Distribution of Copy Number Variation in SYT11 Gene and Its Association with Growth Conformation Traits in Chinese Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Samples and Data Collection
2.2. Isolation of Genomic DNA and Total RNA
2.3. Copy Numbers of SYT11 Gene Analysis
2.4. Gene Expression Analysis
2.5. Statistical Analysis
3. Results
3.1. Distribution of the Copy Number Variation in Four Cattle Breeds
3.2. Association Analysis between SYT11 CNVs and Growth Traits in Three Cattle Breeds
3.3. Correlation Analysis of Copy Number Variation and mRNA Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casas, E.; White, S.N.; Riley, D.G.; Smith, T.; Brenneman, R.A. Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle. J. Anim. Sci. 2005, 83, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pryce, J.E.; Bolormaa, S.; Chamberlain, A.J.; Bowman, P.J.; Savin, K.; Goddard, M.E.; Hayes, B.J. A validated genome-wide association study in 2 dairy cattle breeds for milk production and fertility traits using variable length haplotypes. J. Dairy Sci. 2010, 93, 3331–3345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.E.; Brown, T.; Hebert, D.A.; Cardone, M.F.; Hou, Y.; Choudhary, R.K.; Shaffer, J.; Amazu, C.; Connor, E.E.; Ventura, M. Initial analysis of copy number variations in cattle selected for resistance or susceptibility to intestinal nematodes. Mamm. Genome 2011, 22, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Feuk, L.; Carson, A.R.; Scherer, S.W. Structural variation in the human genome. Nat. Rev. Genet. 2006, 2, 85–97. [Google Scholar] [CrossRef]
- Liu, G.E.; Bickhart, D.M. Copy number variation in the cattle genome. Funct. Integr. Genom. 2012, 12, 609–624. [Google Scholar] [CrossRef]
- Zhang, F.; Gu, W.; Hurles, M.E.; Lupski, J.R. Copy Number Variation in Human Health, Disease, and Evolution. Annu. Rev. Genom. Hum. Genet. 2009, 1, 451. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Ding, R.; Zhuang, Z.; Wu, J.; Yang, M.; Zhou, S.; Ye, Y.; Geng, Q.; Xu, Z.; Huang, S.; et al. Genome-wide detection of CNV regions and their potential association with growth and fatness traits in Duroc pigs. BMC Genom. 2021, 22, 332. [Google Scholar] [CrossRef]
- Flisikowski, K.; Venhoranta, H.; Nowacka-Woszuk, J.; Mckay, S.D.; Flyckt, A.; Taponen, J.; Schnabel, R.; Schwarzenbacher, H.; Szczerbal, I.; Lohi, H. A Novel Mutation in the Maternally Imprinted PEG3 Domain Results in a Loss of MIMT1 Expression and Causes Abortions and Stillbirths in Cattle (Bos taurus). PLoS ONE 2010, 5, e15116. [Google Scholar] [CrossRef]
- Drogemuller, C.; Distl, O.; Leeb, T. Partial deletion of the bovine ED1 gene causes anhidrotic ectodermal dysplasia in cattle. Genome Res. 2001, 11, 1699–1705. [Google Scholar] [CrossRef] [Green Version]
