Conjunctival Swab Real Time-PCR in Leishmania infantum Seropositive Dogs: Diagnostic and Prognostic Values
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Dog Population, Sampling, and Follow-Up
2.2. Serological Testing
2.3. Molecular Testing
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dantas-Torres, F. The role of dogs as reservoirs of Leishmania parasites, with emphasis on Leishmania (Leishmania) infantum and Leishmania (Viannia) braziliensis. Vet. Parasitol. 2007, 149, 139–146. [Google Scholar] [CrossRef]
- Dantas-Torres, F.; de Brito, M.E.; Brandão-Filho, S.P. Seroepidemiological survey on canine leishmaniasis among dogs from an urban area of Brazil. Vet. Parasitol. 2006, 140, 54–60. [Google Scholar] [CrossRef]
- Otranto, D.; Paradies, P.; de Caprariis, D.; Stanneck, D.; Testini, G.; Grimm, F.; Deplazes, P.; Capelli, G. Toward diagnosing Leishmania infantum infection in asymptomatic dogs in an area where leishmaniasis is endemic. Clin. Vaccine Immunol. 2009, 16, 337–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paltrinieri, S.; Solano-Gallego, L.; Fondati, A.; Lubas, G.; Gradoni, L.; Castagnaro, M.; Crotti, A.; Maroli, M.; Oliva, G.; Roura, X.; et al. Guidelines for diagnosis and clinical classification of leishmaniasis in dogs. J. Am. Vet. Med. Assoc. 2010, 236, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
- World Organisation for Animal Health (OIE). Leishmaniosis. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. 2021. Available online: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.01.11_LEISHMANIOSIS.pdf (accessed on 29 December 2021).
- Proverbio, D.; Spada, E.; Bagnagatti de Giorgi, G.; Perego, R.; Valena, E. Relationship between Leishmania IFAT titer and clinicopathological manifestations (clinical score) in dogs. Biomed. Res. Int. 2014, 2014, 412808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, A.B.; Teixeira-Carvalho, A.; Giunchetti, R.C.; Guerra, L.L.; Carvalho, M.G.; Mayrink, W.; Genaro, O.; Corrêa-Oliveira, R.; Martins-Filho, O.A. Phenotypic features of circulating leucocytes as immunological markers for clinical status and bone marrow parasite density in dogs naturally infected by Leishmania chagasi. Clin. Exp. Immunol. 2006, 146, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Koutinas, A.F.; Koutinas, C.K. Pathologic mechanisms underlying the clinical findings in canine leishmaniasis due to Leishmania infantum/chagasi. Vet. Pathol. 2014, 51, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Parody, N.; Cacheiro-Llaguno, C.; Osuna, C.; Renshaw-Calderón, A.; Alonso, C.; Carnés, J. Circulating immune complexes levels correlate with the progression of canine leishmaniosis in naturally infected dogs. Vet. Parasitol. 2019, 274, 108921. [Google Scholar] [CrossRef]
- Gizzarelli, M.; Fiorentino, E.; Ben Fayala, N.; Montagnaro, S.; Torras, R.; Gradoni, L.; Oliva, G.; Foglia Manzillo, V. Assessment of circulating immune complexes during natural and experimental canine leishmaniasis. Front. Vet. Sci. 2020, 7, 273. [Google Scholar] [CrossRef]
- Cacheiro-Llaguno, C.; Parody, N.; Escutia, M.R.; Carnés, J. Role of circulating immune complexes in the pathogenesis of canine leishmaniasis: New players in vaccine development. Microorganisms 2021, 9, 712. [Google Scholar] [CrossRef]
- Cavalera, M.A.; Iatta, R.; Panarese, R.; Mendoza-Roldan, J.A.; Gernone, F.; Otranto, D.; Paltrinieri, S.; Zatelli, A. Seasonal variation in canine anti-Leishmania infantum antibody titres. Vet. J. 2021, 271, 105638. [Google Scholar] [CrossRef]
- Otranto, D.; Dantas-Torres, F.; Breitschwerdt, E.B. Managing canine vector-borne diseases of zoonotic concern: Part two. Trends Parasitol. 2009, 25, 228–235. [Google Scholar] [CrossRef]
