Glacial Legacies: Microbial Communities of Antarctic Refugia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Site Selection
2.2. DNA Extraction and Sequencing
2.3. Community Analysis
2.4. Environmental Analysis
2.5. Statistical Analyses of Alpha Diversity
2.6. Multivariate Analyses
3. Results
3.1. Sample Site Classification
3.2. Data Retention
3.3. Alpha Diversity
3.4. Beta Diversity
3.5. Effects of Environmental Conditions
3.5.1. Distance to Coast and Elevation
3.5.2. Soil Geochemistry
3.6. Drivers of Community Structure
3.6.1. Ordination Plots
3.6.2. Geography
3.6.3. Sample Composition
4. Discussion
4.1. Alpha Diversity
4.2. Similarities in Community Composition
4.3. Within Valley Comparisons
4.4. Putative Refugia Sites
4.5. Similarities across the MDV
4.6. Taxonomic Differences between Putative Refugia and Disturbed Sites
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fretwell, P.; Pritchard, H.D.; Vaughan, D.G.; Bamber, J.L.; Barrand, N.E.; Bell, R.; Bianchi, C.; Bingham, R.G.; Blankenship, D.D.; Casassa, G.; et al. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 2013, 7, 375–393. [Google Scholar] [CrossRef] [Green Version]
- Levy, J. How big are the McMurdo Dry Valleys? Estimating ice-free area using Landsat image data. Antarct. Sci. 2012, 25, 119–120. [Google Scholar] [CrossRef]
- Doran, P.T.; McKay, C.P.; Clow, G.D.; Dana, G.L.; Fountain, A.G.; Nylen, T.; Lyons, W.B. Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986–2000. J. Geophys. Res. Earth Surf. 2002, 107, ACL 13-1–ACL 13-12. [Google Scholar] [CrossRef] [Green Version]
- Elberling, B.; Gregorich, E.; Hopkins, D.; Sparrow, A.; Novis, P.; Greenfield, L. Distribution and dynamics of soil organic matter in an Antarctic dry valley. Soil Biol. Biochem. 2006, 38, 3095–3106. [Google Scholar] [CrossRef]
- Virginia, R.A.; Wall, D.H. How Soils Structure Communities in the Antarctic Dry Valleys. BioScience 1999, 49, 973–983. [Google Scholar] [CrossRef]
- Takacs-Vesbach, C.; Zeglin, L.; Barrett, J.; Gooseff, M.N.; Priscu, J.C. Factors promoting microbial diversity in the McMurdo Dry Valleys, Antarctica. In Life in Antarctic Deserts and Other Cold Dry Environments: Astrobiological Analogs; Doran, P., Lyons, W., McKnight, D., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 221–257. [Google Scholar] [CrossRef]
- Smith, J.J.; Tow, L.A.; Stafford, W.; Cary, C.; Cowan, D.A. Bacterial Diversity in Three Different Antarctic Cold Desert Mineral Soils. Microb. Ecol. 2006, 51, 413–421. [Google Scholar] [CrossRef]
- Cary, S.C.; McDonald, I.; Barrett, J.E.; Cowan, D. On the rocks: The microbiology of Antarctic Dry Valley soils. Nat. Rev. Genet. 2010, 8, 129–138. [Google Scholar] [CrossRef]
- Jiang, X.; Van Horn, D.J.; Okie, J.G.; Buelow, H.N.; Schwartz, E.; Colman, D.R.; Feeser, K.L.; Takacs-Vesbach, C.D. Limits to the three domains of life: Lessons from community assembly along an Antarctic salinity gradient. Extremophiles 2022, 26, 15. [Google Scholar] [CrossRef]
- Lee, C.; Barbier, B.; Bottos, E.M.; McDonald, I.; Cary, S. The Inter-Valley Soil Comparative Survey: The ecology of Dry Valley edaphic microbial communities. ISME J. 2011, 6, 1046–1057. [Google Scholar] [CrossRef] [Green Version]
- Archer, S.D.J.; Lee, K.; Caruso, T.; Maki, T.; Lee, C.K.; Cary, S.C.; Cowan, D.; Maestre, F.T.; Pointing, S.B. Airborne microbial transport limitation to isolated Antarctic soil habitats. Nat. Microbiol. 2019, 4, 925–932. [Google Scholar] [CrossRef] [Green Version]
- Convey, P.; Stevens, M.I.; Hodgson, D.A.; Smellie, J.L.; Hillenbrand, C.-D.; Barnes, D.K.; Clarke, A.; Pugh, P.J.; Linse, K.; Cary, S. Exploring biological constraints on the glacial history of Antarctica. Quat. Sci. Rev. 2009, 28, 3035–3048. [Google Scholar] [CrossRef]
