Climate Change and Vector-Borne Diseases in China: A Review of Evidence and Implications for Risk Management
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Study Selection Process
2.4. Data Extraction and Analysis
3. Results
3.1. Literature Description
3.2. The Relationship between Meteorological Factors and Vector-Borne Diseases
3.3. Potential Pathway of Meteorological Factors on Vector-Borne Diseases
3.4. The Regional Differentiation of the Relationship between Meteorological Factors and Vector-Borne Diseases
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coronavirus Disease (COVID-19): Climate Change. 2020. Available online: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19-climate-change (accessed on 22 April 2020).
- Semenza, J.C.; Paz, S. Climate change and infectious disease in Europe: Impact, projection and adaptation. Lancet Reg. Health Eur. 2021, 9, 100230. [Google Scholar] [CrossRef]
- Franklinos, L.H.V.; Jones, K.E.; Redding, D.W.; Abubakar, I. The effect of global change on mosquito-borne disease. Lancet Infect. Dis. 2019, 19, e302–e312. [Google Scholar] [CrossRef]
- Vector-Borne Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (accessed on 2 March 2020).
- Rocklöv, J.; Dubrow, R. Climate change: An enduring challenge for vector-borne disease prevention and control. Nat. Immunol. 2020, 21, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Ogden, N.H.; Radojevic, M.; Wu, X.; Duvvuri, V.R.; Leighton, P.A.; Wu, J. Estimated effects of projected climate change on the basic reproductive number of the Lyme disease vector Ixodes scapularis. Environ. Health Perspect. 2014, 122, 631–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, D.; Thomas, S.M.; Suk, J.E.; Sudre, B.; Hess, A.; Tjaden, N.B.; Beierkuhnlein, C.; Semenza, J.C. Climate change effects on Chikungunya transmission in Europe: Geospatial analysis of vector’s climatic suitability and virus’ temperature require-ments. Int. J. Health Geogr. 2013, 12, 51. [Google Scholar] [CrossRef] [Green Version]
- Fouque, F.; Reeder, J.C. Impact of past and on-going changes on climate and weather on vector-borne diseases transmission: A look at the evidence. Infect. Dis. Poverty 2019, 8, 51. [Google Scholar] [CrossRef]
- Semenza, J.C.; Suk, J.E. Vector-borne diseases and climate change: A European perspective. FEMS Microbiol. Lett. 2018, 365, fnx244. [Google Scholar] [CrossRef] [PubMed]
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Beagley, J.; Belesova, K.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; et al. The 2020 report of The Lancet Countdown on health and climate change: Responding to converging crises. Lancet 2021, 397, 129–170. [Google Scholar] [CrossRef]
- Climate Change Center of China Meteorological Administration. Blue Book on Climate Change in China (2020); China Meteorological Administration: Beijing, China, 2020. [Google Scholar]
- Xu, J.; Xu, K.; Li, Z.; Ayeb-Karlsson, S.; Beagley, J.; Belesova, K.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; et al. Forecast of Dengue Cases in 20 Chinese Cities Based on the Deep Learning Method. Int. J. Environ. Res. Public Health 2020, 17, 453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Niu, Y.; Sun, W.; Liu, K.; Liu, X.; Zhao, N.; Yue, Y.; Wu, H.; Meng, F.; Wang, J.; et al. Climate factors driven typhus group rickettsiosis incidence dynamics in Xishuangbanna Dai autonomous prefecture of Yunnan province in China, 2005–2017. Environ. Health 2020, 19, 3. [Google Scholar] [CrossRef] [Green Version]
- Yi, B.; Zhang, Z.; Xu, D.; Xi, Y. Relationship of dengue fever epidemic to Aedes density changed by climate factors in Guangdong Province. Wei Sheng Yan Jiu 2003, 32, 152–154. [Google Scholar] [PubMed]
- Liu, Z.; Zhang, Y.; Tong, M.X.; Zhang, Y.; Xiang, J.; Gao, Q.; Wang, S.; Sun, S.; Jiang, B.; Bi, P. Nonlinear and Threshold Effect of Meteorological Factors on Japanese Encephalitis Transmission in Southwestern China. Am. J. Trop. Med. Hyg. 2020, 103, 2442–2449. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Huo, X.; Xiang, J.; Lu, L.; Liu, X.; Song, X.; Jia, C.; Liu, Q. Interactions and marginal effects of meteorological factors on haemorrhagic fever with renal syndrome in different climate zones: Evidence from 254 cities of China. Sci. Total Environ. 2020, 721, 137564. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Li, F.; Xu, H.; Huang, L.C.; Gu, Z.G.; Sun, Z.Y.; Yan, G.J.; Zhu, Y.J.; Tang, C. Spatio-temporal distribution of scrub typhus and related influencing factors in coastal beach area of Yancheng, China. Zhonghua Liu Xing Bing Xue Za Zhi 2016, 37, 232–237. [Google Scholar] [PubMed]
