Association between Sperm Morphology and Altered Sperm microRNA Expression
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Semen Preparation
2.3. Embryo Culture and Embryo Transfer
2.4. RNA Isolation
2.5. Reverse Transcription and Quantitative Real-Time PCR
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. MiRNA Expression in Spermatozoa
3.3. Correlations between miRNA Expression Levels in Spermatozoa, Semen Parameters and IVF/ICSI Cycle Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brugh, V.M.; Lipshultz, L.I. Male Factor Infertility: Evaluation and Management. Med. Clin. N. Am. 2004, 88, 367–385. [Google Scholar] [CrossRef]
- Corral-Vazquez, C.; Salas-Huetos, A.; Blanco, J.; Vidal, F.; Sarrate, Z.; Anton, E. Sperm MicroRNA Pairs: New Perspectives in the Search for Male Fertility Biomarkers. Fertil. Steril. 2019, 112, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, M.J. Uncertainty of Measurement and Clinical Value of Semen Analysis: Has Standardisation through Professional Guidelines Helped or Hindered Progress? Andrology 2016, 4, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Jungwirth, A.; Giwercman, A.; Tournaye, H.; Diemer, T.; Kopa, Z.; Dohle, G.; Krausz, C. European Association of Urology Working Group on Male Infertility European Association of Urology Guidelines on Male Infertility: The 2012 Update. Eur. Urol. 2012, 62, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Salas-Huetos, A.; Blanco, J.; Vidal, F.; Godo, A.; Grossmann, M.; Pons, M.C.; F-Fernández, S.; Garrido, N.; Anton, E. Spermatozoa from Patients with Seminal Alterations Exhibit a Differential Micro-Ribonucleic Acid Profile. Fertil. Steril. 2015, 104, 591–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-Halima, M.; Hammadeh, M.; Schmitt, J.; Leidinger, P.; Keller, A.; Meese, E.; Backes, C. Altered MicroRNA Expression Profiles of Human Spermatozoa in Patients with Different Spermatogenic Impairments. Fertil. Steril. 2013, 99, 1249–1255.e16. [Google Scholar] [CrossRef]
- Salas-Huetos, A.; Blanco, J.; Vidal, F.; Grossmann, M.; Pons, M.C.; Garrido, N.; Anton, E. Spermatozoa from Normozoospermic Fertile and Infertile Individuals Convey a Distinct MiRNA Cargo. Andrology 2016, 4, 1028–1036. [Google Scholar] [CrossRef] [Green Version]
- Donkin, I.; Barrès, R. Sperm Epigenetics and Influence of Environmental Factors. Mol. Metab. 2018, 14, 1–11. [Google Scholar] [CrossRef]
- de Castro Barbosa, T.; Ingerslev, L.R.; Alm, P.S.; Versteyhe, S.; Massart, J.; Rasmussen, M.; Donkin, I.; Sjögren, R.; Mudry, J.M.; Vetterli, L.; et al. High-Fat Diet Reprograms the Epigenome of Rat Spermatozoa and Transgenerationally Affects Metabolism of the Offspring. Mol. Metab. 2016, 5, 184–197. [Google Scholar] [CrossRef]
- Fullston, T.; Palmer, N.O.; Owens, J.A.; Mitchell, M.; Bakos, H.W.; Lane, M. Diet-Induced Paternal Obesity in the Absence of Diabetes Diminishes the Reproductive Health of Two Subsequent Generations of Mice. Hum. Reprod. 2012, 27, 1391–1400. [Google Scholar] [CrossRef]
