R.O.; Saranathan, V. The colour of fossil feathers. Biol. Lett. 2008, 4, 522–525. [Google Scholar] [CrossRef]
- Gren, J.A.; Sjövall, P.; Eriksson, M.E.; Sylvestersen, R.L.; Marone, F.; Sigfridsson Clauss, K.G.V.; Taylor, G.J.; Carlson, S.; Uvdal, P.; Lindgren, J. Molecular and microstructural inventory of an isolated fossil bird feather from the Eocene Fur Formation of Denmark. Palaeotology 2017, 60, 73–90. [Google Scholar] [CrossRef] [Green Version]
- Heingård, M.; Sjövall, P.; Sylvestersen, R.L.; Schultz, B.P.; Lindgren, J. Crypsis in the pelagic realm: Evidence from exceptionally preserved fossil fish larvae from the Eocene Stolleklint Clay of Denmark. Palaeontology 2021, 64, 805–815. [Google Scholar] [CrossRef]
- Heilmann-Clausen, C.; Nielsen, O.B.; Gersner, F. 1985. Lithostratigraphy and depositional environment in the upper Paleocene and Eocene of Denmark. Bull. Geol. Soc. Denmark 1985, 33, 287–323. [Google Scholar] [CrossRef]
- Heilmann-Clausen, C. Palæogene aflejringer over danskekalken. In Danmarks Geologi fra Kridt til i Dag; Nielsen, O.B., Ed.; Aarhus Geokompendier, 1. Geologisk Institut, Aarhus Universitet: Aarhaus, Denmark, 1995; pp. 70–114. [Google Scholar]
- Pedersen, G.K.; Surlyk, F. The Fur Formation, a late Paleocene ash-bearing diatomite from northern Denmark. Bull. Geol. Soc. Denmark 1983, 32, 43–65. [Google Scholar] [CrossRef]
- Bonde, N. Palaeoenvironment as indicated by the “mo-clay formation” (Lowermost Eocene of Denmark). Tert. Times 1974, 2, 29–36. [Google Scholar]
- Pedersen, G.K. Anoxic events during sedimentation of a Palaeogene diatomite in Denmark. Sedimentology 1981, 28, 487–504. [Google Scholar] [CrossRef]
- Larsen, L.M.; Fitton, J.G.; Pedersen, A.K. Paleogene volcanic ash layers in the Danish Basin: Compositions and source areas in the North Atlantic Igneous Province. Lithos 2003, 71, 47–80. [Google Scholar] [CrossRef]
- Bøggild, O.B. Den vulkanske aske i Moleret. Dan. Geol. Undersøgelse 1918, 33, 84. [Google Scholar]
- Westerhold, T.; Röhl, U.; McCarren, H.K.; Zachos, J.C. Latest on the absolute age of the Paleocene-Eocene Thermal Maximum (PETM): New insights from exact stratigraphic position of key ash layers +19 and -17. Earth Planet. Sci. Lett. 2009, 287, 412–419. [Google Scholar] [CrossRef]
- Storey, M.; Duncan, R.A.; Swisher III, C.L. Paleocene-Eocene Thermal Maximum and the opening of the Northeast Atlantic. Science 2007, 316, 587–589. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.T.; Percival, L.M.; Stokke, E.W.; Frieling, J.; Mather, T.A.; Riber, L.; Svensen, H.H. Mercury anomalies across the Palaeocene–Eocene thermal maximum. Clim. Past 2019, 15, 217–236. [Google Scholar] [CrossRef] [Green Version]
- Stokke, E.W.; Liu, E.J.; Jones, M.T. Evidence of explosive hydromagmatic eruptions during the emplacement of the North Atlantic Igneous Province. Volcanica 2020, 3, 227–250. [Google Scholar] [CrossRef]
- Willumsen, P.S. 2004. Palynology of the lower Eocene deposits of northwest Jutland, Denmark. Bull. Geol. Soc. Den. 2004, 52, 141–157. [Google Scholar]
- Pedersen, G.K.; Buchardt, B. The calcareous concretions (cementsten) in the Fur Formation (Paleogene, Denmark): Isotopic evidence of early diagenetic growth. Bull. Geol. Soc. Den. 1996, 43, 78–86. [Google Scholar] [CrossRef]
