Molecular Diet Analysis of Adélie Penguins (Pygoscelis adeliae) in the Ross Sea Using Fecal DNA
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Fecal DNA Isolation
2.3. Primer Design and PCR Amplification of Prey Items
2.4. Library Construction and NGS
2.5. Bioinformatics Analysis
2.6. qPCR Analysis
3. Results
3.1. Fecal DNA Metabarcoding of Pygoscelis Adeliae in the Ross Sea Region Using 18Sv9 Universal Primers
3.2. Fecal DNA Metabarcoding of Pygoscelis Adeliae in the Ross Sea Region Using miniFish Primers
3.3. qPCR Analysis of Main Prey Items
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
qPCR | quantitative polymerase chain reaction |
OTUs | operational taxonomic units |
CA | Cape Adare |
DY | Duke of York Island |
CH | Cape Hallett |
CW | Cape Wheatstone |
MC | Mandible Cirque |
EP | Edmonson Point |
II | Inexpressible Island |
References
- Ainley, D.; Russell, J.; Jenouvrier, S.; Woehler, E.; Lyver, P.O.B.; Fraser, W.R.; Kooyman, G.L. Antarctic penguin response to habitat change as Earth’s troposphere reaches 2 C above preindustrial levels. Ecol. Monogr. 2010, 80, 49–66. [Google Scholar] [CrossRef] [Green Version]
- Millar, C.D.; Subramanian, S.; Heupink, T.H.; Swaminathan, S.; Baroni, C.; Lambert, D.M. Adelie penguins and temperature changes in Antarctica: A long-term view. Integr. Zool. 2012, 7, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R. An improved stomach pump for penquins and other seabirds. J. Field Ornithol. 1984, 55, 109–112. [Google Scholar]
- Watanabe, Y.Y.; Ito, K.; Kokubun, N.; Takahashi, A. Foraging behavior links sea ice to breeding success in Antarctic penguins. Sci. Adv. 2020, 6, eaba4828. [Google Scholar] [CrossRef]
- Olmastroni, S.; Corsolini, S.; Pezzo, F.; Focardi, S.; Kerry, K. The first five years of the Italian-Australian joint programme on the Adélie Penguin: An overview. Ital. J. Zool. 2000, 67, 141–145. [Google Scholar] [CrossRef]
- Jarman, S.N.; McInnes, J.C.; Faux, C.; Polanowski, A.M.; Marthick, J.; Deagle, B.E.; Southwell, C.; Emmerson, L. Adélie penguin population diet monitoring by analysis of food DNA in scats. PLoS ONE 2013, 8, e82227. [Google Scholar] [CrossRef]
- Johnson, S.R.; West, G.C. Fat content, fatty acid composition and estimates of energy metabolism of adélie penguins (Pygoscelis adeliae) during the early breeding season fast. Comp. Biochem. Physiol. Part B Comp. Biochem. 1973, 45, 709–719. [Google Scholar] [CrossRef]
- Emslie, S.D.; Patterson, W.P. Abrupt recent shift in delta 13C and delta 15N values in Adélie penguin eggshell in Antarctica. Proc. Natl. Acad. Sci. USA 2007, 104, 11666–11669. [Google Scholar] [CrossRef] [Green Version]
- Lishman, G.S. The food and feeding ecology of Adélie penguins (Pygoscelis adeliae) and Chinstrap penguins (P. antarctica) at Signy Island, South Orkney Islands. J. Zool. 1985, 205, 245–263. [Google Scholar] [CrossRef]