- Tektemur, A.; Etem Önalan, E.; Kaya Tektemur, N.; Güngör, İ.H.; Türk, G.; Kuloğlu, T. Verapamil-Induced Ion Channel and MiRNA Expression Changes in Rat Testis and/or Spermatozoa May Be Associated with Male Infertility. Andrologia 2020, 52, e13778. [Google Scholar] [CrossRef] [PubMed]
- Nazmara, Z.; Najafi, M.; Movahedin, M.; Zandiyeh, Z.; Shirinbayan, P.; Asgari, H.R.; Roshanpajouh, M.; Maki, C.B.; Bashiri, Z.; Koruji, M. Correlation between Protamine-2 and MiRNA-122 in Sperm from Heroin-Addicted Men: A Case-Control Study. Urol. J. 2020, 17, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Zhang, L.; Ma, F.; Wang, X.; Li, J.; Diao, N.; Leng, X.; Shi, K.; Zeng, F.; Zong, Y.; et al. Comparison of MiRNA and MRNA Expression in Sika Deer Testes with Age. Front. Vet. Sci. 2022, 9, 854503. [Google Scholar] [CrossRef] [PubMed]
- Kidd, S.A.; Eskenazi, B.; Wyrobek, A.J. Effects of Male Age on Semen Quality and Fertility: A Review of the Literature. Fertil. Steril. 2001, 75, 237–248. [Google Scholar] [CrossRef]
- Eustache, F.; Auger, J. Inter-Individual Variability in the Morphological Assessment of Human Sperm: Effect of the Level of Experience and the Use of Standard Methods. Hum. Reprod. 2003, 18, 1018–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danis, R.B.; Samplaski, M.K. Sperm Morphology: History, Challenges, and Impact on Natural and Assisted Fertility. Curr. Urol. Rep. 2019, 20, 43. [Google Scholar] [CrossRef] [PubMed]
- Guzick, D.S.; Overstreet, J.W.; Factor-Litvak, P.; Brazil, C.K.; Nakajima, S.T.; Coutifaris, C.; Carson, S.A.; Cisneros, P.; Steinkampf, M.P.; Hill, J.A.; et al. Sperm Morphology, Motility, and Concentration in Fertile and Infertile Men. N. Engl. J. Med. 2001, 345, 1388–1393. [Google Scholar] [CrossRef] [PubMed]
- Shabtaie, S.A.; Gerkowicz, S.A.; Kohn, T.P.; Ramasamy, R. Role of Abnormal Sperm Morphology in Predicting Pregnancy Outcomes. Curr. Urol. Rep. 2016, 17, 67. [Google Scholar] [CrossRef]
- Zhou, W.-J.; Huang, C.; Jiang, S.-H.; Ji, X.-R.; Gong, F.; Fan, L.-Q.; Zhu, W.-B. Influence of Sperm Morphology on Pregnancy Outcome and Offspring in in Vitro Fertilization and Intracytoplasmic Sperm Injection: A Matched Case-Control Study. Asian J. Androl. 2021, 23, 421–428. [Google Scholar] [CrossRef]
- Stimpfel, M.; Vrtacnik-Bokal, E. Minor DNA Methylation Changes Are Observed in Spermatozoa Prepared Using Different Protocols. Andrology 2020, 8, 1312–1323. [Google Scholar] [CrossRef]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Stimpfel, M.; Jancar, N.; Vrtacnik-Bokal, E. Collecting Semen Samples at Home for IVF/ICSI Does Not Negatively Affect the Outcome of the Fresh Cycle. Reprod. BioMed. Online 2021, 42, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Bolha, L.; Pižem, J.; Frank-Bertoncelj, M.; Hočevar, A.; Tomšič, M.; Jurčić, V. Identification of MicroRNAs and Their Target Gene Networks Implicated in Arterial Wall Remodelling in Giant Cell Arteritis. Rheumatology 2020, 59, 3540–3552. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, M.B.R.; Celeghini, E.C.C.; Belleannée, C. From Sperm Motility to Sperm-Borne MicroRNA Signatures: New Approaches to Predict Male Fertility Potential. Front. Cell. Dev. Biol. 2020, 8, 791. [Google Scholar] [CrossRef]
