Genetic Diversity, Admixture and Analysis of Homozygous-by-Descent (HBD) Segments of Russian Wild Boar
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Data Processing and Data Analyses
2.3. Genetic Distances and Population Structure
2.4. Analysis of Homozygous-by-Descent (HBD) Segments
3. Results
3.1. Genetic Diversity and Admixture of the Russian Wild Boar
3.2. Analysis of Homozygous-by-Descent (HBD) Segments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Groves, C.P.; Grubb, P. The Eurasian suids Sus and Babyrousa. In Pigs, Peccaries and Hippos. Status, Survey and Conservation Action Plan. Gland: IUCN. Ungulate Taxonomy; Oliver, W.R.L., Ed.; Johns Hopkins University Press: Baltimore, MD, USA, 2011; p. 322. [Google Scholar]
- Servanty, S.; Gaillard, J.-M.; Ronchi, F.; Focardi, S.; Baubet, E.; Gimenez, O. Influence of harvesting pressure on demographic tactics: Implications for wildlife management. J. Appl. Ecol. 2011, 48, 835–843. [Google Scholar] [CrossRef]
- Gamelon, M.; Gaillard, J.-M.; Servanty, S.; Gimenez, O.; Toïgo, C.; Baubet, E.; Klein, F.; Lebreton, J.-D. Making use of harvest information to examine alternative management scenarios: A body weight structured model for wild boar. J. Appl. Ecol. 2012, 49, 833–841. [Google Scholar] [CrossRef]
- Giuffra, E.; Kijas, J.M.H.; Amarger, V.; Carlborg, Ӧ.; Jeon, J.-T.; Andersson, L. The origin of the domestic pig: Independent domestication and subsequent introgression. Genetics 2000, 154, 1785–1791. [Google Scholar] [CrossRef] [PubMed]
- Groenen, M.A. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 2012, 491, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Danilkin, A.A. Wild Boar Resource Management and Other Animals African Swine Fever; KMK Scientific Publishing Partnership: Moscow, Russia, 2020; p. 150. [Google Scholar]
- Kulpin, A.A. Features of the biotopic distribution and feeding of wild boar (Sus scrofa L.) in the north of the European part of Russia. Bull. Nizhny Novgorod Univ. N.I. Lobachevsky 2008, 2, 82–86. (In Russian) [Google Scholar]
- Available online: http://www.ohotcontrol.ru/resource/number/ (accessed on 1 August 2021).
- Danilkin, A.A. On the inadmissibility of total depopulation of wild boar (Sus scrofa L.) in connection with African swine fever. Bull. Hunt. Sci. 2019, 16, 123–131. (In Russian) [Google Scholar]
- Khederzadeh, S.; Kusza, S.; Huang, C.-P.; Markov, N.; Scandura, M.; Babaev, E.; Šprem, N.; Seryodkin, I.V.; Paule, L.; Esmailizadeh, A.; et al. Maternal genomic variability of the wild boar (Sus scrofa) reveals the uniqueness of East-Caucasian and Central Italian populations. Ecol. Evol. 2019, 9, 9467–9478. [Google Scholar] [CrossRef] [Green Version]
- Ramayo, Y.; Shemeret’eva, I.N.; Pérez-Enciso, M. Mitochondrial DNA diversity in wild boar from the Primorsky Krai Region (East Russia). Anim. Genet. 2011, 42, 96–99. [Google Scholar] [CrossRef]
- Choi, S.K.; Kim, K.S.; Ranyuk, M.; Babaev, E.; Voloshina, I.; Bayarlkhagva, D.; Chong, J.-R.; Ishiguro, N.; Yu, L.; Min, M.-S.; et al. Asia-wide phylogeography of wild boar (Sus scrofa) based on mitochondrial DNA and Y-chromosome: Revising the migration routes of wild boar in Asia. PLoS ONE 2020, 15, e0238049. [Google Scholar] [CrossRef]