- Liu, X.; Jiang, B.; Gu, W.; Liu, Q. Temporal trend and climate factors of hemorrhagic fever with renal syndrome epidemic in Shenyang City, China. BMC Infect. Dis. 2011, 11, 331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, J.X.; Lu, Q.; Hu, W.B.; Tong, S.L.; Wang, B.; Yang, F.T.; Xu, Z.W.; Xun, S.P.; Shen, X.H. Development of an empirical model to predict malaria outbreaks based on monthly case reports and climate variables in Hefei, China, 1990–2011. Acta Trop. 2018, 178, 148–154. [Google Scholar] [CrossRef]
- Wang, L.; Hu, W.; Magalhaes, R.J.S.; Bi, P.; Ding, F.; Sun, H.; Li, S.; Yin, W.; Wei, L.; Liu, Q.; et al. The role of environmental factors in the spatial distribution of Japanese encephalitis in mainland China. Environ. Int. 2014, 73, 1–9. [Google Scholar] [CrossRef]
- Li, T.; Yang, Z.; Dong, Z.; Bi, P.; Ding, F.; Sun, H.; Li, S.; Yin, W.; Wei, L.; Liu, Q.; et al. Meteorological factors and risk of scrub typhus in Guangzhou, southern China, 2006–2012. BMC Infect. Dis. 2014, 14, 139. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Bambrick, H.; Yakob, L.; Devine, G.; Frentiu, F.D.; Williams, G.; Li, Z.; Yang, W.; Hu, W. Extreme weather conditions and dengue outbreak in Guangdong, China: Spatial heterogeneity based on climate variability. Environ. Res. 2021, 196, 110900. [Google Scholar] [CrossRef]
- Li, C.; Zhao, Q.; Zhao, Z.; Liu, Q.; Ma, W. The association between tropical cyclones and dengue fever in the Pearl River Delta, China during 2013–2018: A time-stratified case-crossover study. PLoS Negl. Trop. Dis. 2021, 15, e0009776. [Google Scholar] [CrossRef]
- Chan, E.Y.Y.; Lo, E.S.K.; Huang, Z.; Lam, H.C.Y.; Yeung, M.P.-S.; Kwok, K.-O.; Hung, K.K.C.; Tse, S.L.-A. Sociodemographic predictors of knowledge, mosquito bite patterns and protective behaviors concerning vector borne disease: The case of dengue fever in Chinese subtropical city, Hong Kong. PLoS Negl. Trop. Dis. 2021, 15, e0008993. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Zhang, C.; Suen, H.P.; Ai, S.; Bai, Y.; Bao, J.; Chen, B.; Cheng, L.; Cui, X.; Dai, H.; et al. The 2020 China report of the Lancet Countdown on health and climate change. Lancet Public Health 2020, 6, e64–e81. [Google Scholar] [CrossRef]
- Song, Y.; Ge, Y.; Wang, J.; Ren, Z.; Liao, Y.; Peng, J. Spatial distribution estimation of malaria in northern China and its scenarios in 2020, 2030, 2040 and 2050. Malar. J. 2016, 15, 345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Stige, L.C.; Chan, K.S.; Zhou, J.; Yang, J.; Sang, S.; Wang, M.; Yang, Z.; Yan, Z.; Jiang, T.; et al. Climate variation drives dengue dynamics. Proc. Natl. Acad. Sci. USA 2017, 114, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.J.; Tanner, M.; Utzinger, J.; Malone, J.B.; Bergquist, R.; Chan, E.Y.Y.; Gao, Q.; Zhou, X.-N. Malaria surveillance-response strategies in different transmission zones of the People’s Republic of China: Preparing for climate change. Malar. J. 2012, 11, 426. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Ren, H.; Lu, L. Increasingly expanded future risk of dengue fever in the Pearl River Delta, China. PLoS Negl. Trop. Dis. 2021, 15, e0009745. [Google Scholar] [CrossRef]
- Bai, L.; Morton, L.C.; Liu, Q. Climate change and mosquito-borne diseases in China: A review. Glob. Health 2013, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Wei, W.; Bai, Z.; Fan, C.; Li, S.; Liu, Q.; Yang, K. A systematic review and meta-analysis of dengue risk with temperature change. Int. J. Environ. Res. Public Health 2014, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Cui, W.; Zeng, Q. Research progress on effect of climate warming on vector-borne infectious diseases. Occup. Health 2012, 28, 2149–2151. [Google Scholar]
- Cheng, J.; Bambrick, H.; Frentiu, F.D.; Devine, G.; Yakob, L.; Xu, Z.; Li, Z.; Yang, W.; Hu, W. Extreme weather events and dengue outbreaks in Guangzhou, China: A time-series quasi-binomial distributed lag non-linear model. Int. J. Biometeorol. 2021, 65, 1033–1042. [Google Scholar] [CrossRef]