- Khawar, M.B.; Mehmood, R.; Roohi, N. MicroRNAs: Recent Insights towards Their Role in Male Infertility and Reproductive Cancers. Bosn. J. Basic Med. Sci. 2019, 19, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Schuster, A.; Tang, C.; Yu, T.; Ortogero, N.; Bao, J.; Zheng, H.; Yan, W. Sperm-Borne MiRNAs and Endo-SiRNAs Are Important for Fertilization and Preimplantation Embryonic Development. Development 2016, 143, 635–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denomme, M.M.; McCallie, B.R.; Parks, J.C.; Schoolcraft, W.B.; Katz-Jaffe, M.G. Alterations in the Sperm Histone-Retained Epigenome Are Associated with Unexplained Male Factor Infertility and Poor Blastocyst Development in Donor Oocyte IVF Cycles. Hum. Reprod. 2017, 32, 2443–2455. [Google Scholar] [CrossRef]
- Tian, H.; Lv, M.; Li, Z.; Peng, D.; Tan, Y.; Wang, H.; Li, Q.; Li, F.; Liang, W. Semen-Specific MiRNAs: Suitable for the Distinction of Infertile Semen in the Body Fluid Identification? Forensic Sci. Int. Genet. 2018, 33, 161–167. [Google Scholar] [CrossRef]
- Mokánszki, A.; Molnár, Z.; Varga Tóthné, E.; Bodnár, B.; Jakab, A.; Bálint, B.L.; Balogh, I. Altered MicroRNAs Expression Levels of Sperm and Seminal Plasma in Patients with Infertile Ejaculates Compared with Normozoospermic Males. Hum. Fertil. (Camb.) 2020, 23, 246–255. [Google Scholar] [CrossRef]
- Salas-Huetos, A.; James, E.R.; Aston, K.I.; Carrell, D.T.; Jenkins, T.G.; Yeste, M. The Role of MiRNAs in Male Human Reproduction: A Systematic Review. Andrology 2020, 8, 7–26. [Google Scholar] [CrossRef]
- Xu, H.; Wang, X.; Wang, Z.; Li, J.; Xu, Z.; Miao, M.; Chen, G.; Lei, X.; Wu, J.; Shi, H.; et al. MicroRNA Expression Profile Analysis in Sperm Reveals Hsa-Mir-191 as an Auspicious Omen of in Vitro Fertilization. BMC Genom. 2020, 21, 165. [Google Scholar] [CrossRef] [Green Version]
- Yao, C.; Yuan, Q.; Niu, M.; Fu, H.; Zhou, F.; Zhang, W.; Wang, H.; Wen, L.; Wu, L.; Li, Z.; et al. Distinct Expression Profiles and Novel Targets of MicroRNAs in Human Spermatogonia, Pachytene Spermatocytes, and Round Spermatids between OA Patients and NOA Patients. Mol. Ther. Nucleic Acids 2017, 9, 182–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, R. Quantification on the LightCycler. In Rapid Cycle Real-Time PCR: Methods and Applications; Meuer, S., Wittwer, C., Nakagawara, K.-I., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 21–34. ISBN 978-3-642-59524-0. [Google Scholar]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate Normalization of Real-Time Quantitative RT-PCR Data by Geometric Averaging of Multiple Internal Control Genes. Genome Biol. 2002, 3, RESEARCH0034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubista, M.; Sindelka, R.; Tichopad, A.; Bergkvist, A.; Lindh, D. The Prime Technique. G.I.T. Lab. J. 2007, 9–10, 33–35. [Google Scholar]