- Iacolina, L.; Brajković, V.; Canu, A.; Šprem, N.; Cubric-Curik, V.; Fontanesi, L.; Saarma, U.; Apollonio, M.; Scandura, M. Novel Y-chromosome short tandem repeats in Sus scrofa and their variation in European wild boar and domestic pig populations. Anim. Genet. 2016, 47, 682–690. [Google Scholar] [CrossRef]
- Gladyr’, E.A.; Ernst, L.K.; Kostyunina, O.V. Study of Sus scrofa genome with the use of DNA-markers. Sel’skokhozyaistvennaya Biol. 2009, 2, 16–26. [Google Scholar]
- Costa, V.; Pérez-González, J.; Santos, P.; Fernández-Llario, P.; Carranza, J.; Zsolnai, A.; Anton, I.; Buzgó, J.; Varga, G.; Monteiro, N.; et al. Microsatellite markers for identification and parentage analysis in the European wild boar (Sus scrofa). BMC Res. Notes 2012, 5, 479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.K.; Lee, J.E.; Kim, Y.J.; Min, M.S.; Voloshina, I.; Myslenkov, A.; Oh, J.G.; Kim, T.H.; Markov, N.; Seryodkin, I.; et al. Genetic structure of wild boar (Sus scrofa) populations from East Asia based on microsatellite loci analyses. BMC Genet. 2014, 15, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, D.; Negishi, Y.; Toma, R.; Nagata, J.; Tamate, H.; Kaneko, S. Robust microsatellite markers for hybrid analysis between domesticated pigs and wild boar: Markers for pig and wild boar hybridization. Genet. Resour. 2020, 1, 29–41. [Google Scholar] [CrossRef]
- Fang, M.; Larson, G.; Soares Ribeiro, H.; Andersson, L. Contrasting mode of evolution at a coat color locus in wild and domestic pigs. PLoS Genet. 2009, 5, e1000341. [Google Scholar] [CrossRef] [Green Version]
- Koutsogiannouli, E.A.; Moutou, K.A.; Sarafidou, T.; Stamatis, C.; Mamuris, Z. Detection of hybrids between wild boars (Sus scrofa scrofa) and domestic pigs (Sus scrofa f. domestica) in Greece, using the PCR-RFLP method on melanocortin-1 receptor (MC1R) mutations. Mamm. Biol. 2010, 75, 69–73. [Google Scholar] [CrossRef]
- Yang, B.; Cui, L.; Perez-Enciso, M.; Traspov, A.; Crooijmans, R.P.M.A.; Zinovieva, N.; Schook, L.B.; Archibald, A.; Gatphayak, K.; Knorr, C.; et al. Genome-wide SNP data unveils the globalization of domesticated pigs. Genet. Sel. Evol. 2017, 49, 71. [Google Scholar] [CrossRef] [Green Version]
- Ceballos, F.; Joshi, P.; Clark, D.; Ramsay, M.; Wilson, J.F. Runs of homozygosity: Windows into population history and trait architecture. Nat. Rev. Genet. 2018, 19, 220–234. [Google Scholar] [CrossRef]
- Ferenčaković, M.; Sölkner, J.; Kapš, M.; Curik, I. Genome-wide mapping and estimation of inbreeding depression of semen quality traits in a cattle population. J. Dairy Sci. 2017, 100, 4721–4730. [Google Scholar] [CrossRef]
