Effects of 6-Week Supplementation with GliSODin on Parameters of Muscle Damages, Metabolic, and Work Performance at International Level Rowers after Specific Maximal Effort
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Procedure
2.3. Measurements
2.4. Statistical Analyses
3. Results
3.1. Anthropometric and Training Data of Study Participants
3.2. Biochemical Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pedersen, B.K.; Saltin, B. Evidence for prescribing exercise as therapy in chronic disease. Scand. J. Med. Sci. Sports 2006, 16, 3–63. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.M.; Suzuki, K.; Coombesa, J.S. The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J. Nutr. Biochem. 2007, 18, 357–371. [Google Scholar] [CrossRef]
- Teixeira, V.H.; Valente, H.F.; Casal, S.I.; Marques, A.F.; Moreira, P.A. Antioxidants do not prevent postexercise peroxidation and may delay muscle recovery. Med. Sci. Sports. Exerc. 2009, 41, 1752–1760. [Google Scholar] [CrossRef]
- Sies, H. Oxidative Stress: A concept in Redox Biology and Medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Finaud, J.; Lac, G.; Filaire, E. Oxidative stress: Relationship with exercise and training. Sports Med. 2006, 36, 327–358. [Google Scholar] [CrossRef] [PubMed]
- Droge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef]
- Deaton, C.M.; Marlin, D.J. Exercise-associated oxidative stress. Clin. Tech. Equine Pract. 2003, 2, 278–291. [Google Scholar] [CrossRef]
- Kürkçü, R.; Tekin, A.; Özda, S.; Akçakoyun, F. The effects of regular exercise on oxidative and antioxidative parameters in young wrestlers. Afr. J. Pharm. Pharmacol. 2010, 4, 244–251. [Google Scholar]
- Djordjevic, D.; Cubrilo, D.; Macura, M.; Barudzic, N.; Djuric, D.; Jakovljevic, V. The influence of training status on oxidative stress in young male handball players. Mol. Cell. Biochem. 2011, 351, 251–259. [Google Scholar] [CrossRef]
- Metin, G.; Atukeren, P.; Alturfan, A.A.; Gulyasar, T.; Kaya, M.; Gumustas, M.K. Lipid peroxidation, erythrocyte superoxide-dismutase activity and trace metals in young male footballers. Yonsei Med. J. 2003, 44, 979–986. [Google Scholar] [CrossRef]
- Chung, Y.; Hsiao, Y.T.; Huang, W.C. Physiological and Psychological Effects of Treadmill Overtraining Implementation. Biology 2021, 10, 515. [Google Scholar] [CrossRef] [PubMed]
- Zembron-Lacny, A.; Slowinska-Lisowska, M.; Szygula, Z. Asseeement of the antioxidant effectivness of alpha-lipoic acid in healthy men exposed to muscle damaging exercise. J. Physiol. Pharmacol. 2009, 60, 139–143. [Google Scholar]
- Askari, G.; Ghiasvand, R.; Feizi, A.; Ghanadian, S.M.; Karimian, J. The effect of quercetin supplementation on selected markers of inflammation and oxidative stress. J. Res. Med. Sci. 2012, 17, 637–641. [Google Scholar] [PubMed]
- Bloomer, R.J.; Goldfarb, A.H.; McKenzie, M. Oxidative Stress Response to Aerobic Exercise Comparison of Antioxidant Supplements. Med. Sci. Sports Exerc. 2006, 38, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, V.; Valente, H.; Casal, S.; Marques, F.; Moreira, P. Antioxidant status, oxidative stress, and damage in elite trained kayakers and canoeists and sedentary controls. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Urso, M.L.; Clarkson, P.M. Oxidative stress, exercise, and antioxidant supplementation. Toxicology 2003, 189, 41–54. [Google Scholar] [CrossRef]