- Convey, P.; Biersma, E.M.; Casanova-Katny, A.; Maturana, C.S. Refuges of Antarctic diversity. In Past Antarctica; Oliva, M., Ruiz-Fernández, J., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 181–200. [Google Scholar] [CrossRef]
- McGaughran, A.; Stevens, M.I.; Hogg, I.D.; Carapelli, A. Extreme Glacial Legacies: A Synthesis of the Antarctic Springtail Phylogeographic Record. Insects 2011, 2, 62–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGaughran, A.; Terauds, A.; Convey, P.; Fraser, C.I. Genome-wide SNP data reveal improved evidence for Antarctic glacial refugia and dispersal of terrestrial invertebrates. Mol. Ecol. 2019, 28, 4941–4957. [Google Scholar] [CrossRef] [PubMed]
- Stuiver, M.; Yang, I.C.; Denton, G.H.; Kellogg, T.B. Oxygen Isotope Ratios of Antarctic Permafrost and Glacier Ice. In Antarctic Research Series: Dry Valley Drilling Project; McGinnis, L.D., Ed.; American Geophysical Union: Washington DC, USA, 1981; pp. 131–139. [Google Scholar]
- Clayton-Greene, J.M.; Hendy, C.H.; Hogg, A.G. Chronology of a Wisconsin age proglacial lake in the Miers Valley, Antarctica. N. Z. J. Geol. Geophys. 1988, 31, 353–361. [Google Scholar] [CrossRef] [Green Version]
- Hall, B.; Denton, G.; Overturf, B. Glacial Lake Wright, a high-level Antarctic lake during the LGM and early Holocene. Antarct. Sci. 2001, 13, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Bockheim, J.G.; McLeod, M. Glacial geomorphology of the Victoria Valley System, Ross Sea Region, Antarctica. Geomorphology 2013, 193, 14–24. [Google Scholar] [CrossRef]
- Joy, K.; Fink, D.; Storey, B.; De Pascale, G.P.; Quigley, M.; Fujioka, T. Cosmogenic evidence for limited local LGM glacial expansion, Denton Hills, Antarctica. Quat. Sci. Rev. 2017, 178, 89–101. [Google Scholar] [CrossRef]
- Levy, J.S.; Fountain, A.G.; O’Connor, J.E.; Welch, K.A.; Lyons, W.B. Garwood Valley, Antarctica: A new record of Last Glacial Maximum to Holocene glaciofluvial processes in the McMurdo Dry Valleys. Bull. Geol. Soc. Am. 2013, 125, 1484–1502. [Google Scholar] [CrossRef]
- Bottos, E.M.; Laughlin, D.C.; Herbold, C.W.; Lee, C.K.; McDonald, I.R.; Cary, S.C. Abiotic factors influence patterns of bacterial diversity and community composition in the Dry Valleys of Antarctica. FEMS Microbiol. Ecol. 2020, 96, fiaa042. [Google Scholar] [CrossRef]
- Van Horn, D.J.; Van Horn, M.L.; Barrett, J.E.; Gooseff, M.; Altrichter, A.; Geyer, K.; Zeglin, L.H.; Takacs-Vesbach, C.D. Factors Controlling Soil Microbial Biomass and Bacterial Diversity and Community Composition in a Cold Desert Ecosystem: Role of Geographic Scale. PLoS ONE 2013, 8, e66103. [Google Scholar] [CrossRef]
- Bockheim, J. Soil development rates in the Transantarctic Mountains. Geoderma 1990, 47, 59–77. [Google Scholar] [CrossRef]
- Campbell, I.B.; Claridge, G.G.C.; Campbell, D.I.; Balks, M.R. Soil Environment of the McMurdo Dry Valleys, Antarctica. In Ecosystem Dynamics in a Polar Desert: The Mcmurdo Dry Valleys, Antarctica, Volume 72; Priscu, J.C., Ed.; American Geophysical Union: Washington DC, USA, 1998; pp. 297–322. [Google Scholar] [CrossRef]
- Graly, J.A.; Licht, K.J.; Druschel, G.K.; Kaplan, M.R. Polar desert chronologies through quantitative measurements of salt accumulation. Geology 2018, 46, 351–354. [Google Scholar] [CrossRef] [Green Version]
- Freckman, D.W.; Virginia, R.A. Soil Biodiversity and Community Structure in the McMurdo Dry Valleys, Antarctica. In Ecosystem Dynamics in a Polar Desert: The Mcmurdo Dry Valleys, Antarctica, Volume 72; Priscu, J.C., Ed.; American Geophysical Union: Washington DC, USA, 1998; pp. 323–335. [Google Scholar] [CrossRef]