- Juáres, M.A.; Santos, M.; Mennucci, J.A.; Coria, N.R.; Mariano-Jelicich, R. Diet composition and foraging habitats of Adélie and gentoo penguins in three different stages of their annual cycle. Mar. Biol. 2016, 163, 105. [Google Scholar] [CrossRef]
- Beng, K.C.; Corlett, R.T. Applications of environmental DNA (eDNA) in ecology and conservation: Opportunities, challenges and prospects. Biodivers. Conserv. 2020, 29, 2089–2121. [Google Scholar] [CrossRef]
- Evans, N.T.; Shirey, P.D.; Wieringa, J.G.; Mahon, A.R.; Lamberti, G.A. Comparative cost and effort of fish distribution detection via environmental DNA analysis and electrofishing. Fisheries 2017, 42, 90–99. [Google Scholar] [CrossRef]
- Taberlet, P.; Bonin, A.; Zinger, L.; Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Grzesiak, J.; Kaczyńska, A.; Gawor, J.; Żuchniewicz, K.; Aleksandrzak-Piekarczyk, T.; Gromadka, R.; Zdanowski, M.K. A smelly business: Microbiology of Adélie penguin guano (Point Thomas rookery, Antarctica). Sci. Total Environ. 2020, 714, 136714. [Google Scholar] [CrossRef] [PubMed]
- McInnes, J.C.; Emmerson, L.; Southwell, C.; Faux, C.; Jarman, S.N. Simultaneous DNA-based diet analysis of breeding, non-breeding and chick Adelie penguins. R. Soc. Open Sci. 2016, 3, 150443. [Google Scholar] [CrossRef] [PubMed]
- Goldsworthy, B.; Young, M.J.; Seddon, P.J.; van Heezik, Y. Stomach flushing does not affect apparent adult survival, chick hatching, or fledging success in yellow-eyed penguins (Megadyptes antipodes). Biol. Conserv. 2016, 196, 115–123. [Google Scholar] [CrossRef]
- Lyver, P.O.B.; Barron, M.; Barton, K.J.; Ainley, D.G.; Pollard, A.; Gordon, S.; McNeill, S.; Ballard, G.; Wilson, P.R. Trends in the breeding population of Adélie penguins in the Ross Sea, 1981–2012: A coincidence of climate and resource extraction effects. PLoS ONE 2014, 9, e91188. [Google Scholar] [CrossRef] [Green Version]
- Lynch, H.; LaRue, M. First global census of the Adélie Penguin. Auk Ornithol. Adv. 2014, 131, 457–466. [Google Scholar] [CrossRef]
- Beaulieu, M.; Thierry, A.-M.; Raclot, T.; Le Maho, Y.; Ropert-Coudert, Y.; Gachot-Neveu, H.; Ancel, A. Sex-specific parental strategies according to the sex of offspring in the Adélie penguin. Behav. Ecol. 2009, 20, 878–883. [Google Scholar] [CrossRef] [Green Version]
- Tragin, M.; Zingone, A.; Vaulot, D. Comparison of coastal phytoplankton composition estimated from the V4 and V9 regions of the 18S rRNA gene with a focus on photosynthetic groups and especially Chlorophyta. Environ. Microbiol. 2018, 20, 506–520. [Google Scholar] [CrossRef] [Green Version]
- Miya, M.; Sato, Y.; Fukunaga, T.; Sado, T.; Poulsen, J.Y.; Sato, K.; Minamoto, T.; Yamamoto, S.; Yamanaka, H.; Araki, H. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2015, 2, 150088. [Google Scholar] [CrossRef] [Green Version]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Suryaningtyas, I.T.; Yoon, T.H.; Shim, J.M.; Park, H.; Kim, H.W. Transcriptomic analysis of the hepatopancreas induced by eyestalk ablation in shrimp, Litopenaeus vannamei. Comp. Biochem. Physiol. Part D Genom. Proteom. 2017, 24, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Diaz, J.I.; Fusaro, B.; Longarzo, L.; Coria, N.R.; Vidal, V.; D’Amico, V.; Barbosa, A. Gastrointestinal helminths of Adélie penguins (Pygoscelis adeliae) from Antarctica. Polar Res. 2016, 35, 28516. [Google Scholar] [CrossRef]
