Stress-Reducing Effect of a 50 Hz Electric Field in Mice after Repeated Immobilizations, Electric Field Shields, and Polarization of the Electrodes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. EF Exposure System
2.3. Immobilization Stress
2.4. Experiment 1: Effect of EF on Plasma Glucocorticoid Levels in Repeatedly Immobilized Mice
2.5. Experiment 2: Effect of the Polarization of the Electrode on the Suppressive Effect of EF
2.6. Experiment 3: Effect of EF Shield on the Suppressive Effect of EF
2.7. Plasma Glucocorticoid Level
2.8. Experiment 4: Change in Bodyweight
2.9. Statistical Analysis
3. Results
3.1. Experiment 1: Effect of EF on Plasma Glucocorticoid Levels in Repeatedly Immobilized Mice
3.2. Experiment 2: Effect of the Polarization of the Electrode on the Suppressive Effect of EF
3.3. Experiment 3: Effect of EF Shield on the Suppressive Effect of EF
3.4. Experiment 4: Change in Bodyweight
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Commission on Non-Ionizing Radiation Protection ICNIRP. Gaps in Knowledge Relevant to the “Guidelines for Limiting Exposure to Time-Varying Electric and Magnetic Fields (1 Hz–100 kHz)”. Health Phys. 2020, 118, 533–542. [Google Scholar] [CrossRef] [PubMed]
- International Commission on Non-Ionizing Radiation Protection ICNIRP. Principles for Non-Ionizing Radiation Protection. Health Phys. 2020, 118, 477–482. [Google Scholar] [CrossRef] [PubMed]
- International Commission on Non-Ionizing Radiation Protection ICNIRP. Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys. 2010, 99, 818–836. [Google Scholar] [CrossRef] [PubMed]
- World-Health-Organization WHO. Extremely Low Frequency Fields Environmental Health Criteria Monograph No. 238. 2007. Available online: https://www.who.int/publications/i/item/9789241572385 (accessed on 14 February 2022).
- Mitani, Y.; Matsugi, A.; Okano, H.; Nedachi, T.; Hara, H. Effect of exposure to a high-voltage alternating current electric field on muscle extensibility. J. Jpn. Soc. Balneol. Climatol. Phys. Med. 2015, 78, 244–252. [Google Scholar]
- Mattsson, M.O.; Simkó, M. Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz. Med. Devices 2019, 12, 347–368. [Google Scholar] [CrossRef] [Green Version]
- Ohtsuki, T.; Nabeta, T.; Nakanishi, H.; Kawahata, H.; Ogihara, T.; Morishita, R.; Aoki, M. Electric Field Exposure Improves Subjective Symptoms Related to Sleeplessness in College Students: A Pilot Study of Electric Field Therapy for Sleep Disorder. Immunol. Endocr. Metab. Agents Med. Chem. 2017, 17, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Shinba, T.; Takahashi, K.; Kanetake, S.; Nedachi, T.; Yamaneki, M.; Doge, F.; Hori, T.; Harakawa, S.; Miki, M.; Hara, H.; et al. A pilot study on electric field therapy for chronic pain with no obvious underlying diseases. Jpn. Soc. Integr. Med. 2012, 5, 68–72. [Google Scholar]
- Ito, F.; Ohsaki, K.; Takahashi, K.; Hara, H. The Effects of Electric Field Therapeutic Device (Healthtron) on the Stiffness in the Neck and Shoulder Area: Changes in subjective symptoms, blood circulation and the autonomic nervous system. J. Jpn. Soc. Balneol. Climatol. Phys. Med. 2005, 68, 110–121. [Google Scholar] [CrossRef]
- Coskun, O.; Comlekci, S. Effect of ELF electric field on some on biochemistry characters in the rat serum. Toxicol. Ind. Health 2011, 27, 329–333. [Google Scholar] [CrossRef]
- Akpinar, D.; Ozturk, N.; Ozen, S.; Agar, A.; Yargicoglu, P. The effect of different strengths of extremely low-frequency electric fields on antioxidant status, lipid peroxidation, and visual evoked potentials. Electromagn. Biol. Med. 2012, 31, 436–448. [Google Scholar] [CrossRef]