- Shunchang, L.; Fasipeb, B.; Laherc, I. Potential harms of supplementation with high doses of antioxidants in athletes. J. Exerc. Sci. Fit. 2022, 20, 269–275. [Google Scholar] [CrossRef]
- Menvielle-Bourg, F.J. Superoxide Dismutase (SOD), a Powerful Antioxidant, Is Now Available Orally. Phytotherapie 2005, 3, 118–121. [Google Scholar] [CrossRef]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef]
- Ingham, S.A.; Whyte, G.P.; Jones, K.; Nevill, A.M. Determinants of 2000 m rowing ergometer performance in elite rowers. Eur. J. Appl. Physiol. 2002, 88, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Stanula, A.; Gabrys, T.; Szmatlan-Gabrys, U.; Roczniok, R.; Maszczyk, A.; Pietraszewski, P. Calculating lactate anaerobic thresholds in sports involving different endurance preparation. J. Exerc. Sci. Fit. 2013, 11, 12–18. [Google Scholar] [CrossRef]
- Hair, J.; Anderson, R.; Tatham, R.; Black, W. Multivariate Data Analysis, 5th ed.; Prentice-Hall Inc.: Hoboken, NJ, USA, 1998. [Google Scholar]
- Dillard, C.J.; Litov, R.E.; Savin, W.M.; Dumelin, E.E.; Tappel, A.L. Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. J. Appl. Physiol. 1978, 45, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J.; Donnelly, A.E.; Gleeson, M.; Whiting, P.H.; Walker, K.A.; Clough, P.J. Delayed-onset muscle damage and lipid peroxidation in man after a downhill run. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 1989, 12, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.K.; Wicker, R.J.; Barstow, T.J.; Harms, C.A. Effects of N-acetylcysteine on respiratory muscle fatigue during heavy exercise. Respir. Physiol. Neurobiol. 2009, 165, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Margaritis, I.; Tessier, F.; Verdera, F.; Bermon, S.; Marconnet, P. Muscle enzyme release does not predict muscle function impairment after triathlon. J. Sports. Med. Phys. Fit. 1999, 39, 133–139. [Google Scholar]
- Neubauer, O.; König, D.; Wagner, K.H. Recovery after an Ironman triathlon: Sustained inflammatory responses and muscular stress. Eur. J. Appl. Physiol. 2008, 104, 417–426. [Google Scholar] [CrossRef]
- Garry, J.P.; McShane, J.M. Postcompetition elevation of muscle enzyme levels in professional football players. Med. Gen. Med. 2000, 2, E4. [Google Scholar]
- Hood, D.; Van Lente, F.; Estes, M. Serum enzyme alteration in chronic muscle disease. A biopsybased diagnostic assessment. Am. J. Clin. Pathol. 1991, 95, 402–407. [Google Scholar] [CrossRef]
- Lee, J.; Goldfarb, A.H.; Rescino, M.H.; Hegde, S.; Patrick, S.; Apperson, K. Eccentric exercise effect on blood oxidative-stress markers and delayed onset of muscle soreness. Med. Sci. Sports Exerc. 2002, 34, 443–448. [Google Scholar] [CrossRef]
- Brancaccio, P.; Limongelli, F.M.; Maffulli, N. Monitoring of serum enzymes in sport. Br. J. Sports Med. 2006, 40, 96–97. [Google Scholar] [CrossRef]