- Thiel, V.; Sjövall, P. Time-of-flight secondary ion mass spectrometry (TOF-SIMS): Principles and practice in the biogeosciences. In Principles and Practice of Analytical Techniques in Geosciences; Grice, K., Ed.; Royal Society of Chemistry: Cambridge, UK, 2015; pp. 122–170. [Google Scholar]
- Jarenmark, M.; Sjövall, P.; Ito, S.; Wakamatsu, K.; Lindgren, J. Chemical Evaluation of eumelanin maturation by ToF-SIMS and alkaline peroxide oxidation HPLC analysis. Int. J. Mol. Sci. 2021, 22, 161. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Liu, C.; Bhushan, B.; Wu, W.; Tong, J. Effect of microtrichia on the interlocking mechanism in the Asian ladybeetle, Harmonia axyridis (Coleoptera: Coccinellidae). Beilstein J. Nanotechnol. 2018, 9, 812–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorb, S. Frictional surfaces of the elytra-to-body arresting mechanism in tenebrionid beetles (Coleoptera: Tenebrionidae): Design of co-opted fields of microtrichia and cuticle ultrastructure. Int. J. Insect Morphol. Embryol. 1998, 27, 205–225. [Google Scholar] [CrossRef]
- Lindgren, J.; Sjövall, P.; Carney, R.M.; Uvdal, P.; Gren, J.A.; Dyke, G.; Schultz, B.P.; Shawkey, M.D.; Barnes, K.R.; Polcyn, M.J. Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles. Nature 2014, 506, 484–488. [Google Scholar] [CrossRef]
- Polet, D.T.; Flynn, M.R.; Sperling, F.A.H. A mathematical model to capture complex microstructure orientation on insect wings. PLoS ONE 2015, 10, e0138282. [Google Scholar] [CrossRef]
- Chapman, R.F. The Insects—Structure and Function; Cambridge University Press: New York, NY, USA, 2013; 929p. [Google Scholar]
- Allison, P.A. The role of anoxia in the decay and mineralization of proteinaceous macro-fossils. Paleobiology 1988, 14, 139–154. [Google Scholar] [CrossRef]
- Briggs, D.E.G. The role of decay and mineralization in the preservation of soft-bodied fossils. Annu. Rev. Earth Planet. Sci. 2003, 31, 275–301. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, F.; Zhang, H.; Fang, Y.; Zheng, D. Widespread pyritization of insects in the early Cretaceous Jehol Biota. Palaios 2012, 27, 707–711. [Google Scholar] [CrossRef]
- Duncan, I.J.; Briggs, D.E.G. Three-dimensionally preserved insects. Nature 1996, 381, 30–31. [Google Scholar] [CrossRef]
- Schwermann, A.H.; Dos Santos Rolo, T.; Caterino, M.S.; Bechly, G.; Schmied, H.; Baumbach, T.; Van Der Kamp, T. Preservation of three-dimensional anatomy in phosphatized fossil arthropods enriches evolutionary inference. eLife 2016, 5, e12129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierce, W.D. Fossil arthropods of California: No 23. Silicified insects in Miocene nodules from the Calico Mountains. Bull. South Calif. Acad. Sci. 1960, 59, 40–49. [Google Scholar]
- Briggs, D.E.G. Molecular taphonomy of animal and plant cuticles: Selective preservation and diagenesis. Philos. Trans. R. Soc. B 1999, 354, 7–17. [Google Scholar] [CrossRef] [Green Version]
- McNamara, M.E.; Orr, P.J.; Kearns, S.L.; Alcalá, L.; Anadón, P.; Peñalver-Mollá, E. Organic preservation of fossil musculature with ultracellular detail. Proc. R. Soc. B 2010, 277, 423–427. [Google Scholar] [CrossRef] [Green Version]
- McNamara, M.E.; Van Dongen, B.E.; Lockyer, N.P.; Bull, I.D.; Orr, P.J. Fossilization of melanosomes via sulfurization. Palaeontology 2016, 59, 337–350. [Google Scholar] [CrossRef]