- Valentini, A.; Pompanon, F.; Taberlet, P. DNA barcoding for ecologists. Trends Ecol. Evol. 2009, 24, 110–117. [Google Scholar] [CrossRef]
- Lim, N.K.; Tay, Y.C.; Srivathsan, A.; Tan, J.W.; Kwik, J.T.; Baloğlu, B.; Meier, R.; Yeo, D.C. Next-generation freshwater bioassessment: eDNA metabarcoding with a conserved metazoan primer reveals species-rich and reservoir-specific communities. R. Soc. Open Sci. 2016, 3, 160635. [Google Scholar] [CrossRef] [Green Version]
- Epp, L.S.; Boessenkool, S.; Bellemain, E.P.; Haile, J.; Esposito, A.; Riaz, T.; Erseus, C.; Gusarov, V.I.; Edwards, M.E.; Johnsen, A. New environmental metabarcodes for analysing soil DNA: Potential for studying past and present ecosystems. Mol. Ecol. 2012, 21, 1821–1833. [Google Scholar] [CrossRef]
- Wang, W.Y.; Srivathsan, A.; Foo, M.; Yamane, S.K.; Meier, R. Sorting specimen-rich invertebrate samples with cost-effective NGS barcodes: Validating a reverse workflow for specimen processing. Mol. Ecol. Resour. 2018, 18, 490–501. [Google Scholar] [CrossRef]
- Hebert, P.D.; DeWaard, J.R.; Zakharov, E.V.; Prosser, S.W.; Sones, J.E.; McKeown, J.T.; Mantle, B.; La Salle, J. A DNA “barcode blitz”: Rapid digitization and sequencing of a natural history collection. PLoS ONE 2013, 8, e68535. [Google Scholar] [CrossRef]
- Leray, M.; Yang, J.Y.; Meyer, C.P.; Mills, S.C.; Agudelo, N.; Ranwez, V.; Boehm, J.T.; Machida, R.J. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Front. Zool. 2013, 10, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albaina, A.; Aguirre, M.; Abad, D.; Santos, M.; Estonba, A. 18S rRNA V9 metabarcoding for diet characterization: A critical evaluation with two sympatric zooplanktivorous fish species. Ecol. Evol. 2016, 6, 1809–1824. [Google Scholar] [CrossRef] [Green Version]
- Cherel, Y.; Koubbi, P.; Giraldo, C.; Penot, F.; Tavernier, E.; Moteki, M.; Ozouf-Costaz, C.; Causse, R.; Chartier, A.; Hosie, G. Isotopic niches of fishes in coastal, neritic and oceanic waters off Adélie land, Antarctica. Polar Sci. 2011, 5, 286–297. [Google Scholar] [CrossRef]
- Vestheim, H.; Jarman, S.N. Blocking primers to enhance PCR amplification of rare sequences in mixed samples—A case study on prey DNA in Antarctic krill stomachs. Front. Zool. 2008, 5, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Qi, R.-J.; Jiang, J.-Z.; Zhang, M.-Q.; Wang, J.-Y. Development of a blocking primer to inhibit the PCR amplification of the 18S rDNA sequences of Litopenaeus vannamei and its efficacy in Crassostrea hongkongensis. Front. Microbiol. 2019, 10, 830. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Orts, J.S.; Scholz, T.; Brabec, J.; Kuzmina, T.; Kuchta, R. High morphological plasticity and global geographical distribution of the Pacific broad tapeworm Adenocephalus pacificus (syn. Diphyllobothrium pacificum): Molecular and morphological survey. Acta Trop. 2015, 149, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Golemansky, V. Coccidian parasites (Apicomplexa) of penguins (Pygoscelis ssp.) from Livingston Island and King George Island, the Antarctic. Pol. Polar Res. 2011, 32, 263–268. [Google Scholar] [CrossRef] [Green Version]
- De Paula, A.A.; Ott, P.H.; Tavares, M.; Santos, R.A.; Silva-Souza, A.T. Host–parasite relationship in Magellanic Penguins (Spheniscus magellanicus) during their long northward journey to the Brazilian coast. Polar Biol. 2020, 43, 1261–1272. [Google Scholar] [CrossRef]
- Vidal, V.; Ortiz, J.; Diaz, J.I.; de Ybañez, M.R.; Amat, M.; Palacios, M.; Benzal, J.; Valera, F.; De la Cruz, C.; Motas, M. Gastrointestinal parasites in Chinstrap Penguins from Deception Island, South Shetlands, Antarctica. Parasitol. Res. 2012, 111, 723–727. [Google Scholar] [CrossRef]
- Bagrade, G.; Králová-Hromadová, I.; Bazsalovicsová, E.; Radačovská, A.; Kołodziej-Sobocińska, M. The first records of Spirometra erinaceieuropaei (Cestoda: Diphyllobothriidae), a causative agent of human sparganosis, in Latvian wildlife. Parasitol. Res. 2021, 120, 365–371. [Google Scholar] [CrossRef]
- Ainley, D.G.; Wilson, P.R.; Barton, K.J.; Ballard, G.; Nur, N.; Karl, B. Diet and foraging effort of Adélie penguins in relation to pack-ice conditions in the southern Ross Sea. Polar Biol. 1998, 20, 311–319. [Google Scholar] [CrossRef]
- Volkman, N.J.; Presler, P.; Trivelpiece, W. Diets of Pygoscelid Penguins at King George Island, Antarctica. Condor 1980, 82, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Ghigliotti, L.; Ferrando, S.; Carlig, E.; Di Blasi, D.; Gallus, L.; Pisano, E.; Hanchet, S.; Vacchi, M. Reproductive features of the Antarctic silverfish (Pleuragramma antarctica) from the western Ross Sea. Polar Biol. 2017, 40, 199–211. [Google Scholar] [CrossRef]
- Vacchi, M.; La Mesa, M.; Dalu, M.; Macdonald, J. Early life stages in the life cycle of Antarctic silverfish, Pleuragramma antarcticum in Terra Nova Bay, Ross Sea. Antarct. Sci. 2004, 16, 299–305. [Google Scholar] [CrossRef]
- Watanabe, Y.Y.; Takahashi, A. Linking animal-borne video to accelerometers reveals prey capture variability. Proc. Natl. Acad. Sci. USA 2013, 110, 2199–2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherel, Y. Isotopic niches of emperor and Adélie penguins in Adélie Land, Antarctica. Mar. Biol. 2008, 154, 813–821. [Google Scholar] [CrossRef]
- Vacchi, M.; DeVries, A.L.; Evans, C.W.; Bottaro, M.; Ghigliotti, L.; Cutroneo, L.; Pisano, E. A nursery area for the Antarctic silverfish Pleuragramma antarcticum at Terra Nova Bay (Ross Sea): First estimate of distribution and abundance of eggs and larvae under the seasonal sea-ice. Polar Biol. 2012, 35, 1573–1585. [Google Scholar] [CrossRef]