- Arent, S.M.; Pellegrino, J.K.; Williams, A.C.; DiFabio, A.D.; Greenwood, J.C. Nutritional supplementation, performance, and oxidative stress in college soccer players. J. Strength Cond. Res. 2010, 24, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Noakes, T.D. Effect of exercise on serum enzyme activities in humans. Sports Med. 1987, 4, 245–267. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Halliwell, B. Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products. Chem.-Biol. Interact. 1990, 73, 235–247. [Google Scholar] [CrossRef]
- Waynera, D.D.M.; Burtona, G.W.; Ingolda, K.U.; Barclayb, L.R.C.; Lockeb, S.J. The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim. Biophys. Acta BBA-Gen. Subj. 1987, 924, 408–419. [Google Scholar] [CrossRef] [Green Version]
- Hellsten-Westing, Y.; Kaijser, L.; Ekblom, B.; Sjödin, B. Exchange of purines in human liver and skeletal muscle with short-term exhaustive exercise. Am. J. Physiol. 1994, 266, 81–86. [Google Scholar] [CrossRef]
- Vassilakopoulos, T.; Karatza, M.H.; Katsaounou, P.; Kollintza, A.; Zakynthinos, S.; Roussos, C. Antioxidants attenuate the plasma cytokine response to exercise in humans. J. Appl. Physiol. 2002, 94, 1025–1032. [Google Scholar] [CrossRef]
- Pecoits-Filho, R.; Lindholm, B.; Axelsson, J.; Stenvinkel, P. Update on interleukin-6 and its role in chronic renal failure. Nephrol. Dial. Transplant. 2003, 18, 1042–1045. [Google Scholar] [CrossRef]
- Wolvekamp, M.C.; Marquet, R.L. Interleukin-6: Historical background, genetics and biological significance. Immunol. Lett. 1990, 24, 1–9. [Google Scholar] [CrossRef]
- Taga, T.; Kishimoto, T. Gp130 and the interleukin-6 family of cytokines. Annu. Rev. Immunol. 1997, 15, 797–819. [Google Scholar] [CrossRef]
- Eklund, C.; Jahan, F.; Pessi, T.; Lethimaki, T.; Hurme, M. Interleukin 1 gene polymorphism is associated with baseline C-reactive protein levels in healthy individuals. Eur. Cytokine Netw. 2003, 14, 168–171. [Google Scholar]
- Sehgal, P.B. Interleukin-6: A regulator of plasma protein gene expression in hepatic and non-hepatic tissue. Mol. Biol. Med. 1990, 7, 117–130. [Google Scholar] [PubMed]
- Jürimäe, J.; Mäestu, J.; Jürimäe, T.; Mangus, B.; von Duvillard, S.P. Peripheral signals of energy homeostasis as possible markers of training stress in athletes: A review. Metab. Clin. Exp. 2011, 60, 335–350. [Google Scholar] [CrossRef] [PubMed]
- Anna Skarpanska-Stejnborn, A.; Pilaczynska-Szczesniak, L.; Basta, P.; Deskur-Smielecka, E.; Woitas-Slubowska, D.; Adach, Z. Effects of oral supplementation with plant superoxide dismutase extract on selected redox parameters and an inflammatory marker in a 2,000-m rowing-ergometer test. Int. J. Sport. Nutr. Exerc. Metab. 2011, 21, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Czarkowska-Paczek, B.; Bartlomiejczyk, I.; Gabrys, T.; Przybylski, J.; Marcin Nowak, M. Lack of relationship between interleukin-6 and CRP levels in healthy male athletes. Immunol. Lett. 2005, 99, 136–140. [Google Scholar] [CrossRef]
- Fatouros, I.G.; Destouni, A.; Margonis, K.; Jamurtas, A.Z.; Vrettou, C.; Kouretas, D.; Papassotiriou, I. Cell-free plasma DNA as a novel marker of aseptic inflammation severity related to exercise overtraining. Clin. Chem. 2006, 52, 1820–1824. [Google Scholar] [CrossRef] [Green Version]