- Ran, X.Q.; Pan, H.; Huang, S.H.; Liu, C.; Niu, X.; Li, S.; Wang, J.F. Copy number variations of MTHFSD gene across pig breeds and its association with litter size traits in Chinese indigenous Xiang pig. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1320–1327. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, L.; Zhang, L.; Liu, X.; Hou, X.; Gao, H.; Yan, H.; Zhao, F.; Wang, L. NTN1 Affects Porcine Intramuscular Fat Content by Affecting the Expression of Myogenic Regulatory Factors. Animals 2019, 9, 609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, S.; Oishi, M. Effects of methylation of non-CpG sequence in the promoter region on the expression of human synaptotagmin XI (syt11). Gene 2005, 348, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Luo, F.; Zhang, Z.; Xue, L.; Wu, X.S.; Chiang, H.C.; Shin, W.; Wu, L.G. SNARE proteins synaptobrevin, SNAP-25, and syntaxin are involved in rapid and slow endocytosis at synapses. Cell Rep. 2013, 3, 1414–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, X.; Zhen, Z.; Mcneil, B.; Luo, F.; Wu, X.S.; Sheng, J.; Shin, W.; Wu, L.G. Voltage-dependent calcium channels at the plasma membrane, but not vesicular channels, couple exocytosis to endocytosis. Cell Rep. 2012, 1, 632–638. [Google Scholar]
- Yeo, H.; Kim, H.W.; Mo, J.; Lee, D.; Han, S.; Hong, S.; Koh, M.J.; Sun, W.; Choi, S.; Rhyu, I.J. Developmental expression and subcellular distribution of synaptotagmin 11 in rat hippocampus. Neuroscience 2012, 225, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Gustavsson, N.; Han, W. Calcium-sensing beyond neurotransmitters: Functions of synaptotagmins in neuroendocrine and endocrine secretion. Biosci. Rep. 2009, 29, 245–259. [Google Scholar] [CrossRef] [Green Version]
- Sudhof, T.C. Synaptotagmins: Why so many? J. Biol. Chem. 2002, 277, 7629–7632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, G.D.; Anagnostaras, S.G.; Silva, A.J.; Herschman, H.R. Deficits in memory and motor performance in synaptotagmin IV mutant mice. Proc. Natl. Acad. Sci. USA 2000, 97, 5598–5603. [Google Scholar] [CrossRef] [Green Version]
- Du, C.; Wang, Y.; Zhang, F.; Yan, S.; Guan, Y.; Gong, X.; Zhang, T.; Cui, X.; Wang, X.; Zhang, C.X. Synaptotagmin-11 inhibits cytokine secretion and phagocytosis in microglia. Glia 2017, 65, 1656–1667. [Google Scholar] [CrossRef]
- Wang, C. WYHM: Synaptotagmin-11 inhibits clathrin-mediated and bulk endocytosis. EMBO Rep. 2016, 17, 47–63. [Google Scholar] [CrossRef] [Green Version]
- Milochau, A. LVBM: Synaptotagmin 11 interacts with components of the RNA-induced silencing complex RISC in clonal pancreatic β-cells. FEBS Lett. 2014, 588, 2217–2222. [Google Scholar] [CrossRef] [PubMed]
- Yekta, S.; Shih, I.H.; Bartel, D.P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 2004, 304, 594–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mok, G.F.; Lozano-Velasco, E.; Munsterberg, A. microRNAs in skeletal muscle development. Semin. Cell Dev. Biol. 2017, 72, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Li, Y.; Wang, X.; Yu, J.; Cai, Y.; Zheng, Z.; Li, R.; Zhang, S.; Chen, N.; Asadollahpour, N.H.; et al. An atlas of CNV maps in cattle, goat and sheep. Sci. China Life Sci. 2021, 64, 1747–1764. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.L.; Zheng-Hai, L.I.; Zhou, X.H.; Wang, Z.; Wang, A.K.; Jin, X.D.; Kai-Xing, Q.U.; Huang, B.Z. Effects on Yunling Cattle Cross Puer Yellow Cattle. China Cattle Sci. 2015, 41, 31–35. [Google Scholar]