- Wang, S.; Haynes, C.; Barany, F.; Ott, J. Genome-wide autozygosity mapping in human populations. Genet. Epidemiol. 2009, 33, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Gorssen, W.; Meyermans, R.; Buys, N.; Janssens, S. SNP genotypes reveal breed substructure, selection signatures and highly inbred regions in Piétrain pigs. Anim. Genet. 2020, 51, 32–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boettcher, P.J.; Tixier-Boichard, M.; Toro, M.A.; Simianer, H.; Eding, H.; Gandini, G.; Joost, S.; Garcia, D.; Colli, L.; Ajmone-Marsan, P.; et al. Objectives, criteria and methods for using molecular genetic data in priority setting for conservation of animal genetic resources. Anim. Genet. 2010, 41, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.L.; Hall, S.J.; Del Corvo, M.; Ballingall, K.T.; Colli, L.; Ajmone Marsan, P.; Biscarini, F. Inbreeding and purging at the genomic level: The Chillingham cattle reveal extensive, non-random SNP heterozygosity. Anim. Genet. 2016, 47, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Enciso, M.; Burgos-Paz, W.; Souza, C.A.; Megens, H.J.; Ramayo-Caldas, Y.; Melo, M.; Lemús-Flores, C.; Caal, E.; Soto, H.W.; Martínez, R.; et al. Data from: Porcine colonization of the Americas: A 60k SNP story. Dryad Dataset. 2012. [Google Scholar] [CrossRef]
- Iacolina, L.; Scandura, M.; Goedbloed, D.J.; Alexandri, P.; Crooijmans, R.P.M.A.; Larson, G.; Archibald, A.; Apollonio, M.; Schook, L.B.; Groenen, M.A.; et al. Data from: Genomic diversity and differentiation of a managed island wild boar population. Dryad Dataset. 2015. [CrossRef]
- Goedbloed, D.J.; Megens, H.-J.; van Hooft, P.; Herrero-Medrano, J.M.; Lutz, W.; Alexandri, P.; Crooijmans, R.P.M.A.; van Wieren, S.E.; Ydenberg, R.C.; Prins, H.H.T.; et al. Data from: Genome-wide single nucleotide polymorphism analysis reveals recent genetic introgression from domestic pigs into Northwest European wild boar populations. Dryad Dataset. 2012. [Google Scholar] [CrossRef]
- Yang, B.; Cui, L.; Perez-Enciso, M.; Traspov, A.; Crooijmans, R.P.M.A.; Zinovieva, N.; Schook, L.B.; Archibald, A.; Gatphayak, K.; Knorr, C.; et al. Data from: Genome-wide SNP data unveils the globalization of domesticated pigs. Dryad Dataset. 2017. [CrossRef]
- Fan, J.B.; Oliphant, A.; Shen, R.; Kermani, B.G.; Garcia, F.; Gunderson, K.L.; Hansen, M.; Steemers, F.; Butler, S.L.; Deloukas, P.; et al. Highly parallel SNP genotyping. In Cold Spring Harbor Symposia on Quantitative Biology; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2003; Volume 68, pp. 69–78. [Google Scholar]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Zou, F.; Lee, S.; Knowles, M.R.; Wright, F.A. Quantification of population structure using correlated SNPs by shrinkage principal components. Hum. Hered. 2010, 70, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Raiko, T.; Ilin, A.; Karhunen, J. Principal component analysis for sparse high-dimensional data. In Neural Information Processing; Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T., Eds.; Springer: Berlin, Germany, 2008; pp. 566–575. [Google Scholar]
- Sinnock, P. The wahlund effect for the two-locus model. Am. Nat. 1975, 109, 565–570. [Google Scholar] [CrossRef]
- Keenan, K.; Mcginnity, P.; Cross, T.F.; Crozier, W.W.; Prodöhl, P.A. DiveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 2013, 4, 782–788. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D.H.; Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinform. 2011, 12, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertrand, A.; Kadri, N.K.; Flori, L.; Gautier, M.; Druet, T. RZooRoH: An R package to characterize individual genomic autozygosity and identify homozygous-by-descent segments. Methods Ecol. Evol. 2019, 10, 860–866. [Google Scholar] [CrossRef]