- Li, C.; Wu, X.; Sheridan, S.; Lee, J.; Wang, X.; Yin, J.; Han, J. Interaction of climate and socio-ecological environment drives the dengue outbreak in epidemic region of China. PLoS Negl. Trop. Dis. 2021, 15, e0009761. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Ren, H.; Zheng, L.; Cao, W.; Zhang, A.; Zhuang, D.; Lu, L.; Jiang, H. Ecological Niche Modeling Identifies Fine-Scale Areas at High Risk of Dengue Fever in the Pearl River Delta, China. Int. J. Environ. Res. Public Health 2017, 14, 619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oidtman, R.J.; Lai, S.; Huang, Z.; Yang, J.; Siraj, A.S.; Reiner, R.C., Jr.; Tatem, A.J.; Perkins, T.A.; Yu, H. Inter-annual variation in seasonal dengue epidemics driven by multiple interacting factors in Guangzhou, China. Nat. Commun. 2019, 10, 1148. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.M.; Zhou, H.Y.; Cao, J.; Liu, Y.-B. Analysis of seasonal variability of vivax malaria by circular distribution method in Jiangsu Province from 1961 to 2010. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 2012, 24, 329–332. [Google Scholar]
- Luo, Y.; Zhang, Y.H.; Pei, F.Q.; Liu, T.; Zeng, W.-L.; Xiao, J.-P.; Ma, W.-J. Time-series analysis on the malaria morbidity affected by meteorological factors in Guangdong province. Zhonghua Yu Fang Yi Xue Za Zhi 2012, 46, 892–897. [Google Scholar] [PubMed]
- Bai, Y.; Xu, Z.; Zhang, J.; Mao, D.; Luo, C.; He, Y.; Liang, G.; Lu, B.; Bisesi, M.S.; Sun, Q.; et al. Regional impact of climate on Japanese encephalitis in areas located near the three gorges dam. PLoS ONE 2014, 9, e84326. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Chen, F.; Feng, Z.; Li, X.; Zhou, X.-H. The temporal lagged association between meteorological factors and malaria in 30 counties in south-west China: A multilevel distributed lag non-linear analysis. Malar. J. 2014, 13, 57. [Google Scholar] [CrossRef] [Green Version]
- Wardrop, N.A.; Barnett, A.G.; Atkinson, J.A.; Clements, A.C. Plasmodium vivax malaria incidence over time and its association with temperature and rainfall in four counties of Yunnan Province, China. Malar. J. 2013, 12, 452. [Google Scholar] [CrossRef] [Green Version]
- Xiang, J.; Hansen, A.; Liu, Q.; Tong, M.X.; Liu, X.; Sun, Y.; Cameron, S.; Hanson-Easey, S.; Han, G.-S.; Williams, C.; et al. Impact of meteorological factors on hemorrhagic fever with renal syndrome in 19 cities in China, 2005–2014. Sci. Total Environ. 2018, 636, 1249–1256. [Google Scholar] [CrossRef]
- Lu, L.; Ren, Z.; Yue, Y.; Yu, X.; Lu, S.; Li, G.; Li, H.; Wei, J.; Liu, J.; Mu, Y.; et al. Niche modeling predictions of the potential distribution of Marmota himalayana, the host animal of plague in Yushu County of Qinghai. BMC Public Health 2016, 16, 183. [Google Scholar] [CrossRef] [Green Version]
- Shi, B.; Zheng, J.; Qiu, H.; Yang, G.J.; Xia, S.; Zhou, X.N. Risk assessment of malaria transmission at the border area of China and Myanmar. Infect. Dis. Poverty 2017, 6, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.Y.; Gu, W.D.; Fang, L.Q.; Li, C.-P.; Bi, P.; Glass, G.E.; Jiang, J.-F.; Sun, S.-H.; Qian, Q.; Liu, W.; et al. Climate variability and hemorrhagic fever with renal syndrome transmission in northeastern China. Environ. Health Perspect. 2010, 118, 915–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, Y.; Li, R.; Qiu, J.; Xu, X.; Huang, D.; Qu, Y. Geographical Clustering and Environmental Determinants of Schistosomiasis from 2007 to 2012 in Jianghan Plain, China. Int. J. Environ. Res. Public Health 2018, 15, 1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, F.; Ward, M.P.; Wang, Y.; Zhang, Z.; Hu, Y. Implications from assessing environmental effects on spatio-temporal pattern of schistosomiasis in the Yangtze Basin, China. Geospat. Health 2018, 13, 1–6. [Google Scholar] [CrossRef]
- Hu, F.; Liu, Y.M.; Li, Z.J.; Yuan, M. Effect of environmental factors on temporal and spatial distribution of schistosomiasis in Poyang Lake region. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 2012, 24, 393–396, 403. [Google Scholar]
- Hu, Y.; Xia, C.; Li, S.; Li, S.; Ward, M.P.; Luo, C.; Gao, F.; Wang, Q.; Zhang, S.; Zhang, Z. Assessing environmental factors associated with regional schistosomiasis prevalence in Anhui Province, Peoples’ Republic of China using a geographical detector method. Infect. Dis. Poverty 2017, 6, 87. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Fang, L.Q.; Cao, W.C. Study on the epidemiological characteristics and influencing factors of scrub typhus in the autumn-winter natural foci, from 2006 to 2013. Zhonghua Liu Xing Bing Xue Za Zhi 2016, 37, 1112–1116. [Google Scholar]
- Hou, X.; Liu, K.K.; Liu, X.B.; Gang, C.; Lei, X.; Qiyong, L. Nonlinear effects of climate factors on dengue epidemic in Guangdong province, China. Chin. J. Vector Biol. Control 2019, 30, 25–30. [Google Scholar]