- Convey, P.; Chown, S.; Clarke, A.; Barnes, D.K.A.; Bokhorst, S.; Cummings, V.; Ducklow, H.W.; Frati, F.; Green, T.G.A.; Gordon, S.; et al. The spatial structure of Antarctic biodiversity. Ecol. Monogr. 2014, 84, 203–244. [Google Scholar] [CrossRef] [Green Version]
- Dreesens, L.L.; Lee, C.K.; Cary, S.C. The Distribution and Identity of Edaphic Fungi in the McMurdo Dry Valleys. Biology 2014, 3, 466–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, J.E.; Virginia, R.A.; Wall, D.H.; Parsons, A.N.; Powers, L.E.; Burkins, M.B. Variation in Biogeochemistry and Soil Biodiversity across Spatial Scales in a Polar Desert Ecosystem. Ecology 2004, 85, 3105–3118. [Google Scholar] [CrossRef]
- Diaz, M.A.; Adams, B.J.; Welch, K.A.; Welch, S.A.; Opiyo, S.O.; Khan, A.L.; McKnight, D.M.; Cary, S.C.; Lyons, W.B. Aeolian Material Transport and Its Role in Landscape Connectivity in the McMurdo Dry Valleys, Antarctica. J. Geophys. Res. Earth Surf. 2018, 123, 3323–3337. [Google Scholar] [CrossRef]
- Caruso, T.; Hogg, I.D.; Nielsen, U.N.; Bottos, E.M.; Lee, C.K.; Hopkins, D.W.; Cary, S.C.; Barrett, J.E.; Green, T.G.A.; Storey, B.C.; et al. Nematodes in a polar desert reveal the relative role of biotic interactions in the coexistence of soil animals. Commun. Biol. 2019, 2, 63. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.K.; Laughlin, D.C.; Bottos, E.M.; Caruso, T.; Joy, K.; Barrett, J.E.; Brabyn, L.; Nielsen, U.N.; Adams, B.J.; Wall, D.H.; et al. Biotic interactions are an unexpected yet critical control on the complexity of an abiotically driven polar ecosystem. Commun. Biol. 2019, 2, 62. [Google Scholar] [CrossRef]
- Burkins, M.B.; Virginia, R.A.; Chamberlain, C.P.; Wall, D.H. Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology 2000, 81, 2377–2391. [Google Scholar] [CrossRef]
- Dragone, N.B.; Diaz, M.A.; Hogg, I.D.; Lyons, W.B.; Jackson, W.A.; Wall, D.H.; Adams, B.J.; Fierer, N. Exploring the Boundaries of Microbial Habitability in Soil. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006052. [Google Scholar] [CrossRef]
- Spector, P.; Balco, G. Exposure-age data from across Antarctica reveal mid-Miocene establishment of polar desert climate. Geology 2020, 49, 91–95. [Google Scholar] [CrossRef]
- Halberstadt, A.R.W.; Kowalewski, D.E.; DeConto, R.M. Reconciling persistent sub-zero temperatures in the McMurdo Dry Valleys, Antarctica, with Neogene dynamic marine ice-sheet fluctuations. Geology 2022, 50, 557–561. [Google Scholar] [CrossRef]
- Sugden, D.E.; Marchant, D.R.; Denton, G.H. The Case for a Stable East Antarctic Ice Sheet: The Background. Geogr. Annaler. Ser. A Phys. Geogr. 1993, 75, 151–154. [Google Scholar] [CrossRef]
- Denton, G.H.; Prentice, M.L.; Kellogg, D.E.; Kellogg, T.B. Late Tertiary history of the Antarctic ice sheet: Evidence from the Dry Valleys. Geology 1984, 12, 263. [Google Scholar] [CrossRef]
- Denton, G.H.; Sugden, D.E.; Marchant, D.R.; Hall, B.L.; Wilch, T.I. East Antarctic Ice Sheet Sensitivity to Pliocene Climatic Change from a Dry Valleys Perspective. Geogr. Ann. Ser. A Phys. Geogr. 1993, 75, 155–204. [Google Scholar] [CrossRef]
- Magalhães, C.M.; Stevens, M.I.; Cary, S.; Ball, B.; Storey, B.C.; Wall, D.H.; Türk, R.; Ruprecht, U. At Limits of Life: Multidisciplinary Insights Reveal Environmental Constraints on Biotic Diversity in Continental Antarctica. PLoS ONE 2012, 7, e44578. [Google Scholar] [CrossRef]