- Paltrinieri, S.; Gradoni, L.; Roura, X.; Zatelli, A.; Zini, E. Laboratory tests for diagnosing and monitoring canine leishmaniasis. Vet. Clin. Pathol. 2016, 45, 552–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paparcone, R.; Fiorentino, E.; Cappiello, S.; Gizzarelli, M.; Gradoni, L.; Oliva, G.; Foglia Manzillo, V. Sternal aspiration of bone marrow in dogs: A practical approach for canine leishmaniasis diagnosis and monitoring. J. Vet. Med. 2013, 2013, 217314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foglia Manzillo, V.; Di Muccio, T.; Cappiello, S.; Scalone, A.; Paparcone, R.; Fiorentino, E.; Gizzarelli, M.; Gramiccia, M.; Gradoni, L.; Oliva, G. Prospective study on the incidence and progression of clinical signs in naïve dogs naturally infected by Leishmania infantum. PLoS Negl. Trop. Dis. 2013, 7, e2225. [Google Scholar] [CrossRef]
- Piarroux, R.; Azaiez, R.; Lossi, A.M.; Reynier, P.; Muscatelli, F.; Gambarelli, F.; Fontes, M.; Dumon, H.; Quilici, M. Isolation and characterization of a repetitive DNA sequence from Leishmania infantum: Development of a visceral leishmaniasis polymerase chain reaction. Am. J. Trop. Med. Hyg. 1993, 49, 364–369. [Google Scholar] [CrossRef]
- Travi, B.L.; Cordeiro-da-Silva, A.; Dantas-Torres, F.; Miró, G. Canine visceral leishmaniasis: Diagnosis and management of the reservoir living among us. PLoS Negl. Trop. Dis. 2018, 12, e0006082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castelli, G.; Bruno, F.; Reale, S.; Catanzaro, S.; Valenza, V.; Vitale, F. Molecular diagnosis of Leishmaniasis: Quantification of parasite load by a real-time PCR assay with high sensitivity. Pathogens 2021, 10, 865. [Google Scholar] [CrossRef]
- Solano-Gallego, L.; Cardoso, L.; Pennisi, M.G.; Petersen, C.; Bourdeau, P.; Oliva, G.; Miró, G.; Ferrer, L.; Baneth, G. Diagnostic challenges in the era of canine Leishmania infantum vaccines. Trends Parasitol. 2017, 33, 706–717. [Google Scholar] [CrossRef]
- Leite, R.S.; Ferreira, S.; Ituassu, L.T.; de Melo, M.N.; de Andrade, A.S. PCR diagnosis of visceral leishmaniasis in asymptomatic dogs using conjunctival swab samples. Vet. Parasitol. 2010, 170, 201–206. [Google Scholar] [CrossRef]
- Strauss-Ayali, D.; Jaffe, C.L.; Burshtain, O.; Gonen, L.; Baneth, G. Polymerase chain reaction using noninvasively obtained samples, for the detection of Leishmania infantum DNA in dogs. J. Infect. Dis. 2004, 189, 1729–1733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, S.; Ituassu, L.T.; de Melo, M.N.; de Andrade, A.S. Evaluation of the conjunctival swab for canine visceral leishmaniasis diagnosis by PCR-hybridization in Minas Gerais State, Brazil. Vet. Parasitol. 2008, 152, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Pilatti, M.M.; Ferreira, A.F.; Melo, M.M.; Andrade, A.S.R. Comparison of PCR methods for diagnosis of canine visceral leishmaniasis in conjunctival swab samples. Res. Vet. Sci. 2009, 87, 255–257. [Google Scholar] [CrossRef] [PubMed]
- De Almeida Ferreira, S.; Leite, R.S.; Ituassu, L.T.; Almeida, G.G.; Souza, D.M.; Fujiwara, R.T.; de Andrade, A.S.; Melo, M.N. Canine skin and conjunctival swab samples for the detection and quantification of Leishmania infantum DNA in an endemic urban area in Brazil. PLoS Negl. Trop. Dis. 2012, 6, e1596. [Google Scholar] [CrossRef] [Green Version]
- Carvalho Ferreira, A.L.; Carregal, V.M.; de Almeida Ferreira, S.; Leite, R.S.; de Andrade, A.S. Detection of Leishmania infantum in 4 different dog samples by real-time PCR and ITS-1 nested PCR. Diagn. Microbiol. Infect. Dis. 2014, 78, 418–421. [Google Scholar] [CrossRef]