- Lu, L.; Lin, H.; Tian, L.; Yang, W.; Sun, J.; Liu, Q. Time series analysis of dengue fever and weather in Guangzhou, China. BMC Public Health 2009, 9, 395. [Google Scholar] [CrossRef]
- Liu, K.K.; Wang, T.; Huang, X.D.; Wang, G.-L.; Xia, Y.; Zhang, Y.-T.; Jing, Q.-L.; Huang, J.-W.; Liu, X.-X.; Lu, J.-H.; et al. Risk assessment of dengue fever in Zhongshan, China: A time-series regression tree analysis. Epidemiol. Infect. 2017, 145, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Bi, Y.; Yu, W.; Hu, W.; Lin, H.; Guo, Y.; Zhou, X.-N.; Tong, S. Impact of climate variability on Plasmodium vivax and Plasmodium falciparum malaria in Yunnan Province, China. Parasites Vectors 2013, 6, 357. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.Y.; Bi, P.; Cazelles, B.; Zhou, S.; Huang, S.-Q.; Yang, J.; Pei, Y.; Wu, X.-X.; Fu, S.-H.; Tong, S.-L.; et al. How environmental conditions impact mosquito ecology and Japanese encephalitis: An eco-epidemiological approach. Environ. Int. 2015, 79, 17–24. [Google Scholar] [CrossRef]
- Yang, L.P.; Liu, J.; Wang, X.J.; Ma, W.; Jia, C.X.; Jiang, B.F. Effects of meteorological factors on scrub typhus in a temperate region of China. Epidemiol. Infect. 2014, 142, 2217–2226. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.; Liu, K.; Xia, Y.; Lu, Y.; Jing, Q.; Yang, Z.; Hu, W.; Lu, J. Developing a Time Series Predictive Model for Dengue in Zhongshan, China Based on Weather and Guangzhou Dengue Surveillance Data. PLoS Negl. Trop. Dis. 2016, 10, e0004473. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Zhou, S.; Zhang, S.; Zhang, H.; Li, W. Meteorological factors-based spatio-temporal mapping and predicting malaria in central China. Am. J. Trop. Med. Hyg. 2011, 85, 560–567. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Xue, F.Z.; Wang, J.Z.; Liu, Q.Y. Association of haemorrhagic fever with renal syndrome and weather factors in Junan County, China: A case-crossover study. Epidemiol. Infect. 2013, 141, 697–705. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Leung, R.K.; Jing, Q.; Zhang, W.; Yang, Z.; Lu, J.; Hao, Y.; Zhang, D. Meteorological Factors for Dengue Fever Control and Prevention in South China. Int. J. Environ. Res. Public Health 2016, 13, 867. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Stige, L.C.; Kausrud, K.L.; Ari, T.B.; Wang, S.; Fang, X.; Schmid, B.V.; Liu, Q.; Stenseth, N.C.; Zhang, Z. Wet climate and transportation routes accelerate spread of human plague. Proc. Biol. Sci. 2014, 281, 20133159. [Google Scholar] [CrossRef] [Green Version]
- Li, T.G.; Yang, Z.C.; Luo, L.; Di, B.; Wang, M. Dengue Fever epidemiological status and relationship with meteorological variables in Guangzhou, Southern China, 2007–2012. Biomed. Environ. Sci. 2013, 26, 994–997. [Google Scholar]
- Guo, C.; Yang, L.; Ou, C.Q.; Li, L.; Zhuang, Y.; Yang, J.; Zhou, Y.-X.; Qian, J.; Chen, P.-Y.; Liu, Q.-Y. Malaria incidence from 2005-2013 and its associations with meteorological factors in Guangdong, China. Malar. J. 2015, 14, 116. [Google Scholar] [CrossRef] [Green Version]
- Meng, H.; Xiao, J.; Liu, T.; Zhu, Z.; Gong, D.; Kang, M.; Song, T.; Peng, Z.; Deng, A.; Ma, W. The impacts of precipitation patterns on dengue epidemics in Guangzhou city. Int. J. Biometeorol. 2021, 65, 1929–1937. [Google Scholar] [CrossRef]
- Ding, G.; Gao, L.; Li, X.; Zhou, M.; Liu, Q.; Ren, H.; Jiang, B. A mixed method to evaluate burden of malaria due to flooding and waterlogging in Mengcheng County, China: A case study. PLoS ONE 2014, 9, e97520. [Google Scholar] [CrossRef]
- Fan, J.; Lin, H.; Wang, C.; Bai, L.; Yang, S.; Chu, C.; Yang, W.; Liu, Q. Identifying the high-risk areas and associated meteorological factors of dengue transmission in Guangdong Province, China from 2005 to 2011. Epidemiol. Infect. 2014, 142, 634–643. [Google Scholar] [CrossRef] [Green Version]
- Bi, P.; Parton, K.A.; Tong, S. El Nino-Southern Oscillation and vector-borne diseases in Anhui, China. Vector Borne Zoonotic Dis. 2005, 5, 95–100. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Z.; Tao, Y.; Chen, M.; Wen, X.; Xu, L.; Tian, H.; Stenseth, N.C. Relationship between increase rate of human plague in China and global climate index as revealed by cross-spectral and cross-wavelet analyses. Integr. Zool. 2007, 2, 144–153. [Google Scholar] [CrossRef]