- Di, G.; Gu, X.; Lin, Q.; Wu, S.; Kim, H.B. A comparative study on effects of static electric field and power frequency electric field on hematology in mice. Ecotoxicol. Environ. Saf. 2018, 166, 109–115. [Google Scholar] [CrossRef]
- Gok, D.K.; Akpinar, D.; Hidisoglu, E.; Ozen, S.; Agar, A.; Yargicoglu, P. The developmental effects of extremely low frequency electric fields on visual and somatosensory evoked potentials in adult rats. Electromagn. Biol. Med. 2016, 35, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Weigel, R.J.; Jaffe, R.A.; Lundstrom, D.L.; Forsythe, W.C.; Anderson, L.E. Stimulation of cutaneous mechanoreceptors by 60-Hz electric fields. Bioelectromagnetics 1987, 8, 337–350. [Google Scholar] [CrossRef]
- Weigel, R.J.; Lundstrom, D.L. Effect of relative humidity on the movement of rat vibrissae in a 60-Hz electric field. Bioelectromagnetics 1987, 8, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Romo, R.; Hernandez, A.; Zainos, A.; Brody, C.; Salinas, E. Exploring the cortical evidence of a sensory-discrimination process. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2002, 357, 1039–1051. [Google Scholar] [CrossRef] [Green Version]
- Romo, R.; Hernandez, A.; Zainos, A.; Brody, C.D.; Lemus, L. Sensing without touching: Psychophysical performance based on cortical microstimulation. Neuron 2000, 26, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Romo, R.; Hernandez, A.; Zainos, A.; Salinas, E. Somatosensory discrimination based on cortical microstimulation. Nature 1998, 392, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Ohta, S.; Shimizu, K.; Tsuchida, Y.; Matsumoto, G. Detection-threshold of 50-Hz electric fields by human subjects. Bioelectromagnetics 1989, 10, 319–327. [Google Scholar] [CrossRef]
- Reilly, J.P. Neuroelectric mechanisms applied to low frequency electric and magnetic field exposure guidelines—Part I: Sinusoidal waveforms. Health Phys. 2002, 83, 341–355. [Google Scholar] [CrossRef]
- Harakawa, S.; Hori, T.; Inoue, N.; Okano, H.; Nedachi, T.; Suzuki, H. Effect of extensive electric field therapy in bone density. Jpn. Soc. Integr. Med. 2014, 7, 60–66. [Google Scholar]
- Harakawa, S.; Nedachi, T.; Suzuki, H. Extremely low-frequency electric field suppresses not only induced stress response but also stress-related tissue damage in mice. Sci. Rep. 2020, 10, 20930. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Doge, F.; Yoshioka, M. Prolonged Ca2+ transients in ATP-stimulated endothelial cells exposed to 50 Hz electric fields. Cell Biol. Int. 2005, 29, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Kuroki, M.; Doge, F.; Sawasaki, Y.; Yoshioka, M. Effects of low-frequency electric fields on the intracellular Ca2+ response induced in human vascular endothelial cells by vasoactive substances. Electromagn. Biol. Med. 2002, 21, 279–286. [Google Scholar] [CrossRef]
- Marino, A.A.; Kolomytkin, O.V.; Frilot, C. Extracellular currents alter gap junction intercellular communication in synovial fibroblasts. Bioelectromagnetics 2003, 24, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Kolomytkin, O.V.; Dunn, S.; Hart, F.X.; Frilot, C.; Kolomytkin, D.; Marino, A.A. Glycoproteins bound to ion channels mediate detection of electric fields: A proposed mechanism and supporting evidence. Bioelectromagnetics 2007, 28, 379–385. [Google Scholar] [CrossRef]