- Lyons, W.B.; Deuerling, K.; Welch, K.A.; Welch, S.A.; Michalski, G.; Walters, W.W.; Nielsen, U.; Wall, D.H.; Hogg, I.; Adams, B.J. The Soil Geochemistry in the Beardmore Glacier Region, Antarctica: Implications for Terrestrial Ecosystem History. Sci. Rep. 2016, 6, 26189. [Google Scholar] [CrossRef] [Green Version]
- Marshall, D.J.; Coetzee, L. Historical biogeography and ecology of a Continental Antarctic mite genus, Maudheimia (Acari, Oribatida): Evidence for a Gondwanan origin and Pliocene-Pleistocene speciation. Zool. J. Linn. Society 2000, 129, 111–128. [Google Scholar] [CrossRef]
- De Wever, A.; Leliaert, F.; Verleyen, E.; Vanormelingen, P.; Van der Gucht, K.; Hodgson, D.A.; Sabbe, K.; Vyverman, W. Hidden levels of phylodiversity in Antarctic green algae: Further evidence for the existence of glacial refugia. Proc. R. Soc. B Boil. Sci. 2009, 276, 3591–3599. [Google Scholar] [CrossRef] [Green Version]
- Allegrucci, G.; Carchini, G.; Convey, P.; Sbordoni, V. Evolutionary geographic relationships among orthocladine chironomid midges from maritime Antarctic and sub-Antarctic islands. Biol. J. Linn. Soc. 2012, 106, 258–274. [Google Scholar] [CrossRef] [Green Version]
- Bennett, K.R.; Hogg, I.D.; Adams, B.J.; Hebert, P.D.N. High levels of intraspecific genetic divergences revealed for Antarctic springtails: Evidence for small-scale isolation during Pleistocene glaciation. Biol. J. Linn. Soc. 2016, 119, 166–178. [Google Scholar] [CrossRef] [Green Version]
- Soler-Membrives, A.; Linse, K.; Miller, K.J.; Arango, C.P. Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider. R. Soc. Open Sci. 2017, 4, 170615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biersma, E.M.; Jackson, J.A.; Stech, M.; Griffiths, H.; Linse, K.; Convey, P. Molecular Data Suggest Long-Term in Situ Antarctic Persistence Within Antarctica’s Most Speciose Plant Genus, Schistidium. Front. Ecol. Evol. 2018, 6, 77. [Google Scholar] [CrossRef] [Green Version]
- Verleyen, E.; Van de Vijver, B.; Tytgat, B.; Pinseel, E.; Hodgson, D.A.; Kopalová, K.; Chown, S.L.; Van Ranst, E.; Imura, S.; Kudoh, S.; et al. Diatoms define a novel freshwater biogeography of the Antarctic. Ecography 2021, 44, 548–560. [Google Scholar] [CrossRef]
- Prentice, M.L.; Kleman, J.L.; Stroeven, A.P. The Composite Glacial Erosional Landscape of the Northern McMurdo Dry Valleys: Implications for Antarctic Tertiary Glacial History, in Ecosystem Processes in a Polar Desert: The McMurdo Dry Valleys, Antarctica. In Ecosystem Dynamics in a Polar Desert: The Mcmurdo Dry Valleys, Antarctica, Volume 72; Priscu, J.C., Ed.; American Geophysical Union: Washington DC, USA, 1998; pp. 1–38. [Google Scholar] [CrossRef]
- Anderson, J.B.; Conway, H.; Bart, P.J.; Witus, A.E.; Greenwood, S.L.; McKay, R.M.; Hall, B.L.; Ackert, R.P.; Licht, K.; Jakobsson, M.; et al. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM. Quat. Sci. Rev. 2014, 100, 31–54. [Google Scholar] [CrossRef] [Green Version]
- Fountain, A.G.; Levy, J.S.; Gooseff, M.N.; Van Horn, D. The McMurdo Dry Valleys: A landscape on the threshold of change. Geomorphology 2014, 225, 25–35. [Google Scholar] [CrossRef]
- Nkem, J.; Virginia, R.; Barrett, J.; Wall, D.; Li, G. Salt tolerance and survival thresholds for two species of Antarctic soil nematodes. Polar Biol. 2005, 29, 643–651. [Google Scholar] [CrossRef]
- Stevens, M.I.; Frati, F.; McGaughran, A.; Spinsanti, G.; Hogg, I.D. Phylogeographic structure suggests multiple glacial refugia in northern Victoria Land for the endemic Antarctic springtail Desoria klovstadi (Collembola, Isotomidae). Zool. Scr. 2007, 36, 201–212. [Google Scholar] [CrossRef]