- Liu, K.; Hou, X.; Ren, Z.; Lowe, R.; Wang, Y.; Li, R.; Liu, X.; Sun, J.; Lu, L.; Song, X.; et al. Climate factors and the East Asian summer monsoon may drive large outbreaks of dengue in China. Environ. Res. 2020, 183, 109190. [Google Scholar] [CrossRef]
- Xu, L.; Liu, Q.; Stige, L.C.; Ari, T.B.; Fang, X.; Chan, K.S.; Wang, S.; Stenseth, N.C.; Zhang, Z. Nonlinear effect of climate on plague during the third pandemic in China. Proc. Natl. Acad. Sci. USA 2011, 108, 10214–10219. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.R.; Deng, S.Z. Climate change may increase the risk of emerging infectious diseases. J. Shandong Univ. Health Sci. 2020, 58, 1–6. [Google Scholar]
- Bangs, M.J.; Larasati, R.P.; Corwin, A.L.; Wuryadi, S. Climatic factors associated with epidemic dengue in Palembang, Indonesia: Implications of short-term meteorological events on virus transmission. Southeast Asian J. Trop. Med. Public Health 2006, 37, 1103–1116. [Google Scholar]
- Wang, C.; Jiang, B.; Fan, J.; Wang, F.; Liu, Q. A study of the dengue epidemic and meteorological factors in Guangzhou, China, by using a zero-inflated Poisson regression model. Asia Pac. J. Public Health 2014, 26, 48–57. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, Z.; Zhang, C.; Jiang, B. Short-term effects of floods on Japanese encephalitis in Nanchong, China, 2007–2012: A time-stratified case-crossover study. Sci. Total Environ. 2016, 563, 1105–1110. [Google Scholar] [CrossRef]
- Jetten, T.H.; Focks, D.A. Potential changes in the distribution of dengue transmission under climate warming. Am. J. Trop. Med. Hyg. 1997, 57, 285–297. [Google Scholar] [CrossRef]
- Fan, W.J.; Lu, Q.; Yang, F.T. Relationship between morbidity of Plasmodium vivax malaria infection and meteorologicaI factors in Hefei City of Anhui Province in 1999–2009. China Trop. Med. 2012, 12, 1058–1061. [Google Scholar]
- Yang, G.J.; Vounatsou, P.; Zhou, X.N.; Tanner, M.; Utzinger, J. A potential impact of climate change and water resource development on the transmission of Schistosoma japonicum in China. Parassitologia 2005, 47, 127–134. [Google Scholar]
- Yang, G.J.; Gemperli, A.; Vounatsou, P.; Tanner, M.; Zhou, X.-N.; Utzinger, J. A growing degree-days based time-series analysis for prediction of Schistosoma japonicum transmission in Jiangsu province, China. Am. J. Trop. Med. Hyg. 2006, 75, 549–555. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zheng, C. Associations between Meteorological Factors and Visceral Leishmaniasis Outbreaks in Jiashi County, Xinjiang Uygur Autonomous Region, China, 2005–2015. Int. J. Environ. Res. Public Health 2019, 16, 1775. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Hu, W.; Qi, X.; Zhuang, G. How Socio-Environmental Factors Are Associated with Japanese Encephalitis in Shaanxi, China-A Bayesian Spatial Analysis. Int. J. Environ. Res. Public Health 2018, 15, 608. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Sun, J.; Liu, X.; Li, R.; Wang, Y.; Lu, L.; Wu, H.; Gao, Y.; Xu, L.; Liu, Q. Spatiotemporal patterns and determinants of dengue at county level in China from 2005–2017. Int. J. Infect. Dis. 2018, 77, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Yang, L.; Liu, Q.; Wang, T.; Hossain, S.R.; Ho, S.C.; Tian, L. Time series analysis of Japanese encephalitis and weather in Linyi City, China. Int. J. Public Health 2012, 57, 289–296. [Google Scholar] [CrossRef]
- Wu, Y.; Qiao, Z.; Wang, N.; Yu, H.; Feng, Z.; Li, X.; Zhao, X. Describing interaction effect between lagged rainfalls on malaria: An epidemiological study in south-west China. Malar. J. 2017, 16, 53. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.C.; Liao, C.M.; Chio, C.P.; Chou, H.-H.; You, S.-H.; Cheng, Y.-H. Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: Insights from a statistical analysis. Sci. Total Environ. 2010, 408, 4069–4075. [Google Scholar] [CrossRef]
- Teklehaimanot, H.D.; Lipsitch, M.; Teklehaimanot, A.; Schwartz, J. Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia, I. Patterns of lagged weather effects reflect biological mechanisms. Malar. J. 2004, 3, 41. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Gao, X.; Ren, Z.; Cao, Y.; Wang, J.; Liang, G. A spatial and temporal analysis of Japanese encephalitis in mainland China, 1963-1975: A period without Japanese encephalitis vaccination. PLoS ONE 2014, 9, e99183. [Google Scholar] [CrossRef] [Green Version]
- Butterworth, M.K.; Morin, C.W.; Comrie, A.C. An Analysis of the Potential Impact of Climate Change on Dengue Transmission in the Southeastern United States. Environ. Health Perspect. 2017, 125, 579–585. [Google Scholar] [CrossRef]