- Yanamoto, H.; Miyamoto, S.; Nakajo, Y.; Nakano, Y.; Hori, T.; Naritomi, H.; Kikuchi, H. Repeated application of an electric field increases BDNF in the brain, enhances spatial learning, and induces infarct tolerance. Brain Res. 2008, 1212, 79–88. [Google Scholar] [CrossRef]
- Kariya, T.; Hori, T.; Harakawa, S.; Inoue, N.; Nagasawa, H. Exposure to 50-Hz electric fields on stress response initiated by infection with the protozoan parasite, Toxoplasma gondii, in mice. J. Protozool. Res. 2006, 16, 51–59. [Google Scholar]
- Hori, T.; Yamsaard, T.; Ueta, Y.Y.; Harakawa, S.; Kaneko, E.; Miyamoto, A.; Xuan, X.; Toyoda, Y.; Suzuki, H. Exposure of C57BL/6J male mice to an electric field improves copulation rates with superovulated females. J. Reprod. Dev. 2005, 51, 393–397. [Google Scholar] [CrossRef] [Green Version]
- Imaki, T.; Nahan, J.L.; Rivier, C.; Sawchenko, P.E.; Vale, W. Differential regulation of corticotropin-releasing factor mRNA in rat brain regions by glucocorticoids and stress. J. Neurosci. 1991, 11, 585–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selye, H. The general adaptation syndrome and the diseases of adaptation. J. Clin. Endocrinol. Metab. 1946, 6, 117–230. [Google Scholar] [CrossRef] [PubMed]
- Nicolaides, N.C.; Kyratzi, E.; Lamprokostopoulou, A.; Chrousos, G.P.; Charmandari, E. Stress, the stress system and the role of glucocorticoids. Neuroimmunomodulation 2015, 22, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Hori, T.; Inoue, N.; Suzuki, H.; Harakawa, S. Exposure to 50 Hz electric fields reduces stress-induced glucocorticoid levels in BALB/c mice in a kV/m- and duration-dependent manner. Bioelectromagnetics 2015, 36, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Hori, T.; Inoue, N.; Suzuki, H.; Harakawa, S. Configuration-dependent variability of the effect of an electric field on the plasma glucocorticoid level in immobilized mice. Bioelectromagnetics 2017, 38, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Hori, T.; Nedachi, T.; Suzuki, H.; Harakawa, S. Characterization of the suppressive effects of extremely-low-frequency electric fields on a stress-induced increase in the plasma glucocorticoid level in mice. Bioelectromagnetics 2018, 39, 516–528. [Google Scholar] [CrossRef] [PubMed]
- Harakawa, S.; Hori, T.; Nedachi, T.; Suzuki, H. Gender and Age Differences in the Suppressive Effect of a 50 Hz Electric Field on the Immobilization-Induced Increase of Plasma Glucocorticoid in Mice. Bioelectromagnetics 2020, 41, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Kirby, E.D.; Geraghty, A.C.; Ubuka, T.; Bentley, G.E.; Kaufer, D. Stress increases putative gonadotropin inhibitory hormone and decreases luteinizing hormone in male rats. Proc. Natl. Acad. Sci. USA 2009, 106, 11324–11329. [Google Scholar] [CrossRef] [Green Version]
- Bahlouli, W.; Breton, J.; Lelouard, M.; L’Huillier, C.; Tirelle, P.; Salameh, E.; Amamou, A.; Atmani, K.; Goichon, A.; Bôle-Feysot, C.; et al. Stress-induced intestinal barrier dysfunction is exacerbated during diet-induced obesity. J. Nutr. Biochem. 2020, 81, 108382. [Google Scholar] [CrossRef]
- Lu, X.T.; Liu, Y.F.; Zhao, L.; Li, W.J.; Yang, R.X.; Yan, F.F.; Zhao, Y.X.; Jiang, F. Chronic psychological stress induces vascular inflammation in rabbits. Stress 2013, 16, 87–98. [Google Scholar] [CrossRef]
- Silverman, M.N.; Sternberg, E.M. Glucocorticoid regulation of inflammation and its functional correlates: From HPA axis to glucocorticoid receptor dysfunction. Ann. N. Y. Acad. Sci. 2012, 1261, 55–63. [Google Scholar] [CrossRef]