- Livak, K.; Schmittgen, T. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Gholami, D.; Amirmahani, F.; Yazdi, R.S.; Hasheminia, T.; Teimori, H. MiR-182-5p, MiR-192-5p, and MiR-493-5p Constitute a Regulatory Network with CRISP3 in Seminal Plasma Fluid of Teratozoospermia Patients. Reprod. Sci. 2021, 28, 2060–2069. [Google Scholar] [CrossRef] [PubMed]
- Pereira, N.; Neri, Q.; Lekovic, J.; Spandorfer, S.; Palermo, G.; Rosenwaks, Z. Outcomes of Intracytoplasmic Sperm Injection Cycles for Complete Teratozoospermia: A Case-Control Study Using Paired Sibling Oocytes. BioMed Res. Int. 2015, 2015, 470819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burruel, V.R.; Yanagimachi, R.; Whitten, W.K. Normal Mice Develop from Oocytes Injected with Spermatozoa with Grossly Misshapen Heads. Biol. Reprod. 1996, 55, 709–714. [Google Scholar] [CrossRef]
- Kamijo, S.; Hamatani, T.; Sasaki, H.; Suzuki, H.; Abe, A.; Inoue, O.; Iwai, M.; Ogawa, S.; Odawara, K.; Tanaka, K.; et al. MicroRNAs Secreted by Human Preimplantation Embryos and IVF Outcome. Reprod. Biol. Endocrinol. 2022, 20, 130. [Google Scholar] [CrossRef]
- Ibañez-Perez, J.; Díaz-Nuñez, M.; Clos-García, M.; Lainz, L.; Iglesias, M.; Díez-Zapirain, M.; Rabanal, A.; Bárcena, L.; González, M.; Lozano, J.J.; et al. MicroRNA-Based Signatures Obtained from Endometrial Fluid Identify Implantative Endometrium. Hum. Reprod. 2022, 37, 2375–2391. [Google Scholar] [CrossRef]
- Conine, C.C.; Sun, F.; Song, L.; Rivera-Pérez, J.A.; Rando, O.J. Small RNAs Gained during Epididymal Transit of Sperm Are Essential for Embryonic Development in Mice. Dev. Cell 2018, 46, 470–480.e3. [Google Scholar] [CrossRef] [PubMed]
Parameter | Study Group | Control Group | p-Value |
---|---|---|---|
Sperm volume (ml) | 2.0 (2.0–3.0) | 2.0 (1.5–3.0) | 0.786 |
Sperm concentration (×106/mL) | 60 (45–90) | 80 (70–100) | 0.088 |
Total sperm count (×106) | 150 (90–200) | 200 (150–240) | 0.058 |
Total motility (%) | 60 (55–70) | 70 (60–70) | 0.294 |
Sperm morphology (%) | 2.0 (1.2–2.5) | 10 (9.0–14.4) | <0.001 *** |
Parameter | Study Group | Control Group | p-Value |
---|---|---|---|
Number of cycles | 13 | 15 | |
Female age (years) (mean ± SD) | 32.5 ± 3.3 | 32.9 ± 3.9 | 0.764 |
Male age (years) (mean ± SD) | 33.9 ± 3.8 | 36.1 ± 4.8 | 0.194 |
Gonadotrophins used in IE (mean ± SD) | 1942 ± 699 | 1985 ± 674 | 0.871 |
Only male factor of infertility (teratozoospermia) | 4 | 0 | |
Only female factor of infertility | 0 | 11 | |
Male and female factor infertility | 9 | 0 | |
Female BMI | 25.6 ± 6.4 | 22.8 ± 5.1 | 0.185 |
Male BMI | 27.2 ± 4.8 | 25.7 ± 4.3 | 0.345 |
Total number of retrieved oocytes (mean per cycle ± SD) | 166 (12.8 ± 5.5) | 185 (12.3 ± 4.0) | 0.811 |
Normally fertilized oocytes per number of retrieved oocytes; n (rate (%)) | 88/166 (53.0%) | 114/185 (61.6%) | 0.104 |
Immature oocytes; n (rate (%)) | 24 (14.5%) | 32 (17.3%) | 0.467 |
Degenerated oocytes per number of retrieved oocytes; n (rate (%)) | 19/166 (11.4%) | 10/185 (5.4%) | 0.040 * |
Polyploidies per number of retrieved oocytes; n (rate (%)) | 4/166 (2.4%) | 8/185 (4.3%) | 0.325 |