- Sun, W.; Liu, X.; Li, W.; Mao, Z.; Sun, J.; Lu, L. Effects and interaction of meteorological factors on hemorrhagic fever with renal syndrome incidence in Huludao City, northeastern China, 2007–2018. PLoS Negl. Trop. Dis. 2021, 15, e0009217. [Google Scholar] [CrossRef]
- Yang, Z.; Jing, Q.; Huang, J.; Huang, J.; Guo, C.; Yang, K.; Chen, A.; Lu, J. Effects of natural and socioeconomic factors on dengue transmission in two cities of China from 2006 to 2017. Sci. Total Environ. 2020, 724, 138200. [Google Scholar]
- Liu, X.; Liu, K.; Yue, Y.; Wu, H.; Yang, S.; Guo, Y.; Ren, D.; Zhao, N.; Yang, J.; Liu, Q. Determination of Factors Affecting Dengue Occurrence in Representative Areas of China: A Principal Component Regression Analysis. Front. Public Health 2020, 8, 603872. [Google Scholar] [CrossRef]
- Bryson, J.M.; Bishop-Williams, K.E.; Berrang-Ford, L.; Nunez, E.C.; Lwasa, S.; Namanya, D.B.; Indigenous Health Adaptation to Climate Change Research Team; Harpe, S.L. Neglected Tropical Diseases in the Context of Climate Change in East Africa: A Systematic Scoping Review. Am. J. Trop. Med. Hyg. 2020, 102, 1443–1454. [Google Scholar] [CrossRef]
- Colon-Gonzalez, F.J.; Harris, I.; Osborn, T.J.; Bernardo, C.S.S.; Peres, C.A.; Hunter, P.R.; Lake, I.R. Limiting global-mean temperature increase to 1.5–2 °C degrees could reduce the incidence and spatial spread of dengue fever in Latin America. Proc. Natl. Acad. Sci. USA 2018, 115, 6243–6248. [Google Scholar]
- Mordecai, E.A.; Ryan, S.J.; Caldwell, J.M.; Shah, M.M.; LaBeaud, A.D. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet. Health 2020, 4, e416–e423. [Google Scholar] [CrossRef]
- Lowe, R.; Lee, S.A.; O’Reilly, K.M.; Bastos, L.; Carrasco-Escobar, G.; de Castro Catão, R.; Colón-González, F.J.; Barcellos, C.; Carvalho, M.S.; Blangiardo, M.; et al. Combined effects of hydrometeorological hazards and urbanisation on dengue risk in Brazil: A spatiotemporal modelling study. Lancet Planet. Health 2021, 5, E209–E219. [Google Scholar] [CrossRef]
- Gubler, D.J.; Reiter, P.; Ebi, K.L.; Yap, W.; Nasci, R.; Patz, J.A. Climate variability and change in the United States: Potential impacts on vector- and rodent-borne diseases. Environ. Health Perspect. 2001, 109, 223–233. [Google Scholar]
- Jemal, Y.; Al-Thukair, A.A. Combining GIS application and climatic factors for mosquito control in Eastern Province, Saudi Arabia. Saudi J. Biol. Sci. 2018, 25, 1593–1602. [Google Scholar] [CrossRef] [Green Version]
- Xiang, J.; Hansen, A.; Liu, Q.; Liu, X.; Tong, M.X.; Sun, Y.; Cameron, S.; Hanson-Easey, S.; Williams, C.; Han, G.-S.; et al. Association between dengue fever incidence and meteorological factors in Guangzhou, China, 2005–2014. Environ. Res. 2017, 153, 17–26. [Google Scholar] [CrossRef]
- Li, T.; Yang, Z.; Wang, M. Temperature, relative humidity and sunshine may be the effective predictors for occurrence of malaria in Guangzhou, southern China, 2006–2012. Parasites Vectors 2013, 6, 155. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Qi, C.; Zhang, D.D.; Li, C.-Y.; Zheng, Z.-L.; Wang, P.-Z.; Xu, Q.-Q.; Ding, S.-J.; Li, X.-J. Epidemic character and environmental factors in epidemic areas of severe fever with thrombocytopenia syndrome in Shandong Province. Ticks Tick Borne Dis. 2021, 12, 101593. [Google Scholar] [CrossRef]
- Huang, Y.X.; Ren, Z.Y.; Hang, D.R.; Hong, Q.; Gao, Y.; Sun, D.-K.; Zuo, Y.-P. Potential effect of climate changes on schistosomiasis japonica transmission in east route of South-to-North Water Diversion Project. Chin. J. Schistosomiasis Control 2009, 21, 197–204. [Google Scholar]
- Zhou, S.S.; Huang, F.; Wang, J.J.; Zhang, S.S.; Su, Y.P.; Tang, L.H. Geographical, meteorological and vectorial factors related to malaria re-emergence in Huang-Huai River of central China. Malar. J. 2010, 9, 337. [Google Scholar] [CrossRef] [Green Version]
- Bi, P.; Tong, S.; Donald, K.; Parton, K.A.; Ni, J. Climatic variables and transmission of malaria: A 12-year data analysis in Shuchen County, China. Public Health Rep. 2003, 118, 65–71. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S.; Zhang, Y.; Xiang, J.; Tong, M.X.; Gao, Q.; Zhang, Y.; Sun, S.; Liu, Q.; Jiang, B.; et al. Effect of temperature and its interactions with relative humidity and rainfall on malaria in a temperate city Suzhou, China. Environ. Sci. Pollut. Res. Int. 2021, 28, 16830–16842. [Google Scholar] [CrossRef]