- Carapelli, A.; Greenslade, P.; Nardi, F.; Leo, C.; Convey, P.; Frati, F.; Fanciulli, P.P. Evidence for Cryptic Diversity in the “Pan-Antarctic” Springtail Friesea antarctica and the Description of Two New Species. Insects 2020, 11, 141. [Google Scholar] [CrossRef] [Green Version]
- Collins, G.E.; Hogg, I.D.; Convey, P.; Sancho, L.G.; Cowan, D.A.; Lyons, W.B.; Adams, B.J.; Wall, D.H.; Green, T.G.A. Genetic diversity of soil invertebrates corroborates timing estimates for past collapses of the West Antarctic Ice Sheet. Proc. Natl. Acad. Sci. USA 2020, 117, 22293–22302. [Google Scholar] [CrossRef]
- Stevens, M.I.; Greenslade, P.; D’Haese, C.A. Species diversity in Friesea (Neanuridae) reveals similar biogeographic patterns among Antarctic Collembola. Zool. Scr. 2021, 50, 647–657. [Google Scholar] [CrossRef]
- Brunetti, C.; Siepel, H.; Fanciulli, P.; Nardi, F.; Convey, P.; Carapelli, A. Two New Species of the Mite Genus Stereotydeus Berlese, 1901 (Prostigmata: Penthalodidae) from Victoria Land, and a Key for Identification of Antarctic and Sub-Antarctic Species. Taxonomy 2021, 1, 116–141. [Google Scholar] [CrossRef]
- Fountain, A.G.; Saba, G.; Adams, B.; Doran, P.; Fraser, W.; Gooseff, M.; Obryk, M.; Priscu, J.C.; Stammerjohn, S.; Virginia, R.A. The Impact of a Large-Scale Climate Event on Antarctic Ecosystem Processes. BioScience 2016, 66, 848–863. [Google Scholar] [CrossRef] [Green Version]
- Andriuzzi, W.S.; Adams, B.J.; Barrett, J.E.; Virginia, R.A.; Wall, D.H. Observed trends of soil fauna in the Antarctic Dry Valleys: Early signs of shifts predicted under climate change. Ecology 2018, 99, 312–321. [Google Scholar] [CrossRef]
- Sohlenius, B.; Boström, S. Species diversity and random distribution of microfauna in extremely isolated habitable patches on Antarctic nunataks. Polar Biol. 2008, 31, 817–825. [Google Scholar] [CrossRef]
- Barrett, J.E.; Virginia, R.A.; Wall, D.H.; Adams, B.J. Decline in a dominant invertebrate species contributes to altered carbon cycling in a low-diversity soil ecosystem. Glob. Chang. Biol. 2008, 14, 1734–1744. [Google Scholar] [CrossRef] [Green Version]
- Keppel, G.; Van Niel, K.P.; Wardell-Johnson, G.W.; Yates, C.J.; Byrne, M.; Mucina, L.; Schut, A.G.T.; Hopper, S.D.; Franklin, S.E. Refugia: Identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 2012, 21, 393–404. [Google Scholar] [CrossRef]
- Schäfer, J.M.; Baur, H.; Denton, G.H.; Ivy-Ochs, S.; Marchant, D.R.; Schlüchter, C.; Wieler, R. The oldest ice on Earth in Beacon Valley, Antarctica: New evidence from surface exposure dating. Earth Planet. Sci. Lett. 2000, 179, 91–99. [Google Scholar] [CrossRef]
- Diaz, M.A.; Welch, S.A.; Sheets, J.M.; Welch, K.A.; Khan, A.L.; Adams, B.J.; McKnight, D.M.; Cary, S.C.; Lyons, W.B. Geochemistry of aeolian material from the McMurdo Dry Valleys, Antarctica: Insights into Southern Hemisphere dust sources. Earth Planet. Sci. Lett. 2020, 547, 116460. [Google Scholar] [CrossRef]
- Sugden, D.E.; Denton, G. Cenozoic landscape evolution of the Convoy Range to Mackay Glacier area, Transantarctic Mountains: Onshore to offshore synthesis. Bull. Geol. Soc. Am. 2004, 116, 840. [Google Scholar] [CrossRef]
- Margerison, H.; Phillips, W.; Stuart, F.; Sugden, D.E. Cosmogenic 3He concentrations in ancient flood deposits from the Coombs Hills, northern Dry Valleys, East Antarctica: Interpreting exposure ages and erosion rates. Earth Planet. Sci. Lett. 2005, 230, 163–175. [Google Scholar] [CrossRef]
- Calkin, P.E. Glacial geology of the Mount Gran Area, southern Victoria land, Antarctica. Bull. Geol. Soc. Am. 1964, 75, 1031–1036. [Google Scholar] [CrossRef]