- Offredo, C.; Ridoux, V.; Clarke, M.R. Cephalopods in the diets of Emperor and Adelie penguins in Adelie Land, Antarctica. Mar. Biol. 1985, 86, 199–202. [Google Scholar] [CrossRef] [Green Version]
- Cavallo, C.; Chiaradia, A.; Deagle, B.E.; McInnes, J.C.; Sánchez, S.; Hays, G.C.; Reina, R.D. Molecular Analysis of Predator Scats Reveals Role of Salps in Temperate Inshore Food Webs. Front. Mar. Sci. 2018, 5, 381. [Google Scholar] [CrossRef]
- Sala, A.; Azzali, M.; Russo, A. Krill of the Ross Sea: Distribution, abundance and demography of Euphausia superba and Euphausia crystallorophias during the Italian Antarctic Expedition (January–February 2000). Sci. Mar. 2002, 66, 123–133. [Google Scholar] [CrossRef]
- Azzali, M.; Leonori, I.; De Felice, A.; Russo, A. Spatial–temporal relationships between two euphausiid species in the Ross Sea. Chem. Ecol. 2006, 22, S219–S233. [Google Scholar] [CrossRef]
- Meyer, B. The overwintering of Antarctic krill, Euphausia superba, from an ecophysiological perspective. Polar Biol. 2012, 35, 15–37. [Google Scholar] [CrossRef] [Green Version]
- Ainley, D. The Adélie Penguin; Columbia University Press: New York, NY, USA, 2002. [Google Scholar]
- Forcada, J.; Trathan, P.N.; Reid, K.; Murphy, E.J.; Croxall, J.P. Contrasting population changes in sympatric penguin species in association with climate warming. Glob. Chang. Biol. 2006, 12, 411–423. [Google Scholar] [CrossRef]
- Croxall, J.P.; Reid, K.; Prince, P.A. Diet, provisioning and productivity responses of marine predators to differences in availability of Antarctic krill. Mar. Ecol. Prog. Ser. 1999, 177, 115–131. [Google Scholar] [CrossRef]
- William, R.F.; Eileen, E.H. A predator’s perspective on causal links between climate change, physical forcing and ecosystem response. Mar. Ecol. Prog. Ser. 2003, 265, 1–15. [Google Scholar]
- Quetin, L.B.; Ross, R.M. Environmental variability and its impact on the reproductive cycle of antarctic krill1. Am. Zool. 2015, 41, 74–89. [Google Scholar] [CrossRef] [Green Version]
Site | GPS | Colony Size | 2017 | 2018 | 2019 | Total |
---|---|---|---|---|---|---|
Cape Adare (CA) | 71.3355° S, 170.1397° E | 227,000 [17] | 0 | 11 | 11 * | 22 |
Duke of York Island (DY) | 71.6197° S, 170.0600° E | 16,340 [18] | 0 | 11 | 0 | 11 |
Cape Hallett (CH) | 72.3166° S, 170.2166° E | 42,628 [17] | 10 | 11 | 11 * | 32 |
Cape Wheatstone (CW) | 72.5991° S, 170.2527° E | 2746 [17] | 0 | 7 | 0 | 7 |
Mandible Cirque (MC) | 73.1631° S, 169.1647° E | 16,837 [17] | 11 | 0 | 11 | 22 |
Edmonson Point (EP) | 74.3308° S, 165.1172° E | 1890 [17] | 0 | 11 | 11 | 22 |
Inexpressible Island (II) | 74.9000° S, 163.6500° E | 24,450 [17] | 5 | 11 | 11 * | 27 |
Total | 26 | 62 | 55 | 143 |
Name | Sequence (5′ to 3′) | Size (bp) | Description |
---|---|---|---|
Eus-F | CCCTTCCTTAACTCTCTTATTAGGAAGA | 154 | qPCR for E. superba (This study) |
Eus-R | TGAAGAAGCACCGGCAATATGAAGC | ||
Euc-F | GAAGTCTAATTGGGGACGACCAG | 207 | qPCR for E. crystallorophias (This study) |