- Druet, T.; Gautier, M. A model-based approach to characterize individual inbreeding at both global and local genomic scales. Mol. Ecol. 2017, 26, 5820–5841. [Google Scholar] [CrossRef] [Green Version]
- Luetkemeier, E.S.; Sodhi, M.; Schook, L.B.; Malhi, R.S. Multiple Asian pig origins revealed through genomic analyses. Mol. Phylogenet. Evol. 2010, 54, 680–686. [Google Scholar] [CrossRef]
- Chen, H.; Huang, M.; Yang, B.; Wu, Z.; Deng, Z.; Hou, Y.; Ren, J.; Huang, L. Introgression of Eastern Chinese and Southern Chinese haplotypes contributes to the improvement of fertility and immunity in European modern pigs. GigaScience 2020, 9, giaa014. [Google Scholar] [CrossRef]
- Muñoz, M.; Bozzi, R.; García-Casco, J.Y.; Núñez, A.; Ribani, O.; Franci, F.; García, M.; Škrlep, G.; Schiavo, S.; Bovo, V.J.; et al. Genomic diversity, linkage disequilibrium and selection signatures in European local pig breeds assessed with a high density SNP chip. Sci. Rep. 2019, 9, 13546. [Google Scholar] [CrossRef]
- Iacolina, L.; Pertoldi, C.; Amills, M.; Kusza, S.; Megens, H.-J.; Bâlteanu, V.A.; Bakan, J.; Cubric-Curik, V.; Oja, R.; Saarma, U.; et al. Hotspots of recent hybridization between pigs and wild boars in Europe. Sci. Rep. 2018, 8, 17372. [Google Scholar] [CrossRef]
- Qin, M.; Li, C.; Li, Z.; Chen, W.; Zeng, Y. Genetic Diversities and Differentially Selected Regions Between Shandong Indigenous Pig Breeds and Western Pig Breeds. Front. Genet. 2020, 10, 1351. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhang, Z.; Sun, H.; Wang, Q.; Pan, Y. Pudong White pig: A unique genetic resource disclosed by sequencing data. Animal 2017, 11, 1117–1124. [Google Scholar] [CrossRef]
- Sánchez-Montes, G.; Ariño, A.H.; Vizmanos, J.L.; Wang, J.; Martínez-Solano, Í. Effects of sample size and full sibs on genetic diversity characterization: A case study of three syntopic Iberian pond-breeding amphibians. J. Hered. 2017, 108, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Manunza, A.; Amills, M.; Noce, A.; Cabrera, B.; Zidi, A.; Eghbalsaied, S.; de Albornoz, E.C.; Portell, M.; Mercadé, A.; Sànchez, A.; et al. Romanian wild boars and Mangalitza pigs have a European ancestry and harbour genetic signatures compatible with past population bottlenecks. Sci. Rep. 2016, 6, 29913. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Pan, T.; Wu, Y.; Zhang, C.; Chen, W.; Chang, Q. Spatial genetic structure and historical demography of East Asian wild boar. Anim. Genet. 2020, 51, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Dzialuk, A.; Zastempowska, E.; Skórzewski, R.; Twarużek, M.; Grajewski, J. High domestic pig contribution to the local gene pool of free-living European wild boar: A case study in Poland. Mamm. Res. 2018, 63, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Šprem, N.; Salajpal, K.; Safner, T.; Đikić, D.; Jurić, J.; Curik, I.; Đikić, M.; Cubric-Curik, V. Genetic analysis of hybridization between domesticated endangered pig breeds and wild boar. Livest. Sci. 2014, 162, 1–4. [Google Scholar] [CrossRef]