- Pereira, V.F.; Benassi, J.C.; Starke-Buzetti, W.A.; Silva, D.T.; Ferreira, H.L.; Keid, L.B.; Soares, R.M.; Ruiz, V.L.; Oliveira, T.M. Detection of canine visceral leishmaniasis by conjunctival swab PCR. Rev. Soc. Bras. Med. Trop. 2016, 49, 104–106. [Google Scholar] [CrossRef]
- Solano-Gallego, L.; Miró, G.; Koutinas, A.; Cardoso, L.; Pennisi, M.G.; Ferrer, L.; Bourdeau, P.; Oliva, G.; Baneth, G.; The LeishVet Group. LeishVet guidelines for the practical management of canine leishmaniosis. Parasites Vectors 2011, 4, 86. [Google Scholar] [CrossRef] [Green Version]
- Hernández, L.; Montoya, A.; Checa, R.; Dado, D.; Gálvez, R.; Otranto, D.; Latrofa, M.S.; Baneth, G.; Miró, G. Course of experimental infection of canine leishmaniosis: Follow-up and utility of noninvasive diagnostic techniques. Vet. Parasitol. 2015, 207, 149–155. [Google Scholar] [CrossRef]
- Gramiccia, M.; Di Muccio, T.; Fiorentino, E.; Scalone, A.; Bongiorno, G.; Cappiello, S.; Paparcone, R.; Foglia Manzillo, V.; Maroli, M.; Gradoni, L.; et al. Longitudinal study on the detection of canine Leishmania infections by conjunctival swab analysis and correlation with entomological parameters. Vet. Parasitol. 2010, 171, 223–228. [Google Scholar] [CrossRef]
- Di Muccio, T.; Veronesi, F.; Antognoni, M.T.; Onofri, A.; Piergili Fioretti, D.; Gramiccia, M. Diagnostic value of conjunctival swab sampling associated with nested PCR for different categories of dogs naturally exposed to Leishmania infantum infection. J. Clin. Microbiol. 2012, 50, 2651–2659. [Google Scholar] [CrossRef] [Green Version]
- Silva, K.R.; Mendonça, V.R.; Silva, K.M.; Nascimento, L.F.; Mendes-Sousa, A.F.; Pinho, F.A.; Barral-Netto, M.; Barral, A.M.; Cruz, M.D. Scoring clinical signs can help diagnose canine visceral leishmaniasis in a highly endemic area in Brazil. Mem. Inst. Oswaldo Cruz. 2017, 112, 53–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francino, O.; Altet, L.; Sánchez-Robert, E.; Rodriguez, A.; Solano-Gallego, L.; Alberola, J.; Ferrer, L.; Sánchez, A.; Roura, X. Advantages of real-time PCR assay for diagnosis and monitoring of canine leishmaniosis. Vet. Parasitol. 2006, 137, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Leite, R.S.; Souza, N.A.; Barbosa, A.D.; Ferreira, A.L.C.; Andrade, A.S.R. Evaluation of conjunctival swab as a mass-screening tool for molecular diagnosis of canine visceral leishmaniasis. Parasitol. Res. 2015, 114, 2255–2262. [Google Scholar] [CrossRef]
- Benassi, J.C.; Benvenga, G.U.; Ferreira, H.L.; Pereira, V.F.; Keid, L.B.; Soares, R.; Oliveira, T. Detection of Leishmania infantum DNA in conjunctival swabs of cats by quantitative real-time PCR. Exp. Parasitol. 2017, 177, 93–97. [Google Scholar] [CrossRef]
- Magalhães, K.A.; Pussi, K.F.; Araújo, H.K.; Carmo, S.; Friozi, E.; Branquinho, L.S.; Lima Junior, M.; Neitzke-Abreu, H.C. Polymerase chain reaction using conjunctival swab samples for detecting Leishmania DNA in dogs. Rev. Bras. Parasitol. Vet. 2021, 30, e009121. [Google Scholar] [CrossRef] [PubMed]
- Tarallo, V.D.; Dantas-Torres, F.; Lia, R.P.; Otranto, D. Phlebotomine sand fly population dynamics in a leishmaniasis endemic peri-urban area in southern Italy. Acta Trop. 2010, 116, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Roldan, J.A.; Latrofa, M.S.; Iatta, R.; Manoj, R.; Panarese, R.; Annoscia, G.; Pombi, M.; Zatelli, A.; Beugnet, F.; Otranto, D. Detection of Leishmania tarentolae in lizards, sand flies and dogs in southern Italy, where Leishmania infantum is endemic: Hindrances and opportunities. Parasites Vectors 2021, 14, 461. [Google Scholar] [CrossRef]
- Control of Vector-Borne Diseases in Dogs and Cats. ESCCAP Guideline 05 Third Edition, March 2019. Available online: https://www.esccap.org/uploads/docs/t2kkcbgl_0775_ESCCAP_Guideline_GL5_v9_1p.pdf (accessed on 29 December 2021).