Euc-R | CTAGTAAAAGAGTTAAGGAAGGAGGC | ||
miniFish-F | GTTATACGAGAGGCCCAAGTTG | 133 | qPCR for fish taxa (This study) |
miniFish-R | TAAAGCCACTTTCGTGGTTG | ||
NGSmFish-F | TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTTATACGAGAGGCCCAAGTTG | 200 | NGS for fish taxa (This study) |
NGSmFish-R | GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTAAAGCCACTTTCGTGGTTG | ||
NGS18Sv9-F | TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTGTACACACCGCCCGTCGC | 230 | NGS for eukaryotes [20] |
NGS18Sv9-R | GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCTTCYGCAGGTTCACCTAC |
Year | Site | Raw Reads | Merged | Trimmed (%) | Total OTUs | Bacterial OTUs (%) | Penguin OTUs (%) | Other OTUs (%) | Unknown OTUs (%) | Prey OTUs (%) |
---|---|---|---|---|---|---|---|---|---|---|
2017 | CH | 206,799 | 191,923 | 172,527 (83.42) | 1908 | 906 (47.48) | 761 (39.88) | 25 (1.31) | 212 (11.11) | 4 (0.20) |
MC | 413,457 | 366,886 | 344,960 (83.43) | 2521 | 819 (32.48) | 771 (30.58) | 316 (12.53) | 172 (6.82) | 443 (17.57) | |
II | 287,458 | 262,918 | 238,667 (83.02) | 2863 | 1472 (51.41) | 640 (22.35) | 74 (2.58) | 388 (13.55) | 289 (10.09) | |
2018 | CA | 99,042 | 95,425 | 87,731 (88.57) | 1351 | 334 (24.72) | 567 (41.96) | 26 (1.92) | 57 (4.21) | 367 (27.16) |
DY | 136,739 | 131,310 | 122,607 (89.66) | 2234 | 1523 (68.17) | 392 (17.54) | 25 (1.11) | 289 (12.93) | 5 (0.22) | |
CH | 112,246 | 108,092 | 100,432 (89.47) | 1544 | 440 (28.49) | 511 (33.09) | 23 (1.48) | 89 (5.76) | 481 (31.15) | |
CW | 88,125 | 84,967 | 78,241 (88.78) | 1252 | 486 (38.81) | 652 (52.07) | 20 (1.59) | 93 (7.42) | 1 (0.07) | |
EP | 80,022 | 77,651 | 71,633 (89.51) | 1283 | 670 (52.22) | 367 (28.60) | 36 (2.80) | 159 (12.39) | 51 (3.97) | |
II | 65,911 | 64,148 | 58,519 (88.78) | 1160 | 733 (63.18) | 327 (28.18) | 9 (0.77) | 50 (4.31) | 41 (3.53) | |
2019 | CA | 329,166 | 295,489 | 263,738 (80.12) | 3647 | 1732 (47.49) | 958 (26.26) | 21 (0.57) | 881 (24.15) | 55 (1.50) |
CH | 221,449 | 206,082 | 186,421 (84.18) | 2063 | 647 (31.36) | 498 (24.13) | 22 (1.06) | 829 (40.18) | 67 (3.24) | |
MC | 217,619 | 202,090 | 177,117 (81.38) | 1994 | 566 (28.38) | 564 (28.28) | 144 (7.22) | 484 (24.27) | 236 (11.83) | |
EP | 256,131 | 236,177 | 212,579 (82.99) | 2666 | 1513 (56.75) | 615 (23.06) | 233 (8.73) | 261 (9.78) | 44 (1.65) | |
II | 351,038 | 319,669 | 294,189 (83.80) | 3743 | 2323 (62.04) | 771 (20.59) | 38 (1.01) | 564 (15.06) | 48 (1.28) |
Year | Site | Raw Reads | Merged | Trimmed (%) | Total OTUs | Nonfish OTUs (%) | Fish OTUs (%) |
---|---|---|---|---|---|---|---|
2017 | CH | 466,869 | 417,192 | 89,933 (19.26) | 1539 | 90 (5.84) | 1449 (94.15) |
MC | 430,858 | 390,434 | 295,728 (68.63) | 3223 | 308 (9.55) | 2915 (90.44) | |
II | 411,949 | 375,381 | 299,065 (72.59) | 6793 | 1123 (16.53) | 5670 (83.46) | |
2018 | CA | 139,704 | 131,090 | 4,507 (3.22) | 328 | 33 (10.06) | 295 (89.93) |