- Wang, J.Q.; Wang, Y.H.; Tan, S.J.; Bao-Rui, R.U.; Liu, X.; Qiao-Zhen, L.I. Study on the Performance of Pinan Cattle Growth, Reproduction, Slaughter and Meat Quality. China Cattle Sci. 2019, 45, 52–54. [Google Scholar]
- Bao-Rui, R.U.; Lou, C.H.; Qi, X.L.; Peng-Fei, L.I.; Wang, Z.B.; Yang, Q.C. Project Progress Report on New Beef Line Breeding by Introducing the Charolais Blood into Nanyang Cattle. China Cattle Sci. 2006, 2, 40–43. [Google Scholar]
- Gilbert, R.P.; Bailey, D.R.; Shannon, N.H. Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets. J. Anim. Sci. 1993, 71, 1712. [Google Scholar] [CrossRef]
- Liu, Y.; Zan, L.; Zhao, S.; Xin, Y.; Li, L.; Cui, W.; Tang, Z.; Li, K. Molecular characterization, polymorphism of bovine ZBTB38 gene and association with body measurement traits in native Chinese cattle breeds. Mol. Biol. Rep. 2010, 37, 4041–4049. [Google Scholar] [CrossRef]
- Liu, Y.; Zan, L.; Zhao, S.; Xin, Y.; Yang, J. Molecular characterization, expression pattern, polymorphism and association analysis of bovine ADAMTSL3 gene. Mol. Biol. Rep. 2012, 39, 1551–1560. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, X.; Jia, W.; Pan, C.; Li, X.; Li, C.; Chen, H.; Lan, H. Novel Nucleotide Variations, Haplotypes Structure and Associationswith Growth Related Traits of Goat AT Motif-Binding Factor (ATBF1) Gene. Asian-Australas J. Anim. Sci. 2015, 10, 1394–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, N.; Fu, W.; Zhao, J.; Shen, J.; Chen, Q.; Zheng, Z.; Chen, H.; Sonstegard, T.S.; Lei, C.; Jiang, Y. BGVD: An Integrated Database for Bovine Sequencing Variations and Selective Signatures. Genom. Proteom. Bioinform. 2020, 18, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.E.; Hou, Y.; Zhu, B.; Cardone, M.F.; Jiang, L.; Cellamare, A.; Mitra, A.; Alexander, L.J.; Coutinho, L.L.; Dell’Aquila, M.E.; et al. Analysis of copy number variations among diverse cattle breeds. Genome Res. 2010, 20, 693–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Yang, P.; Shi, S.; Zhang, Z.; Shi, Q.; Xu, J.; He, H.; Lei, C.; Wang, E.; Chen, H.; et al. Association Analysis to Copy Number Variation (CNV) of Opn4 Gene with Growth Traits of Goats. Animals 2020, 10, 441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revay, T.; Quach, A.T.; Maignel, L.; Sullivan, B.; King, W.A. Copy number variations in high and low fertility breeding boars. BMC Genom. 2015, 16, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Qiao, R.; Wei, R.; Guo, Y.; Ai, H.; Ma, J.; Ren, J.; Huang, L. A comprehensive survey of copy number variation in 18 diverse pig populations and identification of candidate copy number variable genes associated with complex traits. BMC Genom. 2012, 13, 733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Z.; Li, X.; Cheng, J.; Jiang, R.; Huang, R.; Wang, D.; Huang, Y.; Pi, L.; Hu, L.; Chen, H. Copy Number Variation of the PIGY Gene in Sheep and Its Association Analysis with Growth Traits. Animals 2020, 10, 688. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Zhan, Z.; Huang, Y.; Lan, X.; Lei, C.; Qi, X.; Chen, H. Variants and haplotypes within MEF2C gene influence stature of chinese native cattle including body dimensions and weight. Livest. Sci. 2016, 185, 106–109. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, L.; Shi, T.; Zhou, Y.; Cai, H.; Lan, X.; Zhang, C.; Lei, C.; Chen, H. Copy number variations of MICAL-L2 shaping gene expression contribute to different phenotypes of cattle. Mamm. Genome 2013, 24, 508–516. [Google Scholar] [CrossRef]
- Cahan, P.; Li, Y.; Izumi, M.; Graubert, T.A. The impact of copy number variation on local gene expression in mouse hematopoietic stem and progenitor cells. Nat. Genet. 2009, 41, 430–437. [Google Scholar] [CrossRef] [Green Version]
- Stankiewicz, P.; Lupski, J.R. Structural variation in the human genome and its role in disease. Annu. Rev. Med. 2010, 61, 437–455. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Xu, Y.; Yang, M.; Huang, Y.; Lan, X.; Lei., C.; Qi, X.; Yang, X.; Chen, H. Copy number variations at LEPR gene locus associated with gene expression and phenotypic traits in Chinese cattle. Anim. Sci. J. 2016, 87, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Keel, B.N.; Keele, J.W.; Snelling, W.M. Genome-wide copy number variation in the bovine genome detected using low coverage sequence of popular beef breeds. Anim. Genet. 2017, 48, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Diskin, S.J.; Hou, C.; Glessner, J.T.; Attiyeh, E.F.; Laudenslager, M.; Bosse, K.; Cole, K.; Mossé, Y.P.; Wood, A.; Lynch, J.E. Copy number variation at 1q21.1 associated with neuroblastoma. Nature 2009, 459, 987–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, E.; Kulkarni, H.; Bolivar, H.; Mangano, A.; Sanchez, R.; Catano, G.; Nibbs, R.J.; Freedman, B.I.; Quinones, M.P.; Bamshad, M.J.; et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 2005, 307, 1434–1440. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.A.; Carvalho, C.; Lupski, J.R. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 2007, 131, 1235–1247. [Google Scholar] [CrossRef] [Green Version]
- Bickhart, D.M.; Hou, Y.; Schroeder, S.G.; Alkan, C.; Cardone, M.F.; Matukumalli, L.K.; Song, J.; Schnabel, R.D.; Ventura, M.; Taylor, J.F. Copy number variation of individual cattle genomes using next-generation sequencing. Genome Res. 2012, 22, 778. [Google Scholar] [CrossRef] [Green Version]
- Mcdaneld, T.G.; Kuehn, L.A.; Thomas, M.G.; Pollak, E.J.; Keele, J.W. Deletion on chromosome 5 associated with decreased reproductive efficiency in female cattle. J. Anim. Sci. 2014, 92, 1378–1384. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J.P.; Shim, S.M.; Nam, H.Y.; Ryu, G.M.; Hong, E.J.; Kim, H.L.; Han, B.G. Copy number variation at leptin receptor gene locus associated with metabolic traits and the risk of type 2 diabetes mellitus. BMC Genom. 2010, 11, 426. [Google Scholar] [CrossRef] [Green Version]
- Glavan, G.; Zivin, M. Differential expression of striatal synaptotagmin mRNA isoforms in hemiparkinsonian rats. Neuroscience 2005, 135, 545–554. [Google Scholar] [CrossRef]