Cleaved embryos; n (% per zygotes) | 86 (97.7%) | 114 (100%) | 0.189 |
Number of embryos per cycle (mean ± SD) | 6.6 ± 4.6 | 7.6 ± 4.0 | 0.551 |
Number of embryos cultured until day 5/6 | 84 | 113 | |
Blastocysts per embryos cultured until day 5/6; n (rate (%)) | 39/84 (46.4%) | 63/113 (55.8%) | 0.195 |
Embryo utilization (transferred + frozen embryos); n (rate (%)) | 42 (48.8%) | 64 (56.1%) | 0.306 |
Number of frozen blastocysts (mean ± SD) | 2.2 ± 3.4 | 3.3 ± 2.7 | 0.343 |
Cycles with at least one blastocyst; n (%) | 11 (84.6%) | 14 (93.3%) | 0.583 |
Cryopreserved embryos; n (rate (% of all embryos)) | 29 (33.7%) | 50 (43.9%) | 0.146 |
Cycles with embryo cryopreservation; n (%) | 9 (69.2%) | 12 (80.0%) | 0.670 |
Cycles with freezing without ET; n (%) | 2 (15.4%) | 1 (6.7%) | 1 |
Cycles without freezing/without ET; n (%) | 0 (0%) | 0 (0%) | NA |
Total number of fresh ETs | 11 | 14 | |
Number of transferred embryos (mean ± SD) | 1.2 ± 0.4 | 1.0 ± 0.0 | 0.467 |
Pregnancies; n (% per ET) | 5 (45.5%) | 6 (42.9%) | 1 |
Pregnancies per oocyte aspiration (%) | 38.5% | 40.0% | 1 |
Oocytes (n) | Embryos (n) | Blastocysts (n) | Good-Quality Day 3 Embryos (n) | Good-Quality Day 3 Embryo Rate | Good-Quality Blastocysts (n) | Good-Quality Blastocyst Rate | Pregnancy | Sperm Volume | Sperm Concentration | Sperm Motility | Sperm Morphology | Male Age | Total Sperm Count | Male BMI | Female BMI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Oocytes (n) | 1 | |||||||||||||||
Embryos (n) | 0.647 *** | 1 | ||||||||||||||
Blastocysts (n) | 0.338 | 0.716 *** | 1 | |||||||||||||
Good-quality day 3 embryos (n) | 0.466 * | 0.667 *** | 0.565 ** | 1 | ||||||||||||
Good-quality day 3 embryo rate | 0.097 | 0.072 | 0.241 | 0.613 ** | 1 | |||||||||||
Good-quality blastocysts (n) | 0.234 | 0.705 *** | 0.880 *** | 0.579 ** | 0.172 | 1 | ||||||||||
Good-quality blastocyst rate | −0.283 | 0.182 | 0.311 | 0.195 | −0.121 | 0.609 ** | 1 | |||||||||
Pregnancy | 0.219 | 0.086 | 0.238 | 0.254 | 0.182 | 0.110 | −0.162 | 1 | ||||||||
Sperm volume | −0.034 | −0.076 | −0.001 | −0.277 | −0.123 | −0.119 | 0.018 | −0.151 | 1 | |||||||
Sperm concentration | −0.004 | 0.182 | 0.437 * | 0.360 | 0.248 | 0.507 ** | 0.269 | 0.170 | −0.302 | 1 | ||||||
Sperm motility | 0.106 | −0.066 | 0.011 | −0.054 | 0.011 | −0.035 | −0.104 | 0.146 | 0.159 | 0.198 | 1 | |||||
Sperm morphology | −0.008 | 0.143 | 0.151 | −0.052 | −0.186 | 0.136 | −0.026 | 0.027 | 0.081 | 0.181 | 0.183 | 1 | ||||
Male age | −0.189 | 0.031 | −0.011 | −0.104 | −0.178 | 0.160 | 0.379 * | −0.231 | 0.142 | −0.010 | 0.061 | 0.179 | 1 | |||
Total sperm count | −0.024 | 0.101 | 0.435 * | 0.063 | 0.151 | 0.395 * | 0.271 | −0.018 | 0.408 * | 0.686 *** | 0.266 | 0.278 | 0.077 | 1 | ||
Male BMI | −0.309 | −0.111 | 0.043 | −0.098 | 0.084 | −0.010 | 0.099 | 0.073 | −0.133 | −0.037 | −0.266 | −0.399 | −0.095 | −0.133 | 1 | |
Female BMI | −0.260 | −0.252 | −0.184 | −0.150 | 0.0001 | −0.211 | −0.053 | −0.217 | −0.017 | −0.304 | −0.033 | −0.330 | −0.240 | −0.358 | 0.677 ** | 1 |