DY | 404,610 | 366,116 | 145,151 (35.87) | 2759 | 301 (10.90) | 2458 (89.09) | |
CH | 486,449 | 432,846 | 67,403 (13.85) | 1780 | 213 (11.96) | 1567 (88.03) | |
CW | 453,872 | 409,481 | 274,322 (60.44) | 4939 | 777 (15.73) | 4162 (84.26) | |
EP | 383,592 | 350,968 | 258,227 (67.31) | 5075 | 417 (8.21) | 4658 (91.78) | |
II | 613,755 | 540,098 | 397,584 (64.77) | 7025 | 884 (12.58) | 6141 (87.41) | |
2019 | CA | 366,387 | 332,391 | 29,732 (8.11) | 1136 | 113 (9.94) | 1023 (90.05) |
CH | 546,858 | 484,040 | 203,386 (37.19) | 3943 | 427 (10.82) | 3516 (89.17) | |
MC | 535,567 | 475,415 | 261,071 (48.74) | 5089 | 621 (12.20) | 4468 (87.79) | |
EP | 355,283 | 327,315 | 273,474 (76.97) | 2438 | 100 (4.10) | 2338 (95.89) | |
II | 418,457 | 381,563 | 276,689 (66.12) | 4121 | 450 (10.91) | 3671 (89.08) |
Family | Species | Accession No. | Identity (%) | Query Cover |
---|---|---|---|---|
Nototheniidae | Trematomus loennbergii/lepidorhinus * | NC048965/MN864240 | 100/100 | 100 |
Pagothenia borchgrevinki | KU951144, KX025131 | 100 | 100 | |
Pleuragramma antarctica | JF933905 | 100 | 100 | |
Trematomus bernacchii | MN841276 | 100 | 100 | |
Trematomus pennellii | MK007073 | 100 | 100 | |
Channichthyidae | Chionodraco hamatus/rastrospinosus * | KT921282/ NC039543 | 100/100 | 100 |
Chaenocephalus aceratus | JF933907 | 100 | 100 | |
Chaenodraco wilsoni | NC039158 | 100 | 100 | |
Chionodraco myersi | DQ526430 | 100 | 100 | |
Cryodraco antarcticus | NC045285 | 100 | 100 | |
Artedidraconidae | Pogonophryne albipinna/scotti * | NC046024/LC069700 | 100/100 | 100 |
Bathydraconidae | Gymnodraco acuticeps | U90413 | 100 | 100 |
CA | DY | CH | CW | MC | EP | II | |
---|---|---|---|---|---|---|---|
Notothenioid fish (%) | 4.84 | 10.57 | 24.09 | 29.57 | 35.04 | 47.68 | 70.11 |
E. superba (%) | 93.76 | 87.40 | 70.54 | 52.00 | 51.66 | 0.00 | 0.45 |
E. crystallorophias (%) | 1.40 | 2.03 | 5.37 | 18.43 | 13.30 | 52.31 | 29.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabassum, N.; Lee, J.-H.; Lee, S.-R.; Kim, J.-U.; Park, H.; Kim, H.-W.; Kim, J.-H. Molecular Diet Analysis of Adélie Penguins (Pygoscelis adeliae) in the Ross Sea Using Fecal DNA. Biology 2022, 11, 182. https://doi.org/10.3390/biology11020182
Tabassum N, Lee J-H, Lee S-R, Kim J-U, Park H, Kim H-W, Kim J-H. Molecular Diet Analysis of Adélie Penguins (Pygoscelis adeliae) in the Ross Sea Using Fecal DNA. Biology. 2022; 11(2):182. https://doi.org/10.3390/biology11020182
Chicago/Turabian StyleTabassum, Nazia, Ji-Hyun Lee, Soo-Rin Lee, Jong-U Kim, Hyun Park, Hyun-Woo Kim, and Jeong-Hoon Kim. 2022. "Molecular Diet Analysis of Adélie Penguins (Pygoscelis adeliae) in the Ross Sea Using Fecal DNA" Biology 11, no. 2: 182. https://doi.org/10.3390/biology11020182
APA StyleTabassum, N., Lee, J. -H., Lee, S. -R., Kim, J. -U., Park, H., Kim, H. -W., & Kim, J. -H. (2022). Molecular Diet Analysis of Adélie Penguins (Pygoscelis adeliae) in the Ross Sea Using Fecal DNA. Biology, 11(2), 182. https://doi.org/10.3390/biology11020182