- Acedo-Sánchez, C.; Morillas-Márquez, F.; Sanchíz-Marín, M.C.; Martín-Sánchez, J. Changes in antibody titres against Leishmania infantum in naturally infected dogs in southern Spain. Vet. Parasitol. 1998, 75, 1–8. [Google Scholar] [CrossRef]
- Nejjar, R.; Lemrani, M.; Boucedda, L.; Amarouch, H.; Benslimane, A. Variation in antibody titres against Leishmania infantum in naturally infected dogs in northern Morocco. Rev. Méd. Vét. 2000, 151, 841–846. [Google Scholar]
- Zanette, M.F.; Lima, V.M.; Laurenti, M.D.; Rossi, C.N.; Vides, J.P.; Vieira, R.F.; Biondo, A.W.; Marcondes, M. Serological cross-reactivity of Trypanosoma cruzi, Ehrlichia canis, Toxoplasma gondii, Neospora caninum and Babesia canis to Leishmania infantum chagasi tests in dogs. Rev. Soc. Bras. Med. Trop. 2014, 47, 105–107. [Google Scholar] [CrossRef]
- Baneth, G.; Yasur-Landau, D.; Gilad, M.; Nachum-Biala, Y. Canine leishmaniosis caused by Leishmania major and Leishmania tropica: Comparative findings and serology. Parasites Vectors 2017, 10, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Systemic signs | Attitudes | active | 0 |
apathetic | 1 | ||
Ectoparasites | absence | 0 | |
fleas | 1 | ||
fleas and ticks | 2 | ||
Body condition score | 3–5/5 | 0 | |
2/5 | 1 | ||
1/5 | 2 | ||
Lymph node | normal | 0 | |
enlarged | 1 | ||
Mucosa colour | normal | 0 | |
pale | 1 | ||
Bleeding | absence | 0 | |
presence | 1 | ||
Cutaneous signs | Bristles | good | 0 |
regular | 1 | ||
bad/opaque | 2 | ||
Muzzle/Ear lesions | absence | 0 | |
presence | 1 | ||
Nails | normal | 0 | |
long/onychogryphosis | 1 | ||
Skin lesion | absence | 0 | |
presence | 1 | ||
ulcer | 2 | ||
Muzzle depigmentation | absence | 0 | |
presence | 1 | ||
Alopecia | absence | 0 | |
presence | 1 | ||
Ocular signs | Blepharitis | absence | 0 |
presence | 1 | ||
Keratoconjunctivitis | absence | 0 | |
serous | 1 | ||
mucopurulent | 2 |
Group | Dog # | October 2020 | August 2021 | ||||||
---|---|---|---|---|---|---|---|---|---|
L. infantum IFAT | PB qPCR (Ct Value) | CS qPCR (Ct Value) | Clinical Score (0–19) | L. infantum IFAT | PB qPCR (Ct Value) | CS qPCR (Ct Value) | Clinical Score (0–19) | ||
Group LT | 1 LT ° | 1:80 | neg | neg | 0 | nd | nd | nd | nd |
2 LT | 1:80 | neg | neg | 0 | neg | neg | neg | 0 | |
3 LT | 1:160 | neg | neg | 0 | neg | neg | neg | 0 | |
4 LT °° | 1:160 | neg | neg | 0 | nd | nd | nd | nd | |
5 LT °° | 1:160 | neg | neg | 0 | nd | nd | nd | nd | |
6 LT | 1:320 | neg | neg | 0 | neg | neg | neg | 0 | |
7 LT | 1:320 | neg | pos (37) | 0 | 1:80 | neg | pos (36) | 0 | |
8 LT | 1:320 | neg | neg | 0 | 1:320 | neg | neg | 0 | |
9 LT | 1:320 | neg | neg | 0 | 1:160 | neg | neg | 0 | |
10 LT | 1:320 | neg | pos (36) | 0 | 1:80 | neg | pos (32) | 0 | |
11 LT | 1:320 | neg | neg | 0 | 1:80 | neg | pos (32) | 0 | |