- Lewis, A.R.; Marchant, D.R.; Kowalewski, D.E.; Baldwin, S.L.; Webb, L.E. The age and origin of the Labyrinth, western Dry Valleys, Antarctica: Evidence for extensive middle Miocene subglacial floods and freshwater discharge to the Southern Ocean. Geology 2006, 34, 513. [Google Scholar] [CrossRef]
- Jones, R.S.; Mackintosh, A.; Norton, K.; Golledge, N.; Fogwill, C.; Kubik, P.W.; Christl, M.; Greenwood, S. Rapid Holocene thinning of an East Antarctic outlet glacier driven by marine ice sheet instability. Nat. Commun. 2015, 6, 8910. [Google Scholar] [CrossRef] [Green Version]
- Calkin, P.E. Geomorphology and Glacial Geology of the Victoria Valley System, Southern Victoria Land, Antarctica; Research Foundation and Institute of Polar Studies, The Ohio State University: Columbus, OH, USA, 1964. [Google Scholar]
- McGowan, H.A.; Neil, D.T.; Speirs, J.C. A reinterpretation of geomorphological evidence for Glacial Lake Victoria, McMurdo Dry Valleys, Antarctica. Geomorphology 2014, 208, 200–206. [Google Scholar] [CrossRef]
- Freckman, D.W.; Virginia, R.A. Extraction of nematodes from Dry Valley Antarctic soils. Polar Biol. 1993, 13, 483–487. [Google Scholar] [CrossRef]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 2013, 79, 5112–5120. [Google Scholar] [CrossRef] [Green Version]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Faith, D.P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Lozupone, C.A.; Hamady, M.; Kelley, S.T.; Knight, R. Quantitative and Qualitative β Diversity Measures Lead to Different Insights into Factors That Structure Microbial Communities. Appl. Environ. Microbiol. 2007, 73, 1576–1585. [Google Scholar] [CrossRef] [Green Version]
- Lozupone, C.; Knight, R. UniFrac: A New Phylogenetic Method for Comparing Microbial Communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef] [Green Version]
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Mandal, S.; Van Treuren, W.; White, R.A.; Eggesbø, M.Å.; Knight, R.T.; Peddada, S.D. Analysis of composition of microbiomes: A novel method for studying microbial composition. Microb. Ecol. Health Dis. 2015, 26, 27663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geyer, K.M.; Altrichter, A.E.; Van Horn, D.J.; Takacs-Vesbach, C.D.; Gooseff, M.N.; Barrett, J.E. Environmental controls over bacterial communities in polar desert soils. Ecosphere 2013, 4, art127. [Google Scholar] [CrossRef] [Green Version]
- Feeser, K.L.; Van Horn, D.J.; Buelow, H.N.; Colman, D.R.; McHugh, T.A.; Okie, J.G.; Schwartz, E.; Takacs-Vesbach, C.D. Local and Regional Scale Heterogeneity Drive Bacterial Community Diversity and Composition in a Polar Desert. Front. Microbiol. 2018, 9, 1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geyer, K.M.; Takacs-Vesbach, C.D.; Gooseff, M.N.; Barrett, J.E. Primary productivity as a control over soil microbial diversity along environmental gradients in a polar desert ecosystem. PeerJ 2017, 5, e3377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walkley, A.; Black, A.I. An examination of the DEGTJAREFF method for determining soil organic matter, and a proposed modificiation of the chromic acid titration method. Soil Sci. Soc. Am. J. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Schoenau, J.J.; Karamonos, R.E. Sodium Bicarbonate Extractable, P., K., and N. In Soil Sampling and Methods of Analysis; Page, A.L., Ed.; American Society of Agronomy, Inc.: Madison, WI, USA, 1993; pp. 51–58. [Google Scholar] [CrossRef]
- Preacher, K.J.; Curran, P.J.; Bauer, D.J. Computational Tools for Probing Interactions in Multiple Linear Regression, Multilevel Modeling, and Latent Curve Analysis. J. Educ. Behav. Stat. 2006, 31, 437–448. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.r-project.org/ (accessed on 29 June 2021).