- Liu, B.; Gao, X.; Ma, J.; Jiao, Z.; Xiao, J.; Hayat, M.A.; Wang, H. Modeling the present and future distribution of arbovirus vectors Aedes aegypti and Aedes albopictus under climate change scenarios in Mainland China. Sci. Total Environ. 2019, 664, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, X.; Cheng, L.; Zhou, P. Compound hot droughts over China: Identification, risk patterns and variations. Atmos. Res. 2019, 227, 210–219. [Google Scholar] [CrossRef]
Vector-Borne Disease | Vector | Study Area | Meteorological Factors | Outcome Metrics | Main Findings |
---|---|---|---|---|---|
Malaria | Mosquito | Shandong, Henan, Anhui, Jiangsu, Hubei, Sichuan, Chongqing, Guizhou, Yunnan, Guangdong, Hainan | Temperature, precipitation, humidity, air pressure, wind speed, sunshine, fog frequency, evaporation, flooding | Incidence, number of cases, detection rate | The association between meteorological factors and insect-borne diseases was nonlinear, consisting of reverse U-type and J-type shapes. The effects of rising temperature, rainfall, and humidity were beneficial to insect-borne disease transmission with lag effects. The correlations between wind speed, sunshine duration, air pressure, and insect-borne infectious diseases were negative. However, these correlations were different in some areas in China (see in Table 2). |
Dengue | Mosquito | Guangdong, Fujian, Guangxi, Yunnan | Temperature, precipitation, humidity, air pressure, wind speed, sunshine, East Asian monsoon index, Southern Osmillation Index | Incidence, number of cases | |
Japanese encephalitis | Mosquito | Shandong, Shaanxi, Hunan, Sichuan, Chongqing | Temperature, precipitation, humidity, air pressure, sunshine | Incidence, number of cases | |
Scrub typhus | Mites | Shandong, Anhui, Jiangsu, Guangdong | Temperature, precipitation, humidity, air pressure, sunshine, wind speed, evaporation | Incidence, number of cases | |
Typhus | Fleas | Liaoning, Yunnan | Temperature, precipitation, humidity | Number of cases | |
SFTS | Ticks | Jiangsu | Temperature, humidity, wind speed | Incidence | |
Leishmaniasis | Sandflies | Xinjiang | Temperature, precipitation, humidity | Number of cases | |
Plague | Rodent | Gansu, Qinghai, Sichuan, Yunnan, Guizhou, Guangxi | Temperature, precipitation, humidity, Southern Oscillation Index, equatorial sea surface temperature in the eastern Pacific Ocean | Incidence, number of cases, bacteriological positive rate of plague, intensity of the outbreak, spread rate | The positive association between temperature, precipitation, and humidity and rodent-borne diseases was nonlinear with lag effects. Wind speed was negatively correlated with rodent-borne diseases. However, the results varied in different regions (see in Table 2). |
HFRS | Rodent | Liaoning, Shandong, Anhui | Temperature, precipitation, humidity, air pressure, wind speed, sunshine, Southern Osm index | Incidence, number of cases | |
Schistosomiasis | Snails | Anhui, Jiangsu, Jiangxi | Temperature, precipitation, humidity, sunshine | Incidence, infection rate, number of cases, acute schistosomiasis detectable rate | The association between schistosomiasis and temperature was negative, while the rainfall and humidity associations were positive. However, the results varied in different regions (see in Table 2). |
Disease | Area | Time Period | Meteorological Factors | ||
---|---|---|---|---|---|
Temperature | Precipitation | Humidity | |||
Malaria | Shandong | ||||
Jinan City | 1959–1979 | Max T (+) ** | P (+) | H (+) * | |
Min T (+) ** | |||||
Henan | |||||
Yongcheng County | 2006–2010 | Monthly avg max T (+) *** | - | Monthly avg H (+) ** | |
Anhui | 1990–2009 | Monthly avg T(+) * | Monthly avg P (+) ** | Monthly avg RH (+) * | |
Shuchen County | 1980–1991 | Monthly avg max T (+) *** Monthly avg min T (+) *** | Monthly P (+) *** | Monthly avg RH (+) *** | |
Hefei city | 1999–2009 | Monthly avg T (+) Monthly avg max T (+) *** Monthly avg min T (+) *** | P (+) * | H (+) *** | |
Hefei City | 1990–2011 | Monthly min T (+) *** | P | RH (+) *** | |
Yunnan | |||||
Mengla County | 1971–1999 | Monthly max T (+) * Monthly min T (+) * | Monthly P (−) | Monthly RH (−) | |
125 counties | 2012 | Yearly avg T (+) ** | Yearly P (+) ** | ||
Guangdong | 2005–2013 | High T (+) | P (J) | - | |
Guangzhou city | 2006–2012 | Daily avg T (+) * | - | Daily RH (+) * | |
Hainan | 1995–2008 | Monthly avg T (+) * Monthly avg max T (+) * Monthly min T (+) * | Monthly total P (+) * | - | |
Dengue | Guangdong | ||||