- Park, C.; Park, T.; Kim, T.; Kwak, Y. Changes of immunological markers in elite and amateur triathletes. Int. Sport Med. J. 2008, 9, 116–130. [Google Scholar] [CrossRef]
- Miles, M.P.; Walker, E.E.; Conant, S.B.; Hogan, S.P.; Kidd, J.R. Carbohydrate influences plasma interleukin-6 but not C-reactive protein or creatine kinase following a 32-km mountain trail race. Int. J. Sport. Nutr. Exerc. Metab. 2006, 16, 36–46. [Google Scholar] [CrossRef]
- Lucia, A.; Pardo, J.; Dura’ntez, A.; Hoyos, J.; Chicharro, J.L. Physiological differences between professional and elite road cyclists. Int. J. Sports Med. 1998, 19, 342–348. [Google Scholar] [CrossRef]
Usual Name | Latin Binomial | Plant Part | CAS # |
---|---|---|---|
Melon concentrate | Cucumis melo L. | Fruit pulp | 90063-94-8 |
Gliadin | Triticum vulgare | Wheat grain | 9007-90-3 |
Maltodextrin | Triticum spp. | Wheat grain | 9050-36-6 |
Parameter | Experimental Group (n = 15) | Control Group (n = 13) | Differences |
---|---|---|---|
Age (years) | 25.5 ± 5.4 | 21.8 ± 5.5 | p = 0.081 |
Height (m) | 1.86 ± 0.08 | 1.87 ± 0.07 | p = 0.667 |
Body weight (kg) | 86.4 ± 8.7 | 82.1 ± 10.9 | p = 0.256 |
Years of training | 8.5 ± 5.0 | 7.3 ± 5.7 | p = 0.551 |
Training duration per day (h) | 2.05 ± 0.36 | 2.10 ± 0.47 | p = 0.778 |
Initial Test | ||||
---|---|---|---|---|
Differences | T1 (before test) | T2 (after test) | ||
Wilks’ Lambda Value | 0.855 | 0.925 | ||
F | 0.744 | 0.357 | ||
p | 0.599 | 0.872 | ||
Partial Eta2 | 0.145 | 0.075 | ||
Experimental group (n = 15) | Control group (n = 13) | Experimental group (n = 15) | Control group (n = 13) | |
CK (U/L) | 173 ± 125 | 209 ± 102 | 225 ± 152 | 266 ± 109 |
p = 0.418, Part. Eta2 = 0.025 | p = 0.426, Part. Eta2 = 0.025 | |||
LDH (U/L) | 148 ± 21 | 147 ± 16 | 177 ± 23 | 180 ± 17 |
p = 0.891, Part. Eta2 = 0.001 | p = 0.662, Part. Eta2 = 0.007 | |||
TAC (mmol/L) | 4.26 ± 0.43 | 4.11 ± 0.45 | 4.08 ± 0.57 | 4.07 ± 0.66 |
p = 0.370, Part. Eta2 = 0.031 | p = 0.974, Part. Eta2 ≤ 0.001 | |||
IL-6 (pg/mL) | 15.87 ± 3.23 | 15.29 ± 3.35 | 17.77 ± 2.48 | 17.49 ± 2.97 |
p = 0.648, Part. Eta2 = 0.008 | p = 0.788, Part. Eta2 = 0.003 | |||
CRP (mg/L) | 0.88 ± 0.64 | 0.62 ± 0.28 | 0.93 ± 0.66 | 0.68 ± 0.34 |
p = 0.175, Part. Eta2 = 0.070 | p = 0.221, Part. Eta2 = 0.057 |
Final Test | ||||
---|---|---|---|---|
Differences | T1 (before test) | T2 (after test) | ||
Wilks’ Lambda Value | 0.515 | 0.661 | ||
F | 4.151 | 2.253 | ||
p | 0.008 | 0.085 | ||
Partial Eta2 | 0.485 | 0.339 | ||
Experimental group (n = 15) | Control group (n = 13) | Experimental group (n = 15) | Control group (n = 13) | |
CK (U/L) | 152 ± 63 | 215 ± 101 | 197 ± 82 | 249 ± 98 |
p = 0.049, Part. Eta2 = 0.137 | p = 0.139, Part. Eta2 = 0.082 | |||
LDH (U/L) | 145 ± 19 | 155 ± 19 | 175 ± 20 | 185 ± 22 |
p = 0.201, Part. Eta2 = 0.062 | p = 0.245, Part. Eta2 = 0.052 | |||
TAC (mmol/L) | 4.34 ± 0.57 | 4.17 ± 0.43 | 4.12 ± 0.55 | 3.81 ± 0.59 |
p = 0.391, Part. Eta2 = 0.028 | p = 0.162, Part. Eta2 = 0.074 | |||
IL-6 (pg/mL) | 10.59 ± 5.67 | 14.44 ± 2.83 | 13.33 ± 5.65 | 16.64 ± 1.85 |
