The Impact of Obesity on C1q/TNF-Related Protein-9 Expression and Endothelial Function following Acute High-Intensity Interval Exercise vs. Continuous Moderate-Intensity Exercise
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Experimental Protocol
2.3. Blood Sampling
2.4. FMD Measurement
2.5. Statistical Analyses
3. Results
3.1. Anthropometric Measurements of the Study Participants
3.2. Measurement of Serum CTRP9 and Flow-Mediated Dilation
3.3. Correlations between CTRP9 and FMD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMPK | AMP-activated protein kinase |
eNOS | Endothelial cell nitric oxide synthase |
ANOVA | Analyses of variance |
FMD | Flow-mediated dilation |
BMI | Body mass index |
HIIE | High-intensity interval exercise |
CME | Continuous moderate-intensity exercise |
NO | Nitric oxide |
CTRP9 | C1q-TNF-related protein-9 |
RPE | Rating of perceived exertion |
EDTA | Ethylenediaminetetraacetic acid |
SST | serum separation tube |
ELISA | Enzyme-linked immunosorbent assay |
VO2 max | Maximal oxygen consumption |
References
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of Obesity among Adults and Youth: United States, 2015–2016. NCHS Data Brief. 2017, 288, 1–8. [Google Scholar]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.-P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef] [PubMed]
- Rocha, V.Z.; Libby, P. Obesity, inflammation, and atherosclerosis. Nat. Rev. Cardiol. 2009, 6, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.R.; Sinha, S.; Owens, G.K. Vascular Smooth Muscle Cells in Atherosclerosis. Circ. Res. 2016, 118, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Gimbrone, M.A.; García-Cardeña, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016, 118, 620–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thijssen, D.H.J.; Bruno, R.M.; Van Mil, A.C.C.M.; Holder, S.M.; Faita, F.; Greyling, A.; Zock, P.L.; Taddei, S.; Deanfield, J.E.; Luscher, T.; et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. Eur. Heart J. 2019, 40, 2534–2547. [Google Scholar] [CrossRef]
- Meyer, A.A.; Kundt, G.; Steiner, M.; Schuff-Werner, P.; Kienast, W. Impaired flow-mediated vasodilation, carotid artery intima-media thickening, and elevated endothelial plasma markers in obese children: The impact of cardiovascular risk factors. Pediatrics 2006, 117, 1560–1567. [Google Scholar] [CrossRef]
- Karolina, D.; Silambarasan, M.; Armugam, A.; Yeyaseelan, K. MicroRNA and Endothelial Dysfunction in relation to Obesity and Type2 Diabetes. J. Mol. Genet. Med. 2014, 1, 1747–1862. [Google Scholar]
- Zheng, Q.; Yuan, Y.; Yi, W.; Lau, W.B.; Wang, Y.; Wang, X.; Sun, Y.; Lopez, B.L.; Christopher, T.A.; Peterson, J.M. C1q/TNF-related proteins, a family of novel adipokines, induce vascular relaxation through the adiponectin receptor-1/AMPK/eNOS/nitric oxide signaling pathway. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2616–2623. [Google Scholar] [CrossRef] [Green Version]
- Uemura, Y.; Shibata, R.; Ohashi, K.; Enomoto, T.; Kambara, T.; Yamamoto, T.; Ogura, Y.; Yuasa, D.; Joki, Y.; Matsuo, K. Adipose-derived factor CTRP9 attenuates vascular smooth muscle cell proliferation and neointimal formation. FASEB J. 2013, 27, 25–33. [Google Scholar] [CrossRef]
- Wong, G.W.; Krawczyk, S.A.; Kitidis-Mitrokostas, C.; Ge, G.; Spooner, E.; Hug, C.; Gimeno, R.; Lodish, H.F. Identification and characterization of CTRP9, a novel secreted glycoprotein, from adipose tissue that reduces serum glucose in mice and forms heterotrimers with adiponectin. FASEB J. 2009, 23, 241–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, Y.; Oh, S.W.; Park, S.; Park, C. Association of serum C1q/TNF-Related Protein-9 (CTRP9) concentration with visceral adiposity and metabolic syndrome in humans. Int. J. Obes. 2014, 38, 1207–1212. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hang, T.; Cheng, X.-M.; Li, D.-M.; Zhang, Q.-G.; Wang, L.-J.; Peng, Y.-P.; Gong, J.-B. Associations of C1q/TNF-related protein-9 levels in serum and epicardial adipose tissue with coronary atherosclerosis in humans. BioMed Res. Int. 2015, 2015, 971683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, R.M.; Steele, K.E.; Peterson, L.A.; Zeng, X.; Jaffe, A.E.; Schweitzer, M.A.; Magnuson, T.H.; Wong, G.W. C1q/TNF-related protein-9 (CTRP9) levels are associated with obesity and decrease following weight loss surgery. J. Clin. Endocrinol. Metab. 2016, 101, 2211–2217. [Google Scholar] [CrossRef]