- Mittelsteadt, T.; Seifert, G.; Alvarez-Baron, E.; Steinhuser, C.; Schoch, S. Differential mRNA expression patterns of the synaptotagmin gene family in the rodent brain. J. Comp. Neurol. 2010, 512, 514–528. [Google Scholar] [CrossRef] [PubMed]
- Be Nto, C.F.; Ashkenazi, A.; Jimenez-Sanchez, M.; Rubinsztein, D.C. The Parkinson’s disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway. Nat. Commun. 2016, 7, 11803. [Google Scholar] [CrossRef] [PubMed]
- Shimojo, M.; Madara, J.; Pankow, S.; Liu, X.; Yates, J.; Südhof, T.C. Maximov A: Synaptotagmin-11 mediates a vesicle trafficking pathway that is essential for development and synaptic plasticity. Genes Dev. 2019, 33, 365–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Detection Level | Genes | Primer Sequences (5′ to 3′) | Amplification Length | Annealing (°C) |
---|---|---|---|---|
DNA level | SYT11 | F: TATTTTCCACCCCACTCTCTGC | 92 bp | 60 |
R: TTACGTCATCTCGGAGCGGC | ||||
BTF3 | F: AACCAGGAGAAACTCGCCAA | 166 bp | 60 | |
R: TTCGGTGAAATGCCCTCTCG | ||||
mRNA level | SYT11 | F: CACCTGCCGAAGATGGACATC | 173 bp | 60 |
R: AGGTCGGTGGGGATGTCGTAG | ||||
GAPDH | F: TGAGGACCAGGTTGTCTCCTGCG | 145 bp | 60 | |
R: CACCACCCTGTTGCTGTAGCCA |
Growth Traits | CNV Types (Mean ± SE) | p-Value | ||
---|---|---|---|---|
Loss (n = 38) | Normal (n = 56) | Gain (n = 185) | ||
body height (cm) | 129.88 ± 5.50 | 130.00 ± 6.10 | 127.73 ± 10.45 | 0.167 |
height at hip cross (cm) | 133.55 ± 5.44 | 130.53 ± 20.89 | 131.91 ± 10.28 | 0.446 |
body length (cm) | 154.11 ± 10.71 B | 159.68 ± 10.31 A | 154.27 ± 9.97 B | 0.010 |
chest circumference (cm) | 198.02 ± 10.56 | 196.95 ± 10.93 | 195.55 ± 9.85 | 0.253 |
waist circumference (cm) | 222.93 ± 33.083 | 226.53 ± 13.42 | 225.62 ± 20.81 | 0.694 |
cannon circumference (cm) | 19.03 ± 1.28 A | 18.63 ± 1.58 A,B | 18.43 ± 1.37 B | 0.018 |
chest width (cm) | 49.08 ± 4.48 | 49.84 ± 4.64 | 48.71 ± 4.17 | 0.328 |
chest depth (cm) | 69.53 ± 6.37 a,b | 70.45 ± 5.15 a | 67.80 ± 5.80 b | 0.014 |
rump length (cm) | 115.48 ± 12.15 a | 111.79 ± 10.15 a,b | 111.16 ± 10.78 b | 0.037 |
hip width (cm) | 59.21 ± 15.52 | 58.34 ± 7.91 | 57.37 ± 4.67 | 0.338 |
hucklebone width (cm) | 22.39 ± 2.48 | 22.29 ± 2.57 | 22.08 ± 2.17 | 0.635 |
head length (cm) | 48.20 ± 2.80 | 47.92 ± 4.70 | 48.15 ± 3.22 | 0.915 |
forehead size (cm) | 22.26 ± 1.53 b | 23.45 ± 4.36 a | 22.45 ± 1.32 b | 0.013 |
jiri length (cm) | 50.16 ± 4.22 | 50.71 ± 3.56 | 49.86 ± 3.57 | 0.420 |
body weight (kg) | 569.93 ± 81.57 | 549.46 ± 67.52 | 539.44 ± 110.91 | 0.189 |
Growth Traits | CNV Types (Mean ± SE) | p-Value | ||
---|---|---|---|---|
Loss (n = 28) | Normal (n = 23) | Gain (n = 220) | ||
body height (cm) | 123.30 ± 6.64 | 124.85 ± 7.52 | 124.61 ± 6.11 | 0.612 |
body length (cm) | 144.69 ± 12.25 | 148.53 ± 10.27 | 147.19 ± 11.26 | 0.469 |
height at hip cross (cm) | 129.52 ± 6.38 | 133 ± 6.85 | 131.66 ± 6.11 | 0.136 |
chest circumference (cm) | 168.60 ± 12.75 | 174.57 ± 12.47 | 172.95 ± 13.14 | 0.234 |