p = 0.035, Part. Eta2 = 0.159 | p = 0.050, Part. Eta2 = 0.136 | |||
CRP (mg/L) | 0.68 ± 0.41 | 0.62 ± 0.38 | 0.68 ± 0.34 | 0.66 ± 0.41 |
p = 0.677, Part. Eta2 = 0.007 | p = 0.897, Part. Eta2 = 0.001 |
ΔCK (%) | ΔLDH (%) | ΔTAC (%) | ΔIL-6 (%) | ΔCRP (%) | |
---|---|---|---|---|---|
Initial test | |||||
Exp. group | 32.95 ± 13.94 | 20.90 ± 12.62 | −1.0 ± 12.0 | 14.37 ± 16.45 | 4.91 ± 8.78 |
Control group | 32.37 ± 15.96 | 23.86 ± 10.45 | −3.80 ± 14.03 | 19.33 ± 31.15 | 6.27 ± 14.51 |
p-values | 0.919 | 0.509 | 0.579 | 0.596 | 0.763 |
Final test | |||||
Exp. group | 30.28 ± 9.2 | 21.37 ± 9.36 | −3.83 ± 14.64 | 47.51 ± 54.74 | 2.24 ± 11.1 |
Control group | 20.2 ± 14.14 | 19.71 ± 5.84 | −7.79 ± 15.02 | 18.06 ± 17.44 | 5.14 ± 8.72 |
p-values | 0.032 | 0.586 | 0.486 | 0.075 | 0.454 |
Initial vs. Final test | |||||
Exp. group | −2.67 ± 11.52 | 0.47 ± 18.40 | −0.027 ± 18.16 | 33.14 ± 50.57 | −2.67 ± 13.30 |
Control group | −12.17 ± 3.85 | −4.13 ± 9.442 | −6.79 ± 14.26 | −1.27 ± 21.24 | −1.12 ± 12.74 |
p-values | 0.009 | 0.423 | 0.289 | 0.031 | 0.757 |
Initial Test | Final Test | |||
---|---|---|---|---|
Experimental group (n = 15) | Control group (n = 13) | Experimental group (n = 15) | Control group (n = 13) | |
La peak (mmol/L) | 14.85 ± 1.52 | 14.23 ± 1.61 | 15.39 ± 1.55 | 15.37 ±1.84 |
p = 0.299, Part. Eta2 = 0.041 | p = 0.978, Part. Eta2 ˂ 0.001 | |||
W max (Watt) | 453.21 ± 82.06 | 439.37 ± 83.84 | 459.07 ± 78.67 | 445.04 ± 82.84 |
p = 0.663, Part. Eta2 = 0.007 | p = 0.650, Part. Eta2 = 0.008 | |||
W at 4 mmol/L La (Watt) | 270.69 ± 47.41 | 269.18 ± 50.23 | 281.30 ± 47.49 | 266.53 ± 49.57 |
p = 0.936, Part. Eta2 ˂ 0.001 | p = 0.429, Part. Eta2 = 0.024 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudašova Petrovičova, O.; Stanković, I.; Milinković, N.; Dopsaj, V.; Đorđević, B.; Dopsaj, M. Effects of 6-Week Supplementation with GliSODin on Parameters of Muscle Damages, Metabolic, and Work Performance at International Level Rowers after Specific Maximal Effort. Biology 2022, 11, 1437. https://doi.org/10.3390/biology11101437
Dudašova Petrovičova O, Stanković I, Milinković N, Dopsaj V, Đorđević B, Dopsaj M. Effects of 6-Week Supplementation with GliSODin on Parameters of Muscle Damages, Metabolic, and Work Performance at International Level Rowers after Specific Maximal Effort. Biology. 2022; 11(10):1437. https://doi.org/10.3390/biology11101437
Chicago/Turabian StyleDudašova Petrovičova, Olina, Ivan Stanković, Neda Milinković, Violeta Dopsaj, Brižita Đorđević, and Milivoj Dopsaj. 2022. "Effects of 6-Week Supplementation with GliSODin on Parameters of Muscle Damages, Metabolic, and Work Performance at International Level Rowers after Specific Maximal Effort" Biology 11, no. 10: 1437. https://doi.org/10.3390/biology11101437
APA StyleDudašova Petrovičova, O., Stanković, I., Milinković, N., Dopsaj, V., Đorđević, B., & Dopsaj, M. (2022). Effects of 6-Week Supplementation with GliSODin on Parameters of Muscle Damages, Metabolic, and Work Performance at International Level Rowers after Specific Maximal Effort. Biology, 11(10), 1437. https://doi.org/10.3390/biology11101437