miR-10a-5p | miR-15b-5p | miR-26a-5p | miR-34b-3p | miR-92a-3p | miR-93-3p | miR-99b-5p | miR-122-5p | miR-125b-5p | miR-191-5p | miR-296-5p | miR-328-3p | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Oocytes (n) | −0.055 | −0.083 | 0.021 | −0.134 | −0.005 | 0.070 | 0.012 | −0.123 | −0.092 | −0.125 | −0.108 | −0.262 |
Embryos (n) | 0.162 | 0.125 | 0.065 | 0.053 | 0.157 | 0.218 | 0.136 | 0.017 | 0.070 | 0.024 | 0.056 | −0.176 |
Blastocysts (n) | 0.191 | 0.197 | 0.129 | 0.160 | 0.080 | 0.110 | 0.028 | 0.057 | 0.056 | 0.065 | 0.233 | −0.145 |
Good-quality day 3 embryos (n) | 0.165 | 0.166 | 0.172 | 0.082 | 0.117 | 0.252 | 0.288 | 0.060 | 0.155 | 0.090 | 0.161 | 0.005 |
Good-quality day 3 embryo rate | 0.230 | 0.198 | 0.337 | 0.199 | 0.272 | 0.225 | 0.546 ** | 0.187 | 0.316 | 0.225 | 0.337 | −0.012 |
Good-quality blastocysts (n) | 0.166 | 0.183 | 0.043 | 0.163 | 0.102 | 0.145 | 0.076 | 0.090 | 0.061 | 0.118 | 0.099 | −0.036 |
Good-quality blastocyst rate | 0.054 | 0.062 | −0.061 | 0.032 | −0.042 | 0.068 | −0.032 | 0.037 | −0.023 | 0.052 | −0.161 | 0.298 |
Pregnancy | 0.195 | 0.177 | 0.222 | 0.222 | 0.167 | 0.158 | 0.059 | 0.104 | 0.131 | 0.186 | 0.330 | 0.159 |
Sperm volume | 0.039 | 0.044 | 0.157 | 0.045 | 0.066 | −0.026 | −0.114 | 0.135 | 0.067 | 0.021 | 0.094 | 0.179 |
Sperm concentration | 0.038 | 0.047 | −0.007 | 0.152 | −0.096 | −0.139 | −0.110 | 0.036 | −0.018 | 0.098 | 0.151 | −0.238 |
Sperm motility | 0.088 | 0.045 | 0.014 | 0.007 | 0.076 | −0.023 | −0.019 | 0.036 | −0.057 | 0.031 | 0.073 | 0.094 |
Sperm morphology | 0.540 ** | 0.568 ** | 0.403 * | 0.540 ** | 0.400 * | 0.453 * | 0.090 | 0.454 * | 0.453 * | 0.522 ** | 0.532 ** | 0.462 * |
Male age | 0.005 | −0.017 | −0.047 | −0.049 | 0.008 | −0.071 | −0.067 | 0.063 | −0.044 | −0.066 | −0.134 | −0.057 |
Total sperm count | 0.071 | 0.072 | 0.136 | 0.183 | −0.063 | −0.103 | −0.144 | 0.130 | 0.025 | 0.107 | 0.188 | −0.134 |
Male BMI | 0.012 | −0.033 | 0-.032 | 0.045 | 0.064 | −0.028 | 0.142 | 0.042 | 0.073 | −0.023 | 0.039 | −0.031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomic, M.; Bolha, L.; Pizem, J.; Ban-Frangez, H.; Vrtacnik-Bokal, E.; Stimpfel, M. Association between Sperm Morphology and Altered Sperm microRNA Expression. Biology 2022, 11, 1671. https://doi.org/10.3390/biology11111671
Tomic M, Bolha L, Pizem J, Ban-Frangez H, Vrtacnik-Bokal E, Stimpfel M. Association between Sperm Morphology and Altered Sperm microRNA Expression. Biology. 2022; 11(11):1671. https://doi.org/10.3390/biology11111671
Chicago/Turabian StyleTomic, Maja, Luka Bolha, Joze Pizem, Helena Ban-Frangez, Eda Vrtacnik-Bokal, and Martin Stimpfel. 2022. "Association between Sperm Morphology and Altered Sperm microRNA Expression" Biology 11, no. 11: 1671. https://doi.org/10.3390/biology11111671
APA StyleTomic, M., Bolha, L., Pizem, J., Ban-Frangez, H., Vrtacnik-Bokal, E., & Stimpfel, M. (2022). Association between Sperm Morphology and Altered Sperm microRNA Expression. Biology, 11(11), 1671. https://doi.org/10.3390/biology11111671