- Hayley, S.; Kelly, O.; Anisman, H. Corticosterone changes in response to stressors, acute and protracted actions of tumor necrosis factor-alpha, and lipopolysaccharide treatments in mice lacking the tumor necrosis factor-alpha p55 receptor gene. Neuroimmunomodulation 2004, 11, 241–246. [Google Scholar] [CrossRef]
- Brattsand, R.; Linden, M. Cytokine modulation by glucocorticoids: Mechanisms and actions in cellular studies. Aliment. Pharmacol. Ther. 1996, 10, 81–90; discussion 91. [Google Scholar] [CrossRef]
- Chrousos, G.P. Stress and disorders of the stress system. Nat. Rev. Endocrinol. 2009, 5, 374–381. [Google Scholar] [CrossRef]
- Shi, S.S.; Shao, S.H.; Yuan, B.P.; Pan, F.; Li, Z.L. Acute stress and chronic stress change brain-derived neurotrophic factor (BDNF) and tyrosine kinase-coupled receptor (TrkB) expression in both young and aged rat hippocampus. Yonsei Med. J. 2010, 51, 661–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Givalois, L.; Marmigere, F.; Rage, F.; Ixart, G.; Arancibia, S.; Tapia-Arancibia, L. Immobilization stress rapidly and differentially modulates BDNF and TrkB mRNA expression in the pituitary gland of adult male rats. Neuroendocrinology 2001, 74, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Zenker, N.; Bernstein, D.E. The estimation of small amounts of corticosterone in rat plasma. J. Biol. Chem. 1958, 231, 695–701. [Google Scholar] [CrossRef]
- Kvetnansky, R.; Weise, V.K.; Thoa, N.B.; Kopin, I.J. Effects of chronic guanethidine treatment and adrenal medullectomy on plasma levels of catecholamines and corticosterone in forcibly immobilized rats. J. Pharmacol. Exp. Ther. 1979, 209, 287–291. [Google Scholar] [PubMed]
- Njung’e, K.; Handley, S.L. Evaluation of marble-burying behavior as a model of anxiety. Pharmacol. Biochem. Behav. 1991, 38, 63–67. [Google Scholar] [CrossRef]
- Kawasaki, H.; Okano, H.; Nedachi, T.; Nakagawa-Yagi, Y.; Hara, A.; Ishida, N. Effects of an electric field on sleep quality and life span mediated by ultraviolet (UV)-A/blue light photoreceptor CRYPTOCHROME in Drosophila. Sci. Rep. 2021, 11, 20543. [Google Scholar] [CrossRef]
- Hara, A.; Hara, H.; Suzuki, N.; Harakawa, S.; Uenaka, N.; Martin, D.; Harris, H.; Inventor; Hakuju Institute for Health Science Inc. Assignee. Methods of Treating Disorders with Electric Fields. U.S. Patent Application No US20050187581A1, 25 August 2005. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harakawa, S.; Nedachi, T.; Shinba, T.; Suzuki, H. Stress-Reducing Effect of a 50 Hz Electric Field in Mice after Repeated Immobilizations, Electric Field Shields, and Polarization of the Electrodes. Biology 2022, 11, 323. https://doi.org/10.3390/biology11020323
Harakawa S, Nedachi T, Shinba T, Suzuki H. Stress-Reducing Effect of a 50 Hz Electric Field in Mice after Repeated Immobilizations, Electric Field Shields, and Polarization of the Electrodes. Biology. 2022; 11(2):323. https://doi.org/10.3390/biology11020323
Chicago/Turabian StyleHarakawa, Shinji, Takaki Nedachi, Toshikazu Shinba, and Hiroshi Suzuki. 2022. "Stress-Reducing Effect of a 50 Hz Electric Field in Mice after Repeated Immobilizations, Electric Field Shields, and Polarization of the Electrodes" Biology 11, no. 2: 323. https://doi.org/10.3390/biology11020323
APA StyleHarakawa, S., Nedachi, T., Shinba, T., & Suzuki, H. (2022). Stress-Reducing Effect of a 50 Hz Electric Field in Mice after Repeated Immobilizations, Electric Field Shields, and Polarization of the Electrodes. Biology, 11(2), 323. https://doi.org/10.3390/biology11020323