- Tanaka, G.; Taniguchi, H.; Maeda, H.; Nomura, S.-I. Original structural color preserved in an ancient leaf beetle. Geology 2010, 38, 127–130. [Google Scholar] [CrossRef]
- Stankiewicz, B.A.; Briggs, D.E.G.; Evershed, R.P.; Flannery, M.B.; Wuttke, M. Preservation of chitin in 25-million-year-old fossils. Science 1997, 276, 1541–1543. [Google Scholar] [CrossRef]
- Stankiewicz, B.A.; Briggs, D.E.G.; Evershed, R.P.; Miller, R.F.; Bierstedt, A. The Fate of chitin in Quaternary and Tertiary strata. In Nitrogen-Containing Macromolecules in the Bio- and Geosphere; Stankiewicz, B.A., Van Bergen, P.F., Eds.; American Chemical Society Symposium Series: Washington, DC, USA, 1998; Volume 707, pp. 211–224. [Google Scholar] [CrossRef]
- Flannery, M.B.; Stott, A.W.; Briggs, D.E.G.; Evershed, R.P. Chitin in the fossil record: Identification and quantification of D-glucosamine. Org. Geochem. 2001, 32, 745–754. [Google Scholar] [CrossRef]
- Cody, G.D.; Gupta, N.S.; Briggs, D.E.G.; Kilcoyne, A.L.D.; Summons, R.E.; Kenig, F.; Plotnick, R.E.; Scott, A.C. Molecular signature of chitin-protein complex in Paleozoic arthropods. Geology 2011, 39, 255–258. [Google Scholar] [CrossRef] [Green Version]
- Stankiewicz, B.A.; Briggs, D.E.G.; Michels, R.; Collinson, M.E.; Flannery, M.B.; Evershed, R.P. Alternative origin of aliphatic polymer in kerogen. Geology 2000, 6, 559–562. [Google Scholar] [CrossRef]
- Wiemann, J.; Crawford, J.M.; Briggs, D.E.G. Phylogenetic and physiological signals in metazoan fossil biomolecules. Sci. Adv. 2020, 6, eaba6883. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.S.; Michels, R.; Briggs, D.E.G.; Evershed, R.P.; Pancost, R.D. The organic preservation of fossil arthropods: An experimental study. Proc. R. Soc. B 2006, 273, 2777–2783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stankiewicz, B.A.; Briggs, D.E.G.; Evershed, R.P. Chemical composition of Paleozoic and Mesozoic fossil invertebrate cuticles as revealed by pyrolysis-gas chromatography/mass spectrometry. Energy Fuels 1997, 11, 515–521. [Google Scholar] [CrossRef]
- Shamim, G.; Ranjan, S.K.; Pandey, D.M.; Ramani, R. Biochemistry and biosynthesis of insect pigments. Eur. J. Entomol. 2014, 111, 149–164. [Google Scholar] [CrossRef] [Green Version]
- Noh, M.Y.; Muthukrishnan, S.; Kramer, K.J.; Arakane, Y. Cuticle formation and pigmentation in beetles. Curr. Opin. Insect Sci. 2016, 17, 1–9. [Google Scholar] [CrossRef]
- Sugumaran, M.; Barek, H. Critical analysis of the melanogenic pathway in insects and higher animals. Int. J. Mol. Sci. 2016, 17, 1753. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, T.L.; Kramer, K.J. Insect cuticle sclerotization. Annu. Rev. Entomol. 1992, 37, 273–302. [Google Scholar] [CrossRef]
- Greenwalt, D.E.; Goreva, Y.S.; Siljeström, S.M.; Rose, T.; Harbach, R.E. Hemoglobin-derived porpyrins preserved in a Middle Eocene blood-engorged mosquito. Proc. Nat. Acad. Sci. USA 2013, 110, 18496–18500. [Google Scholar] [CrossRef] [Green Version]
- Labandeira, C.C.; Yang, Q.; Santiago-Blay, J.A.; Hotton, C.L.; Monteiro, A.; Wang, Y.-J.; Goreva, Y.; Shih, C.; Siljeström, S.; Rose, T.R.; et al. The evolutionary converge of mid-Mesozoic lacewings and Cenozoic butterflies. Proc. R. Soc. B 2016, 283, 20152893. [Google Scholar] [CrossRef] [Green Version]