- Kenkel, N.C.; Orloci, L. Applying Metric and Nonmetric Multidimensional Scaling to Ecological Studies: Some New Results. Ecology 1986, 67, 919–928. [Google Scholar] [CrossRef]
- Legendre, P.; Anderson, M.J. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 1999, 61, 1–24. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. vegan: Community Ecology Package. R package. 2022. Available online: https://cran.r-project.org/package=vegan (accessed on 30 August 2022).
- Hill, M.O.; Gauch, H.G. Detrended correspondence analysis: An improved ordination technique. Vegetatio 1980, 42, 47–58. [Google Scholar] [CrossRef]
- Sugden, D.E.; Bentley, M.; Cofaigh, C. Geological and geomorphological insights into Antarctic ice sheet evolution. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2006, 364, 1607–1625. [Google Scholar] [CrossRef]
- Rogers, A.D. Evolution and biodiversity of Antarctic organisms: A molecular perspective. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 2191–2214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Horn, D.J.; Okie, J.G.; Buelow, H.N.; Gooseff, M.N.; Barrett, J.E.; Takacs-Vesbach, C.D. Soil Microbial Responses to Increased Moisture and Organic Resources along a Salinity Gradient in a Polar Desert. Appl. Environ. Microbiol. 2014, 80, 3034–3043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nkem, J.N.; Wall, D.H.; Virginia, R.A.; Barrett, J.E.; Broos, E.J.; Porazinska, D.L.; Adams, B.J. Wind dispersal of soil invertebrates in the McMurdo Dry Valleys, Antarctica. Polar Biol. 2005, 29, 346–352. [Google Scholar] [CrossRef]
- Shu, W.S.; Huang, L.N. Microbial diversity in extreme environments. Nat. Rev. Genet. 2021, 20, 219–235. [Google Scholar] [CrossRef]
- Rappé, M.S.; Giovannoni, S.J. The Uncultured Microbial Majority. Annu. Rev. Microbiol. 2003, 57, 369–394. [Google Scholar] [CrossRef] [Green Version]
- DeBruyn, J.M.; Nixon, L.T.; Fawaz, M.N.; Johnson, A.M.; Radosevich, M. Global Biogeography and Qusantitative Seasonal Dynamics of Gemmatimonadetes in Soil. Appl. Environ. Microbiol. 2011, 77, 6295–6300. [Google Scholar] [CrossRef] [Green Version]
- Foesel, B.U.; Rohde, M.; Overmann, J. Blastocatella fastidiosa gen. nov., sp. nov., isolated from semiarid savanna soil–The first described species of Acidobacteria subdivision 4. Syst. Appl. Microbiol. 2013, 36, 82–89. [Google Scholar] [CrossRef]
- Hanada, S. The Phylum Chloroflexi, the Family Chloroflexaceae, and the Related Phototrophic Families Oscillochloridaceae and Roseiflexaceae. In The Prokaryotes: Other Major Lineages of Bacteria and The Archaea; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 515–532. [Google Scholar] [CrossRef]
- Lehtovirta-Morley, L.E.; Ross, J.; Hink, L.; Weber, E.B.; Gubry-Rangin, C.; Thion, C.; Prosser, J.I.; Nicol, G.W. Isolation of ‘CandidatusNitrosocosmicus franklandus’, a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiol. Ecol. 2016, 92, fiw057. [Google Scholar] [CrossRef] [Green Version]
- Jackson, A.; Jorna, J.; Chaston, J.; Wall, D.; Adams, B. Soil geochemistry and microbial community data from glaciated and potential glacial refugia sites in the McMurdo Dry Valleys, Antarctica (1993–2019) ver 1. Environ. Data Initiat. 2021. [Google Scholar] [CrossRef]