12 LT | 1:320 | neg | neg | 0 | 1:160 | neg | neg | 0 | |
13 LT | 1:320 | neg | neg | 0 | 1:160 | neg | neg | 0 | |
Group HT | 1 HT | 1:640 | neg | pos (37) | 0 | 1:640 | neg | pos (31) | 0 |
2 HT | 1:640 | neg | pos (33) | 0 | 1:320 | neg | neg | 0 | |
3 HT | 1:640 | neg | pos (32) | 0 | 1:320 | neg | neg | 1 | |
4 HT | 1:640 | neg | neg | 0 | 1:320 | neg | neg | 0 | |
5 HT | 1:640 | neg | neg | 0 | 1:160 | neg | pos (30) | 0 | |
6 HT | 1:640 | neg | neg | 0 | 1:320 | neg | pos (35) | 0 | |
7 HT | 1:640 | neg | pos (36) | 0 | 1:320 | neg | neg | 0 | |
8 HT | 1:1280 | neg | neg | 0 | 1:640 | neg | neg | 0 | |
9 HT | 1:1280 | pos (29) | pos (31) | 1 | 1:320 | pos (31) | pos (26) | 1 | |
10 HT | 1:2560 | neg | neg | 0 | 1:640 | neg | neg | 0 | |
11 HT | 1:2560 | pos (27) | pos (26) | 1 | 1:1280 | neg | pos (28) | 2 | |
12 HT ° | 1:2560 | pos (32) | pos (28) | 0 | nd | nd | nd | nd | |
13 HT °° | 1:2560 | pos (27) | pos (23) | 0 | nd | nd | nd | nd |
Parameters | October 2020 | August 2021 | ||||
---|---|---|---|---|---|---|
Group LT (n = 13) | Group HT (n = 13) | p ψ | Group LT (n = 10) | Group HT (n = 11) | p ψ | |
IFAT | <0.001 | 0.004 | ||||
0 | 0 (0.00) | 0 (0.00) | 3 (30.00) | 0 (0.00) | ||
1:80 | 2 (15.38) | 0 (0.00) | 3 (30.00) | 0 (0.00) | ||
1:160 | 3 (23.08) | 0 (0.00) | 3 (30.00) | 1 (9.09) | ||
1:320 | 8 (61.54) | 0 (0.00) | 1 (10.00) | 6 (54.55) | ||
1:640 | 0 (0.00) | 7 (53.85) | 0 (0.00) | 3 (27.27) | ||
1:1280 | 0 (0.00) | 2 (15.38) | 0 (0.00) | 1 (9.09) | ||
1:2560 | 0 (0.00) | 4 (30.77) | 0 (0.00) | 0 (0.00) | ||
CS qPCR | 0.04 | 0.69 § | ||||
Negative (−) | 11 (84.62) | 5 (38.46) | 7 (53.85) | 6 * (46.15) | ||
Positive (+) | 2 (15.38) | 8 (61.54) | 6 (46.15) | 7 * (53.85) | ||
PB qPCR | 0.10 | 0.99 | ||||
Negative (−) | 13 (100.00) | 9 (69.23) | 10 (76.92) | 10 * (76.92) | ||
Positive (+) | 0 (0.00) | 4 (30.77) | 3 (23.08) | 3 * (23.08) | ||
Clinical Score | 0.48 | 0.34 | ||||
0 | 13 (100.00) | 11 (84.62) | 10 (100.00) | 8 (72.73) | ||
1 | 0 (0.00) | 2 (15.38) | 0 (0.00) | 2 (18.18) | ||
2 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 1 (9.09) |
Parameters | October 2020 (n = 26) | August 2021 (n = 21) | p ψ |
---|---|---|---|
IFAT | 0.42 ¥ | ||
0 | 0 (0.00) | 3 (14.29) | |
1:80 | 2 (7.69) | 3 (14.29) | |
1:160 | 3 (11.54) | 4 (19.05) | |
1:320 | 8 (30.77) | 7 (33.33) | |
1:640 | 7 (26.92) | 3 (14.29) | |
1:1280 | 2 (7.69) | 1 (4.76) | |
1:2560 | 4 (15.38) | 0 (0.00) | |
CS qPCR | 0.51 | ||
Negative (−) | 16 (61.54) | 13 * (50.00) | |
Positive (+) | 10 (38.46) | 13 * (50.00) | |
PB qPCR | 0.62 | ||
Negative (−) | 22 (84.62) | 20 * (76.92) | |
Positive (+) | 4 (15.38) | 6 * (23.08) | |
Clinical Score | 0.37 ¥ | ||
0 | 24 (92.31) | 18 (85.71) | |
1 | 2 (7.69) | 2 (9.52) | |
2 | 0 (0.00) | 1 (4.76) |
Parameters | Group LT | Group HT | ||||