- Ringseis, R.; Eder, K.; Mooren, F.C.; Krüger, K. Metabolic signals and innate immune activation in obesity and exercise. Exerc. Immunol. Rev. 2015, 21, 58–68. [Google Scholar]
- Rognmo, Ø.; Hetland, E.; Helgerud, J.; Hoff, J.; Slørdahl, S.A. High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. Eur. J. Cardiovasc. Prev. Rehabil. 2004, 11, 216–222. [Google Scholar] [CrossRef]
- Anderson, L.; Thompson, D.R.; Oldridge, N.; Zwisler, A.-D.; Rees, K.; Martin, N.; Taylor, R.S. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst. Rev. 2016. [Google Scholar] [CrossRef] [Green Version]
- Guimaraes, G.V.; Ciolac, E.G.; Carvalho, V.O.; D’Avila, V.M.; Bortolotto, L.A.; Bocchi, E.A. Effects of continuous vs. interval exercise training on blood pressure and arterial stiffness in treated hypertension. Hypertens. Res. 2010, 33, 627–632. [Google Scholar] [CrossRef]
- Ramos, J.S.; Dalleck, L.C.; Tjonna, A.E.; Beetham, K.S.; Coombes, J.S. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: A systematic review and meta-analysis. Sports Med. 2015, 45, 679. [Google Scholar] [CrossRef]
- Bond, B.; Hind, S.; Williams, C.A.; Barker, A.R. The Acute Effect of Exercise Intensity on Vascular Function in Adolescents. Med. Sci. Sports Exerc. 2015, 47, 2628–2635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallmark, R.; Patrie, J.T.; Liu, Z.; Gaesser, G.A.; Barrett, E.J.; Weltman, A. The effect of exercise intensity on endothelial function in physically inactive lean and obese adults. PLoS ONE 2014, 9, e85450. [Google Scholar] [CrossRef] [PubMed]
- Kon, M.; Ebi, Y.; Nakagaki, K. Effects of a single bout of high-intensity interval exercise on C1q/TNF-related proteins. Appl. Physiol. Nutr. Metab. 2019, 44, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Tyldum, G.A.; Schjerve, I.E.; Tjønna, A.E.; Kirkeby-Garstad, I.; Stølen, T.O.; Richardson, R.S.; Wisløff, U. Endothelial dysfunction induced by post-prandial lipemia: Complete protection afforded by high-intensity aerobic interval exercise. J. Am. Coll. Cardiol. 2009, 53, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.A.; Nishiyama, S.K.; Wray, D.W.; Richardson, R.S. Ultrasound assessment of flow-mediated dilation. Hypertension 2010, 55, 1075–1085. [Google Scholar] [CrossRef]
- Peterson, J.M.; Wei, Z.; Seldin, M.M.; Byerly, M.S.; Aja, S.; Wong, G.W. CTRP9 transgenic mice are protected from diet-induced obesity and metabolic dysfunction. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2013, 305, R522–R533. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Lei, X.; Petersen, P.S.; Aja, S.; Wong, G.W. Targeted deletion of C1q/TNF-related protein 9 increases food intake, decreases insulin sensitivity, and promotes hepatic steatosis in mice. Am. J. Physiol.-Endocrinol. Metab. 2014, 306, E779–E790. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.H.; Lee, M.J.; Kang, Y.M.; La Lee, Y.; Seol, S.M.; Yoon, H.K.; Kang, S.-W.; Lee, W.J.; Park, J.-Y. C1q/TNF-related protein-9 inhibits cytokine-induced vascular inflammation and leukocyte adhesiveness via AMP-activated protein kinase activation in endothelial cells. Mol. Cell. Endocrinol. 2016, 419, 235–243. [Google Scholar] [CrossRef]
- Li, Y.; Geng, X.; Wang, H.; Cheng, G.; Xu, S. CTRP9 Ameliorates Pulmonary Arterial Hypertension Through Attenuating Inflammation and Improving Endothelial Cell Survival and Function. J. Cardiovasc. Pharmacol. 2016, 67, 394–401. [Google Scholar] [CrossRef]
- Türk, Y.; Theel, W.; Kasteleyn, M.J.; Franssen, F.M.E.; Hiemstra, P.S.; Rudolphus, A.; Taube, C.; Braunstahl, G.J. High intensity training in obesity: A Meta-analysis. Obes. Sci. Pr. 2017, 3, 258–271. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, K.M.; Patel, P.M.; O’Neal, J.L.; Heinrich, B.S. High-intensity compared to moderate-intensity training for exercise initiation, enjoyment, adherence, and intentions: An intervention study. BMC Public Health 2014, 14, 789. [Google Scholar] [CrossRef] [Green Version]