- Badejo, O.; Skaldina, O.; Gilev, A.; Sorvari, J. Benefits of insect colours: A review from social insect studies. Oecologia 2020, 194, 27–40. [Google Scholar] [CrossRef]
- Liu, Y.; Simon, J.D. Isolation and biophysical studies of natural eumelanins: Applications of imaging technologies and ultrafast spectroscopy. Pigment Cell Res. 2003, 16, 606–618. [Google Scholar] [CrossRef] [PubMed]
- Borovanský, J.; Hach, P.; Duchon, J. Melanosome: An unusually resistant subcellular particle. Cell Biol. Int. Rep. 1977, 1, 549–554. [Google Scholar] [CrossRef]
- Ohtaki, N.; Seiji, M. Degradation of melanosomes by lysosomes. J. Investig. Dermatol. 1971, 57, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Riley, P.A. Molecules in focus: Melanin. Int. J. Biochem. Cell Biol. 1997, 29, 1235–1239. [Google Scholar] [CrossRef]
- Bonser, R.H.C. Melanin and the abrasion resistance of feathers. Condor 1995, 97, 590–591. [Google Scholar]
- Burtt, E.H., Jr. An analysis of physical, physiological and optical aspects of avian coloration with emphasis on wood-warblers. Ornithol. Monogr. 1986, 38, 1–126. [Google Scholar] [CrossRef]
- Goldstein, G.; Flory, K.R.; Browne, B.A.; Majid, S.; Ichida, J.M.; Burtt, E.H., Jr. Bacterial degradation of black and white feathers. Auk 2004, 121, 656–659. [Google Scholar] [CrossRef]
- Meredith, P.; Riesz, J. Radiative relaxation quantum yields for synthetic eumelanin. Photochem. Photobiol. 2004, 79, 211–216. [Google Scholar] [CrossRef]
- McGraw, K.J. The antioxidant function of many animal pigments: Are there consistent health benefits of sexually selected colourants? Anim. Behav. 2005, 69, 757–764. [Google Scholar] [CrossRef]
- Glass, K.; Ito, S.; Wilby, P.R.; Sota, T.; Nakamura, A.; Bowers, R.; Vinther, J.; Dutta, S.; Summons, R.; Briggs, D.E.G.; et al. Direct chemical evidence for eumelanin pigment from the Jurassic period. Proc. Natl. Acad. Sci. USA 2012, 109, 10218–10223. [Google Scholar] [CrossRef] [Green Version]
- McNamara, M.E.; Briggs, D.E.G.; Orr, P.J.; Field, D.J.; Wang, Z. Experimental maturation of feathers: Implications for reconstructions of fossil feather colour. Biol. Lett. 2013, 9, 20130184. [Google Scholar] [CrossRef] [PubMed]
- Vickers, M.L.; Lengger, S.K.; Bernasconi, S.M.; Thibault, N.; Schultz, B.P.; Fernandez, A.; Ullman, C.V.; Mccormack, P.; Bjerrum, C.J.; Rasmussen, J.A.; et al. Cold spells in the Nordic Seas during the early Eocene Greenhouse. Nat. Commun. 2020, 11, 4713. [Google Scholar] [CrossRef] [PubMed]
- Glass, K.; Ito, S.; Wilby, P.R.; Sota, T.; Nakamura, A.; Bowers, R.; Miller, K.E.; Dutta, S.; Summons, R.E.; Briggs, D.E.G.; et al. Impact of diagenesis and maturation on the survival of eumelanin in the fossil record. Org. Geochem. 2013, 64, 29–37. [Google Scholar] [CrossRef]
- Van Der Kamp, T.; Riedel, A.; Greven, H. Micromorphology of the elytral cuticle of beetles, with an emphasis on weevils (Coleoptera: Curculionoidea). Arthropod Struct. Dev. 2016, 45, 14–22. [Google Scholar] [CrossRef]
- Vinther, J.; Briggs, D.E.G.; Clarke, J.; Mayr, G.; Prum, R.O. Structural coloration in a fossil feather. Biol. Lett. 2009, 6, 128–131. [Google Scholar] [CrossRef] [Green Version]