- Goedbloed, D.J.; Megens, H.; Van Hooft, P.; Herrero-Medrano, J.M.; Lutz, W.; Alexandri, P.; Crooijmans, R.P.M.A.; Groenen, M.; Van Wieren, S.E.; Ydenberg, R.C.; et al. Genome-wide single nucleotide polymorphism analysis reveals recent genetic introgression from domestic pigs into Northwest European wild boar populations. Mol. Ecol. 2013, 22, 856–866. [Google Scholar] [CrossRef]
- Bakoev, S.; Kolosov, A.; Bakoev, F.; Kostyunina, O.; Bakoev, N.; Romanets, T.; Koshkina, O.; Getmantseva, L. Analysis of Homozygous-by-Descent (HBD) Segments for Purebred and Crossbred Pigs in Russia. Life 2021, 11, 861. [Google Scholar] [CrossRef]
- Bosse, M.; Megens, H.J.; Madsen, O.; Paudel, Y.; Frantz, L.A.; Schook, L.B.; Crooijmans, R.P.; Groenen, M.A. Regions of Homozygosity in the Porcine Genome: Consequence of Demography and the Recombination Landscape. PLoS Genet. 2012, 8, e1003100. [Google Scholar] [CrossRef] [Green Version]
Pop | N | MAF | Nsnp | Ar | Ho | He | Fis |
---|---|---|---|---|---|---|---|
BELG | 4 | 0.295 ± 0.0013 | 10,423 | 1.65 ± 0.005 | 0.311 ± 0.0023 | 0.276 ± 0.0016 | −0.128 ± 0.0044 |
BUL | 5 | 0.285 ± 0.0012 | 11,211 | 1.67 ± 0.004 | 0.324 ± 0.0021 | 0.289 ± 0.0015 | −0.120 ± 0.0037 |
CNWB | 29 | 0.243 ± 0.0014 | 9780 | 1.47 ± 0.004 | 0.208 ± 0.0016 | 0.228 ± 0.0017 | 0.055 ± 0.0021 |
CRO | 16 | 0.270 ± 0.0013 | 12,183 | 1.64 ± 0.004 | 0.297 ± 0.0017 | 0.299 ± 0.0015 | 0.002 ± 0.0022 |
FIN | 5 | 0.290 ± 0.0012 | 11,546 | 1.69 ± 0.004 | 0.294 ± 0.0020 | 0.301 ± 0.0015 | 0.010 ± 0.0041 |
FRA | 28 | 0.270 ± 0.0012 | 12,794 | 1.66 ± 0.004 | 0.313 ± 0.0016 | 0.313 ± 0.0015 | −0.001 ± 0.0020 |
GER | 57 | 0.251 ± 0.0013 | 12,398 | 1.60 ± 0.004 | 0.278 ± 0.0016 | 0.285 ± 0.0015 | 0.031 ± 0.0020 |
GRE | 9 | 0.272 ± 0.0012 | 12,096 | 1.66 ± 0.004 | 0.275 ± 0.0017 | 0.300 ± 0.0015 | 0.065 ± 0.0032 |
ITA | 15 | 0.264 ± 0.0013 | 11,892 | 1.62 ± 0.004 | 0.266 ± 0.0016 | 0.287 ± 0.0015 | 0.060 ± 0.0025 |
LUX | 4 | 0.295 ± 0.0013 | 10,423 | 1.65 ± 0.005 | 0.311 ± 0.0023 | 0.276 ± 0.0016 | −0.128 ± 0.0044 |
NETH | 62 | 0.264 ± 0.0013 | 13,246 | 1.66 ± 0.004 | 0.260 ± 0.0013 | 0.316 ± 0.0014 | 0.164 ± 0.0018 |
POL | 14 | 0.283 ± 0.0012 | 12,347 | 1.67 ± 0.004 | 0.308 ± 0.0018 | 0.314 ± 0.0015 | 0.015 ± 0.0031 |
POR | 11 | 0.270 ± 0.0013 | 11,672 | 1.62 ± 0.004 | 0.275 ± 0.0017 | 0.287 ± 0.0015 | 0.028 ± 0.0029 |
RUAS | 64 | 0.212 ± 0.0016 | 9600 | 1.40 ± 0.004 | 0.185 ± 0.0016 | 0.190 ± 0.0016 | 0.027 ± 0.0017 |
RUEU | 94 | 0.280 ± 0.0013 | 13,783 | 1.70 ± 0.004 | 0.328 ± 0.0014 | 0.342 ± 0.0014 | 0.043 ± 0.0011 |
SAR | 99 | 0.236 ± 0.0013 | 13,439 | 1.61 ± 0.004 | 0.245 ± 0.0013 | 0.291 ± 0.0015 | 0.148 ± 0.0013 |
SBWB | 20 | 0.272 ± 0.0012 | 12,819 | 1.68 ± 0.004 | 0.289 ± 0.0015 | 0.323 ± 0.0015 | 0.080 ± 0.0022 |
SER | 4 | 0.296 ± 0.0012 | 10,609 | 1.66 ± 0.005 | 0.322 ± 0.0024 | 0.281 ± 0.0016 | −0.142 ± 0.0045 |
SLO | 20 | 0.278 ± 0.0012 | 12,458 | 1.66 ± 0.004 | 0.307 ± 0.0016 | 0.312 ± 0.0015 | 0.013 ± 0.0021 |
SPA | 7 | 0.281 ± 0.0012 | 11,786 | 1.67 ± 0.004 | 0.286 ± 0.0018 | 0.300 ± 0.0015 | 0.032 ± 0.0035 |