- Green, D.J.; Jones, H.; Thijssen, D.; Cable, N.; Atkinson, G. Flow-mediated dilation and cardiovascular event prediction. Hypertension 2011, 57, 363–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slusher, A.L.; Fico, B.G.; Dodge, K.M.; Garten, R.S.; Ferrandi, P.J.; Rodriguez, A.A.; Pena, G.; Huang, C.-J. Impact of acute high-intensity interval exercise on plasma pentraxin 3 and endothelial function in obese individuals—A pilot study. Eur. J. Appl. Physiol. 2021, 121, 1567–1577. [Google Scholar] [CrossRef] [PubMed]
- Maruhashi, T.; Kajikawa, M.; Kishimoto, S.; Hashimoto, H.; Takaeko, Y.; Yamaji, T.; Harada, T.; Han, Y.; Aibara, Y.; Mohamad Yusoff, F.; et al. Diagnostic Criteria of Flow-Mediated Vasodilation for Normal Endothelial Function and Nitroglycerin-Induced Vasodilation for Normal Vascular Smooth Muscle Function of the Brachial Artery. J. Am. Heart Assoc. 2020, 9, e013915. [Google Scholar] [CrossRef] [PubMed]
- Davison, K.; Bircher, S.; Hill, A.; Coates, A.M.; Howe, P.R.; Buckley, J.D. Relationships between obesity, cardiorespiratory fitness, and cardiovascular function. J. Obes. 2011, 2010, 191253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, W.; Zeng, J.; Yin, J.; Zhang, F.; Wu, H.; Yan, S.; Wang, S. Both flow-mediated vasodilation procedures and acute exercise improve endothelial function in obese young men. Eur. J. Appl. Physiol. 2010, 108, 727–732. [Google Scholar] [CrossRef]
- Currie, K.D.; McKelvie, R.S.; MacDonald, M.J. Flow-mediated dilation is acutely improved after high-intensity interval exercise. Med. Sci. Sports Exerc. 2012, 44, 2057–2064. [Google Scholar] [CrossRef]
- Munk, P.S.; Breland, U.M.; Aukrust, P.; Ueland, T.; Kvaløy, J.T.; Larsen, A.I. High intensity interval training reduces systemic inflammation in post-PCI patients. Eur. J. Cardiovasc. Prev. Rehabil. 2011, 18, 850–857. [Google Scholar] [CrossRef]
- Shiraev, T.; Barclay, G. Evidence based exercise: Clinical benefits of high intensity interval training. Aust. Fam. Physician 2012, 41, 960. [Google Scholar]
Variable | Normal-Weight n = 7 | Obese n = 9 | p-Value |
---|---|---|---|
Age (years) | 23 ± 2 | 28 ± 5 | 0.019 |
Height (m) | 1.79 ± 0.04 | 1.78 ± 0.06 | 0.815 |
Weight (kg) | 72 ± 10 | 116 ± 18 | <0.001 |
Body Mass Index (kg/m2) | 22 ± 2 | 36 ± 4 | <0.001 |
Waist (cm) | 80 ± 7 | 113 ± 16 | <0.001 |
Hip (cm) | 96 ± 5 | 118 ± 8 | <0.001 |
WHR (a.u.) | 0.84 ± 0.06 | 0.95 ± 0.09 | 0.009 |
VO2 max (mL/kg/min) | 51 ± 5 | 37 ± 6 | <0.001 |
Resting Heart Rate (bpm) | 67 ± 10 | 73 ± 5 | 0.148 |
rSBP (mmHg) | 116 ± 7 | 138 ± 12 | <0.001 |
rDBP (mmHg) | 72 ± 5 | 85 ± 8 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fico, B.G.; Garten, R.S.; Zourdos, M.C.; Whitehurst, M.; Ferrandi, P.J.; Dodge, K.M.; Pena, G.S.; Rodriguez, A.A.; Huang, C.-J. The Impact of Obesity on C1q/TNF-Related Protein-9 Expression and Endothelial Function following Acute High-Intensity Interval Exercise vs. Continuous Moderate-Intensity Exercise. Biology 2022, 11, 1667. https://doi.org/10.3390/biology11111667
Fico BG, Garten RS, Zourdos MC, Whitehurst M, Ferrandi PJ, Dodge KM, Pena GS, Rodriguez AA, Huang C-J. The Impact of Obesity on C1q/TNF-Related Protein-9 Expression and Endothelial Function following Acute High-Intensity Interval Exercise vs. Continuous Moderate-Intensity Exercise. Biology. 2022; 11(11):1667. https://doi.org/10.3390/biology11111667
Chicago/Turabian StyleFico, Brandon G., Ryan S. Garten, Michael C. Zourdos, Michael Whitehurst, Peter J. Ferrandi, Katelyn M. Dodge, Gabriel S. Pena, Alexandra A. Rodriguez, and Chun-Jung Huang. 2022. "The Impact of Obesity on C1q/TNF-Related Protein-9 Expression and Endothelial Function following Acute High-Intensity Interval Exercise vs. Continuous Moderate-Intensity Exercise" Biology 11, no. 11: 1667. https://doi.org/10.3390/biology11111667
APA StyleFico, B. G., Garten, R. S., Zourdos, M. C., Whitehurst, M., Ferrandi, P. J., Dodge, K. M., Pena, G. S., Rodriguez, A. A., & Huang, C.-J. (2022). The Impact of Obesity on C1q/TNF-Related Protein-9 Expression and Endothelial Function following Acute High-Intensity Interval Exercise vs. Continuous Moderate-Intensity Exercise. Biology, 11(11), 1667. https://doi.org/10.3390/biology11111667