- Parker, A.R. 515 million years of structural colour. J. Opt. A Pure Appl. Opt. 2000, 2, R15–R28. [Google Scholar] [CrossRef]
- Parker, A.R. The diversity and implications of animal structural colours. J. Exp. Biol. 1998, 201, 2343–2347. [Google Scholar] [CrossRef]
- Seago, A.E.; Brady, P.; Vigneron, J.-P.; Schultz, T.D. Gold bugs and beyond: A review of iridescence and structural colour mechanisms in beetles (Coleoptera). J. R. Soc. Interface 2009, 6, S165–S184. [Google Scholar] [CrossRef] [Green Version]
- Wilts, B.D.; Michielsen, K.; Kuipers, J.; De Raedt, H.; Stavenga, D.G. Brilliant camouflage: Photonic crystals in the diamond weevil, Entimus imperialis. Proc. R. Soc. B 2012, 279, 2524–2530. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, S.; Yoshioka, S.; Miyazaki, J. Physics of structural colors. Rep. Prog. Phys. 2008, 71, 76401–76431. [Google Scholar] [CrossRef] [Green Version]
- Onelli, O.; van de Kamp, T.; Skepper, J.N.; Powell, J.; dos Santos Rolo, T.; Baumbach, T.; Vignolini, S. Development of structural colour in leaf beetles. Sci. Rep. 2017, 7, 1373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stavenga, D.G.; Leertouwer, H.L.; Hariyama, T.; De Raedt, H.A.; Wilts, B.D. Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins. PLoS ONE 2012, 7, e49743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, A.R.; Mckenzie, D. The cause of 50 million-year-old colour. Proc. R. Soc. B 2003, 270, S151–S153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, A.R.; Hegedus, Z.; Watts, R.A. Solar-absorber antireflector on the eye of an Eocene fly (45 Ma). Proc. R. Soc. B 1998, 265, 811–815. [Google Scholar] [CrossRef] [Green Version]
- McNamara, M.E.; Briggs, D.E.G.; Orr, P.J.; Wedmann, S.; Noh, H.; Cao, H. Fossilized biophotonic nanostructures reveal the original colors of 47-million-year-old moths. PLoS Biol. 2011, 9, e1001200. [Google Scholar] [CrossRef] [Green Version]
- Dyke, G.; Lindow, B. Taphonomy and abundance of birds from the Lower Eocene Fur Formation of Denmark. Geol. J. 2009, 44, 365–373. [Google Scholar] [CrossRef] [Green Version]
- De La Garza, R.G.; Madsen, H.; Eriksson, M.E.; Lindgren, J. A fossil seaturtle (Reptilia, Pan-Cheloniidae) with preserved soft tissues from the Eocene Fur Formation of Denmark. J. Vertebr. Paleontol. 2021, 41, e1938590. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heingård, M.; Sjövall, P.; Schultz, B.P.; Sylvestersen, R.L.; Lindgren, J. Preservation and Taphonomy of Fossil Insects from the Earliest Eocene of Denmark. Biology 2022, 11, 395. https://doi.org/10.3390/biology11030395
Heingård M, Sjövall P, Schultz BP, Sylvestersen RL, Lindgren J. Preservation and Taphonomy of Fossil Insects from the Earliest Eocene of Denmark. Biology. 2022; 11(3):395. https://doi.org/10.3390/biology11030395
Chicago/Turabian StyleHeingård, Miriam, Peter Sjövall, Bo P. Schultz, René L. Sylvestersen, and Johan Lindgren. 2022. "Preservation and Taphonomy of Fossil Insects from the Earliest Eocene of Denmark" Biology 11, no. 3: 395. https://doi.org/10.3390/biology11030395
APA StyleHeingård, M., Sjövall, P., Schultz, B. P., Sylvestersen, R. L., & Lindgren, J. (2022). Preservation and Taphonomy of Fossil Insects from the Earliest Eocene of Denmark. Biology, 11(3), 395. https://doi.org/10.3390/biology11030395