hip width (cm) | 44.73 ± 4.51 | 46.60 ± 4.46 | 45.79 ± 4.09 | 0.283 |
jiri length (cm) | 46.78 ± 3.65 | 48.35 ± 5.45 | 48.11 ± 3.95 | 0.304 |
Growth Traits | CNV Types (Mean ± SE) | p-Value | ||
---|---|---|---|---|
Loss (n = 60) | Normal (n = 18) | Gain (n = 9) | ||
body weight (kg) | 575.5 ± 59.44 a | 540.65 ± 59.84 b | 582.77 ± 49.68 a | 0.027 |
body height (cm) | 136.77 ± 2.71 | 135.08 ± 3.65 | 136.77 ± 2.43 | 0.103 |
height at hip cross (cm) | 138.83 ± 3.51 | 138.16 ± 2.91 | 139.11 ± 2.26 | 0.537 |
body length (cm) | 161.5 ± 11.34 | 158.81 ± 6.98 | 161.11 ± 6.09 | 0.387 |
chest circumference (cm) | 196.11 ± 17.25 | 193.1 ± 8.74 | 195.66 ± 8.06 | 0.53 |
waist circumference (cm) | 219.33 ± 21.75 | 217.13 ± 17.58 | 222.33 ± 19.84 | 0.706 |
cannon circumference (cm) | 19.5 ± 1.58 | 19.16 ± 1.41 | 19.55 ± 1.23 | 0.572 |
Growth Traits | CNV Types (Mean ± SE) | p-Value | ||
---|---|---|---|---|
Loss (n = 38) | Normal (n = 56) | Gain (n = 185) | ||
body height (cm) | 126.45 ± 8.45 | 129.56 ± 6.9 | 131.28 ± 6.8 | 0.394 |
height at hip cross (cm) | 138.17 ± 14.06 | 137.03 ± 8.75 | 138.7 ± 13.4 | 0.906 |
body length (cm) | 153.34 ± 13.56 | 149.71 ± 15.19 | 141.78 ± 14.14 | 0.096 |
chest circumference (cm) | 190.14 ± 13.33 | 190.71 ± 17.45 | 183.06 ± 16.54 | 0.814 |
Growth Traits | Cattle Breed (Mean ± SE) | p-Value | |||
---|---|---|---|---|---|
YL (n = 279) | PN (n = 271) | XN (n = 87) | QC (n = 47) | ||
body height (cm) | 128.47 ± 9.18 B | 124.53 ± 6.3 C | 135.61 ± 3.43 A | 128.04 ± 7.07 B | 0.000 |
height at hip cross (cm) | 132.05 ± 11.6 C | 147.12 ± 11.24 A | 138.4 ± 2.98 B | 125.23 ± 7.36 D | 0.000 |
body length (cm) | 154.98 ± 10.3 B | 131.62 ± 6.24 D | 159.61 ± 7.98 A | 136.79 ± 14.26 C | 0.000 |
chest circumference (cm) | 196.24 ± 10.16 A | 172.75 ± 13.07 C | 193.99 ± 10.92 A | 179.57 ± 18.72 B | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Yue, B.; Yang, Y.; Tang, J.; Yang, S.; Qi, A.; Qu, K.; Lan, X.; Lei, C.; Wei, Z.; et al. Distribution of Copy Number Variation in SYT11 Gene and Its Association with Growth Conformation Traits in Chinese Cattle. Biology 2022, 11, 223. https://doi.org/10.3390/biology11020223
Yang H, Yue B, Yang Y, Tang J, Yang S, Qi A, Qu K, Lan X, Lei C, Wei Z, et al. Distribution of Copy Number Variation in SYT11 Gene and Its Association with Growth Conformation Traits in Chinese Cattle. Biology. 2022; 11(2):223. https://doi.org/10.3390/biology11020223
Chicago/Turabian StyleYang, Haiyan, Binglin Yue, Yu Yang, Jia Tang, Shuling Yang, Ao Qi, Kaixing Qu, Xianyong Lan, Chuzhao Lei, Zehui Wei, and et al. 2022. "Distribution of Copy Number Variation in SYT11 Gene and Its Association with Growth Conformation Traits in Chinese Cattle" Biology 11, no. 2: 223. https://doi.org/10.3390/biology11020223
APA StyleYang, H., Yue, B., Yang, Y., Tang, J., Yang, S., Qi, A., Qu, K., Lan, X., Lei, C., Wei, Z., Huang, B., & Chen, H. (2022). Distribution of Copy Number Variation in SYT11 Gene and Its Association with Growth Conformation Traits in Chinese Cattle. Biology, 11(2), 223. https://doi.org/10.3390/biology11020223