---|---|---|---|---|---|---|
October 2020 (n = 13) | August 2021 (n = 10) | p ψ | October 2020 (n = 13) | August 2021 (n = 11) | p ψ | |
IFAT | 0.19 ¥ | 0.57 ¥ | ||||
0 | 0 (0.00) | 3 (30.00) | 0 (0.00) | 0 (0.00) | ||
1:80 | 2 (15.38) | 3 (30.00) | 0 (0.00) | 0 (0.00) | ||
1:160 | 3 (23.08) | 3 (30.00) | 0 (0.00) | 1 (9.09) | ||
1:320 | 8 (61.54) | 1 (10.00) | 0 (0.00) | 6 (54.55) | ||
1:640 | 0 (0.00) | 0 (0.00) | 7 (53.85) | 3 (27.27) | ||
1:1280 | 0 (0.00) | 0 (0.00) | 2 (15.38) | 1 (9.09) | ||
1:2560 | 0 (0.00) | 0 (0.00) | 4 (30.77) | 0 (0.00) | ||
PB qPCR | 0.08 | 0.99 | ||||
Negative (−) | 13 (100.00) | 10 (76.92) | 9 (69.23) | 10 * (76.92) | ||
Positive (+) | 0 (0.00) | 3 (23.08) | 4 (30.77) | 3 * (23.08) | ||
CS qPCR | 0.04 | 0.99 | ||||
Negative (−) | 11 (84.62) | 7 (53.85) | 5 (38.46) | 6 * (46.15) | ||
Positive (+) | 2 (15.38) | 6 (46.15) | 8 (61.54) | 7 * (53.85) | ||
Clinical Score | -- | 0.37 ¥ | ||||
0 | 13 (100.00) | 10 (100.00) | 11 (84.62) | 8 (72.73) | ||
1 | 0 (0.00) | 0 (0.00) | 2 (15.38) | 2 (18.18) | ||
2 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 1 (9.09) |
October 2020 | ||||
ρ ¥ | IFAT | PB qPCR | CS qPCR | Clinical Score |
IFAT | -- | -- | -- | -- |
PB qPCR | 0.59 (0.001) | -- | -- | -- |
CS qPCR | 0.38 (0.05) | 0.33 (0.10) | -- | -- |
Clinical Score | 0.37 (0.06) | 0.66 (0.0003) | 0.24 (0.23) | -- |
August 2021 | ||||
ρ ¥ | IFAT | PB qPCR | CS qPCR | Clinical Score |
IFAT | -- | -- | -- | -- |
PB qPCR | 0.11 (0.62) | -- | -- | -- |
CS qPCR | −0.04 (0.87) | 0.13 (0.58) | -- | -- |
Clinical Score | 0.38 (0.09) | 0.51 (0.02) | 0.09 (0.70) | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavalera, M.A.; Zatelli, A.; Donghia, R.; Mendoza-Roldan, J.A.; Gernone, F.; Otranto, D.; Iatta, R. Conjunctival Swab Real Time-PCR in Leishmania infantum Seropositive Dogs: Diagnostic and Prognostic Values. Biology 2022, 11, 184. https://doi.org/10.3390/biology11020184
Cavalera MA, Zatelli A, Donghia R, Mendoza-Roldan JA, Gernone F, Otranto D, Iatta R. Conjunctival Swab Real Time-PCR in Leishmania infantum Seropositive Dogs: Diagnostic and Prognostic Values. Biology. 2022; 11(2):184. https://doi.org/10.3390/biology11020184
Chicago/Turabian StyleCavalera, Maria Alfonsa, Andrea Zatelli, Rossella Donghia, Jairo Alfonso Mendoza-Roldan, Floriana Gernone, Domenico Otranto, and Roberta Iatta. 2022. "Conjunctival Swab Real Time-PCR in Leishmania infantum Seropositive Dogs: Diagnostic and Prognostic Values" Biology 11, no. 2: 184. https://doi.org/10.3390/biology11020184
APA StyleCavalera, M. A., Zatelli, A., Donghia, R., Mendoza-Roldan, J. A., Gernone, F., Otranto, D., & Iatta, R. (2022). Conjunctival Swab Real Time-PCR in Leishmania infantum Seropositive Dogs: Diagnostic and Prognostic Values. Biology, 11(2), 184. https://doi.org/10.3390/biology11020184