Valley System | Name | Date Collected | Geologic History | GPS Waypoints | Elevation (m) | Estimated Exposure Age | Citation | Classification | |
---|---|---|---|---|---|---|---|---|---|
Lat | Long | ||||||||
Beacon Valley | Levy Cirque | 2018–2019 | Putative Refugia | 77°47′50.04″ S | 160°36′55.72″ E | 1522 | 2.3 mya | [64] | Putative Refugia |
Lower Beacon Valley | 2018–2019 | Putative Refugia | 77°48′39.40″ S | 160°41′19.33″ E | 1017 | ||||
Alatna Valley | Battleship Promontory | 2003–2004 | Putative Refugia | 76°55′20.46″ S | 161°4′53.16″ E | 1241 | 5 mya | [65,66,67,68] | Putative Refugia |
Lower Alatna Valley | 1995–1996 | 76°53′40.74″ S | 161°8′20.94″ E | 981 | Putative Refugia | ||||
Upper Wright Valley | Hawkings Cirque | 2010–2011 | Putative Refugia | 77°30′36.69″ S | 160°34′42.95″ E | 1204 | [69] | Putative Refugia | |
Labyrinth | 2005–2006 | Putative Refugia | 77°33′27.41″ S | 160°57′16.49″ E | 767 | 3 mya | Putative Refugia | ||
Lower Wright Valley | Dais | 2005–2006 | Putative Refugia | 77°32′51.96″ S | 161°14′11.10″ E | 801 | 4 mya | [18,69] | Putative refugia |
Brownworth | 2005–2006 | Disturbed | 77°26′19.08″ S | 162°43′43.69″ E | 241 | 26-5 kya | Disturbed | ||
Mount Suess | Mount Seuss | 2010–2013 | Disturbed | 77°2′11.86″ S | 161°42′36.43″ E | 706 | 25-5 kya | [70] | Disturbed |
Lower Mount Suess | 2008–2009 | Disturbed | 77°1′4.11″ S | 161°44′18.85″ E | 517 | Disturbed | |||
Taylor Valley | Mount Falconer | 2001–2003 | Disturbed | 77°34′23.42″ S | 163°9′30.95″ E | 731 | [16] | Disturbed | |
Taylor Valley (Lake Fryxell) | 2001–2003 | Disturbed | 77°36′27.70″ S | 163°15′2.46″ E | 9 | 21-12 kya | Disturbed | ||
Miers Valley | Higher Miers Valley | 2011–2012 | Putative Refugia | 78°7′0.02″ S | 163°45′2.85″ E | 516 | [17,20] | Putative Refugia | |
Lake Miers | 2011–2012 | Putative Refugia | 78°6′2.15″ S | 163°48′32.83″ E | 167 | 26-5 kya | Disturbed | ||
Garwood Valley | Higher Garwood Valley | 2011–2012 | Putative Refugia | 78°2′18.96″ S | 163°51′2.17″ E | 581 | [20,21] | Disturbed | |
Lower Garwood Valley | 2011–2012 | Disturbed | 78°1′35.32″ S | 163°51′4.35″ E | 351 | 26-5 kya | Disturbed | ||
Victoria Valley | Wall Valley | 2010–2012 | Putative Refugia | 77°29′37.02″ S | 160°52′15.71″ E | 1617 | [19,71,72] | Putative Refugia | |
Upper Victoria Valley | 1993–1994 | Disturbed | 77°20′31.64″ S | 161°41′13.28″ E | 457 | 120–300 ka | Putative Refugia |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jackson, A.C.; Jorna, J.; Chaston, J.M.; Adams, B.J. Glacial Legacies: Microbial Communities of Antarctic Refugia. Biology 2022, 11, 1440. https://doi.org/10.3390/biology11101440
Jackson AC, Jorna J, Chaston JM, Adams BJ. Glacial Legacies: Microbial Communities of Antarctic Refugia. Biology. 2022; 11(10):1440. https://doi.org/10.3390/biology11101440
Chicago/Turabian StyleJackson, Abigail C., Jesse Jorna, John M. Chaston, and Byron J. Adams. 2022. "Glacial Legacies: Microbial Communities of Antarctic Refugia" Biology 11, no. 10: 1440. https://doi.org/10.3390/biology11101440
APA StyleJackson, A. C., Jorna, J., Chaston, J. M., & Adams, B. J. (2022). Glacial Legacies: Microbial Communities of Antarctic Refugia. Biology, 11(10), 1440. https://doi.org/10.3390/biology11101440