THAI | 5 | 0.282 ± 0.0016 | 7586 | 1.44 ± 0.005 | 0.231 ± 0.0024 | 0.200 ± 0.0018 | −0.143 ± 0.0055 |
TUN | 7 | 0.264 ± 0.0014 | 9954 | 1.57 ± 0.004 | 0.262 ± 0.0020 | 0.275 ± 0.0019 | −0.053 ± 0.0035 |
WB_EU | WB_AS | RU_EU | RU_AS | |
---|---|---|---|---|
Min | 0.000 | 0.008 | 0.009 | 0.000 |
1st Qu. | 0.086 | 0.024 | 0.038 | 0.008 |
Median | 0.151 | 0.040 | 0.060 | 0.018 |
Mean | 0.168 | 0.065 | 0.068 | 0.025 |
3rd Qu. | 0.230 | 0.063 | 0.078 | 0.034 |
Max. | 0.554 | 0.354 | 0.354 | 0.143 |
Rk | WB_EU | WB_AS | RU_EU | RU_AS | ||||
---|---|---|---|---|---|---|---|---|
N_t (N_i) | Length | N_t (N_i) | Length | N_t (N_i) | Length | N_t (N_i) | Length | |
2 | 156 (0.40) | 80.76 ± 3.889 | 6 (0.18) | 98.78 ± 24.633 | 5 (0.05) | 114.55 ± 13.938 | 4 (0.06) | 91.81 ± 42.738 |
4 | 661 (1.71) | 42.44 ± 1.082 | 85 (2.50) | 33.51 ± 2.719 | 60 (0.64) | 36.93 ± 3.585 | 48 (0.76) | 24.03 ± 2.398 |
8 | 1876 (4.85) | 20.47 ± 0.323 | 170 (5.00) | 18.14 ± 0.902 | 50 (0.53) | 16.44 ± 1.710 | 23 (0.37) | 14.72± 1.733 |
16 | 3448 (8.91) | 10.12 ± 0.113 | 246 (7.24) | 10.82 ± 0.360 | 53 (0.56) | 9.81 ± 0.749 | 46 (0.73) | 12.40± 0.744 |
32 | 5967 (15.42) | 5.20 ± 0.400 | 467 (13.74) | 5.32 ± 0.129 | 74 (0.79) | 6.53 ± 0.357 | 67 (1.06) | 7.22 ± 0.507 |
64 | 5508 (14.23) | 2.97 ± 0.200 | 603 (17.74) | 3.05 ± 0.060 | 117 (1.24) | 3.287 ± 0.132 | 62 (0.98) | 3.99 ± 0.200 |
128 | 1877 (4.85) | 1.65 ± 0.016 | 166 (4.88) | 1.66 ± 0.059 | 17 (0.18) | 2.06 ± 0.273 | 91 (1.44) | 2.57 ± 0.122 |
256 | 852 (2.20) | 0.85 ± 0.014 | 21 (0.62) | 0.72 ± 0.092 | 9 (0.10) | 0.83 ± 0.095 | 11 (0.17) | 0.71 ± 0.125 |
512 | 8122 (20.99) | 0.41 ± 0.004 | 130 (3.82) | 0.32 ± 0.021 | 116 (1.23) | 0.30 ± 0.030 | 104 (7.65) | 0.29 ± 0.030 |
All | 28,467 (73.56) | 5.92 ± 0.710 | 1894 (55.71) | 7.31 ± 0.271 | 501 (5.33) | 10.13 ± 0.843 | 456 (7.23) | 7.53 ± 0.665 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostyunina, O.; Traspov, A.; Economov, A.; Seryodkin, I.; Senchik, A.; Bakoev, N.; Prytkov, Y.; Bardukov, N.; Domsky, I.; Karpushkina, T. Genetic Diversity, Admixture and Analysis of Homozygous-by-Descent (HBD) Segments of Russian Wild Boar. Biology 2022, 11, 203. https://doi.org/10.3390/biology11020203
Kostyunina O, Traspov A, Economov A, Seryodkin I, Senchik A, Bakoev N, Prytkov Y, Bardukov N, Domsky I, Karpushkina T. Genetic Diversity, Admixture and Analysis of Homozygous-by-Descent (HBD) Segments of Russian Wild Boar. Biology. 2022; 11(2):203. https://doi.org/10.3390/biology11020203
Chicago/Turabian StyleKostyunina, Olga, Aleksei Traspov, Alexander Economov, Ivan Seryodkin, Aleksandr Senchik, Neckruz Bakoev, Yuri Prytkov, Nikolay Bardukov, Igor Domsky, and Tatiana Karpushkina. 2022. "Genetic Diversity, Admixture and Analysis of Homozygous-by-Descent (HBD) Segments of Russian Wild Boar" Biology 11, no. 2: 203. https://doi.org/10.3390/biology11020203
APA StyleKostyunina, O., Traspov, A., Economov, A., Seryodkin, I., Senchik, A., Bakoev, N., Prytkov, Y., Bardukov, N., Domsky, I., & Karpushkina, T. (2022). Genetic Diversity, Admixture and Analysis of Homozygous-by-Descent (HBD) Segments of Russian Wild Boar. Biology, 11(2), 203. https://doi.org/10.3390/biology11020203