Guangzhou City | 2006–2015 | Extremely high T (+) * | Extremely high P (+) * | Extremely high H (+) * | |
Guangzhou City | 2005–2015 | Monthly avg max T (+) ** | Monthly total P (+) ** | - | |
Guangzhou City | 2007–2012 | Monthly avg T (+) ** | - | Monthly avg RH (+) ** | |
Guangzhou City | 2001–2006 | Min T (+) *** | Monthly total P (+) | Min H (+) | |
Guangzhou City | 2000–2012 | Monthly avg min T (+) * | Monthly total P (+) * | Monthly avg RH (+) * | |
Guangzhou City | 2005–2011 | Daily avg T (+) * Daily min T (+) * Daily max T (−) * | Daily P (+) | Daily H (+) | |
Zhongshan City | 2001–2013 | Monthly max T (+) * Monthly max DTR (+) * | - | Monthly avg RH (+) * Monthly max RH (+) * | |
Fujian | 1978–2017 | Monthly avg T (+) * | Monthly total P (+) * | - | |
Guangxi | 1978–2017 | Monthly avg T (+) * | Monthly total P (+) * | - | |
Yuanan | 1978–2017 | Monthly avg T (+) * | Monthly total P (+) * | - | |
Japanese encephalitis | Shandong | ||||
Jinan City | 1959–1979 | Monthly avg max T (+) *** Monthly avg min T (+) *** | Monthly total P (+) * | Monthly avg RH (+) *** | |
Linyi City | 1956–2004 | Monthly min T (+) ** | - | Monthly avg RH (+) * | |
Shannxi | 2006–2014 | Monthly min T (−) | Monthly P (+) | - | |
Anhui | |||||
Jieshou County | 1980–1996 | Monthly avg max T (+) * Monthly avg min T (+) * | Monthly total P (+) ** | - | |
Hunan | |||||
Changsha city | 2004–2009 | Monthly avg max T (+) * Monthly avg min T (+) * | Monthly total P (+) * | Monthly avg AH (+) * | |
Sichuan | |||||
Nanchong City | 2007–2012 | Daily avg T (+) * | - | Daily avg RH (+) * | |
Chongqin | |||||
12 counties along the Yangtze River | 1997–2008 | Monthly avg T (+) *** | Monthly total P (−) *** | - | |
Scrub typhus | Shandong | 2006–2013 | Monthly avg T (reversed U) *** | Monthly total P (−) *** | Monthly avg RH (−) *** |
Laiwu City | 2006–2012 | Monthly avg T (+) ** | Monthly avg P (+) ** | Monthly avg RH (+) ** | |
Anhui | 2006–2013 | Monthly avg T (reversed U) *** | Monthly total P (−) *** | Monthly avg RH (+) *** | |
Jiangsu | 2006–2013 | Monthly avg T (reversed U) *** | Monthly total P (−) *** | Monthly avg RH (+) *** | |
Yancheng City | 2005–2014 | Monthly avg min T (+) *** | Monthly total P (+) *** | Monthly avg RH (−) *** | |
Guangdong | |||||
Guangzhou City | 2006–2012 | Daily avg T (+) ** | Daily P (+) ** | Daily avg RH (−) * | |
Typhus group rickettsiosis | Yunan | ||||
Xishuangbanna | 2005–2017 | Weekly avg T (J) * | Weekly avg P (reversed U) * | - | |
SFTS | Jiangsu | 2010–2016 | Max T in warmest month (+) * | P in warmest month (+) * | - |
Leishmaniasis | Xinjiang | ||||
Jiashi County | 2005–2015 | Monthly avg T (+) ** | Monthly total P | Monthly avg RH (−) ** | |
Plague | Gansu | ||||
Sunan County, Subei County | 1973–2016 | Monthly avg T (+) * | Monthly avg P (+) * | Monthly avg RH (−) * | |
Yunnan | 1982–2013 | Extreme max T (−) ** | - | Avg RH (+) ** | |
HFRS | Guizhou | 1982–2013 | Extreme max T (−) ** | - | Avg RH (+) ** |
Guangxi | 1982–2013 | Extreme max T (−) ** | - | Avg RH (+) ** | |
Liaoning | 2005–2014 | Weekly max T (+) * | Weekly P (+) * | Weekly avg RH (+) * | |
Shenyang City | 2004–2009 | Monthly avg T (−) * Monthly avg max T (−) * Monthly avg min T (−) * | Monthly total P (−) * | Monthly avg RH (−) * | |
Heilongjiang | 2005–2014 | Weekly max T (+) * | Weekly P (+) * | Weekly avg RH (+) * | |
Anhui | 2005–2014 | Weekly max T (+) * | Weekly P (+) * | Weekly avg RH (+) * | |
Schistosomiasis | Hubei | 1976–1989 | Avg T in July (−) * | Avg P in July (−) * | - |
Anhui | 1997–2010 | Monthly avg T (−) * | Monthly total P (−) * | ||
Jiangxi | 2008 | - | Monthly min P (−) ** Monthly max P (−) ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Huang, C. Climate Change and Vector-Borne Diseases in China: A Review of Evidence and Implications for Risk Management. Biology 2022, 11, 370. https://doi.org/10.3390/biology11030370
Wu Y, Huang C. Climate Change and Vector-Borne Diseases in China: A Review of Evidence and Implications for Risk Management. Biology. 2022; 11(3):370. https://doi.org/10.3390/biology11030370
Chicago/Turabian StyleWu, Yurong, and Cunrui Huang. 2022. "Climate Change and Vector-Borne Diseases in China: A Review of Evidence and Implications for Risk Management" Biology 11, no. 3: 370. https://doi.org/10.3390/biology11030370
APA StyleWu, Y., & Huang, C. (2022). Climate Change and Vector-Borne Diseases in China: A Review of Evidence and Implications for Risk Management. Biology, 11(3), 370. https://doi.org/10.3390/biology11030370