Bone Graft Packing and Its Association with Bone Regeneration in Maxillary Sinus Floor Augmentations: Histomorphometric Analysis of Human Biopsies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material & Methods
2.1. Study Sample
2.2. MSFA and Sinus Biopsies
- (1)
- MSFA with deproteinised bovine bone mineral (DBBM; BioOss, Geistlich Pharma, Wolhusen, Switzerland) alone or in combination with adjuncts (autologous bone (aB) harvested intraorally, culture-expanded aB cells isolated from the anterior iliac crest, aB with platelet concentrate, aB with mesenchymal stem cells aspirated from the tibia). The potential confounding effect of various adjuncts was statistically considered.
- (2)
- Presence of both the native bone of the SF and the augmented area.
2.3. Histology
2.4. Histomorphometric Analysis
2.4.1. Bone Substitute Volume Fraction (BSV/TV in %)
2.4.2. Number of BS Particles (BS.N)
2.4.3. Average Size of BS Particles (avgBSV in mm²)
2.4.4. Interparticle Spacing (Mean Distance between BS Particles; BS.Sp in mm)
2.4.5. Bone-to-Bone Substitute Contact (BBSC in %)
2.4.6. New Bone Formation in Terms of Bone Volume Absolute (BV in mm²) and Bone Volume Per Available Volume (BV/Av.V in %)
2.4.7. Composite Volume Fraction (Co.V/TV in %)
2.5. Statistics
3. Results
3.1. Spatial Distribution of BSV/TV
3.2. Distribution of the Number of BS Particles (BS.N)
3.3. Distribution of the Mean BS Particle Size (avgBSV)
3.4. Interparticle Spacing (BS.Sp)
3.5. Bone-to-Bone Substitute Contact (BBSC)
3.6. New Bone Formation (BV, BV/AV)
3.7. Composite Volume (Co.V/TV)
3.8. Correlation between BBSC and BSV/TV
3.9. Correlation between BBSC and BS.N
4. Discussion
- (1)
- Graft packing density was significantly lower in proximity to the sinus floor (<1.5 mm) than in the more apical area. Especially, the first 200 µm directly adjacent to the SF represent a zone poor in BS particles but rich in new bone formation.
- (2)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Starch-Jensen, T.; Jensen, J.D. Maxillary Sinus Floor Augmentation: A Review of Selected Treatment Modalities. J. Oral Maxillofac. Res. 2017, 8, e3. [Google Scholar] [CrossRef] [PubMed]
- Raghoebar, G.M.; Onclin, P.; Boven, G.C.; Vissink, A.; Meijer, H.J.A. Long-Term Effectiveness of Maxillary Sinus Floor Augmentation: A Systematic Review and Meta-Analysis. J. Clin. Periodontol. 2019, 46, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Tatum, H., Jr. Maxillary and Sinus Implant Reconstructions. Dent. Clin. N. Am. 1986, 30, 207–229. [Google Scholar] [CrossRef]
- Boyne, P.J.; James, R.A. Grafting of the Maxillary Sinus Floor with Autogenous Marrow and Bone. J. Oral Surg. 1980, 38, 613–616. [Google Scholar]
- Park, W.-B.; Kang, K.L.; Han, J.-Y. Factors Influencing Long-Term Survival Rates of Implants Placed Simultaneously with Lateral Maxillary Sinus Floor Augmentation: A 6- to 20-Year Retrospective Study. Clin. Oral Implant. Res. 2019, 30, 977–988. [Google Scholar] [CrossRef]
- Avila, G.; Wang, H.-L.; Galindo-Moreno, P.; Misch, C.E.; Bagramian, R.A.; Rudek, I.; Benavides, E.; Moreno-Riestra, I.; Braun, T.; Neiva, R. The Influence of the Bucco-Palatal Distance on Sinus Augmentation Outcomes. J. Periodontol. 2010, 81, 1041–1050. [Google Scholar] [CrossRef]
- Kolerman, R.; Nissan, J.; Rahmanov, M.; Calvo-Guirado, J.L.; Green, N.T.; Tal, H. Sinus Augmentation Analysis of the Gradient of Graft Consolidation: A Split-Mouth Histomorphometric Study. Clin. Oral Investig. 2019, 23, 3397–3406. [Google Scholar] [CrossRef]
- Stacchi, C.; Rapani, A.; Lombardi, T.; Bernardello, F.; Nicolin, V.; Berton, F. Does New Bone Formation Vary in Different Sites within the Same Maxillary Sinus after Lateral Augmentation? A Prospective Histomorphometric Study. Clin. Oral Implant. Res. 2022, 33, 322–332. [Google Scholar] [CrossRef]
- Bauer, T.W.; Muschler, G.F. Bone Graft Materials: An Overview of the Basic Science. Clin. Orthop. Relat. Res. 2000, 371, 10–27. [Google Scholar] [CrossRef]
- Yamada, M.; Egusa, H. Current Bone Substitutes for Implant Dentistry. J. Prosthodont. Res. 2018, 62, 152–161. [Google Scholar] [CrossRef]
- Pallesen, L.; Schou, S.; Aaboe, M.; Hjørting-Hansen, E.; Nattestad, A.; Melsen, F. Influence of Particle Size of Autogenous Bone Grafts on the Early Stages of Bone Regeneration: A Histologic and Stereologic Study in Rabbit Calvarium. Int. J. Oral Maxillofac. Implant. 2002, 17, 498–506. [Google Scholar]
- Testori, T.; Wallace, S.S.; Trisi, P.; Capelli, M.; Zuffetti, F.; Del Fabbro, M. Effect of Xenograft (ABBM) Particle Size on Vital Bone Formation Following Maxillary Sinus Augmentation: A Multicenter, Randomized, Controlled, Clinical Histomorphometric Trial. Int. J. Periodontics Restor. Dent. 2013, 33, 467–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leiblein, M.; Koch, E.; Winkenbach, A.; Schaible, A.; Nau, C.; Büchner, H.; Schröder, K.; Marzi, I.; Henrich, D. Size Matters: Effect of Granule Size of the Bone Graft Substitute (Herafill®) on Bone Healing Using Masquelet’s Induced Membrane in a Critical Size Defect Model in the Rat’s Femur. J. Biomed. Mater. Res. 2020, 108, 1469–1482. [Google Scholar] [CrossRef]
- Karageorgiou, V.; Kaplan, D. Porosity of 3D Biomaterial Scaffolds and Osteogenesis. Biomaterials 2005, 26, 5474–5491. [Google Scholar] [CrossRef] [PubMed]
- Henkel, J.; Woodruff, M.A.; Epari, D.R.; Steck, R.; Glatt, V.; Dickinson, I.C.; Choong, P.F.M.; Schuetz, M.A.; Hutmacher, D.W. Bone Regeneration Based on Tissue Engineering Conceptions—A 21st Century Perspective. Bone Res. 2013, 1, 216–248. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.; Franco, J.; Saiz, E.; Guitian, F. Maxillary Sinus Floor Augmentation on Humans: Packing Simulations and 8 months Histomorphometric Comparative Study of Anorganic Bone Matrix and β-Tricalcium Phosphate Particles as Grafting Materials. Mater. Sci. Eng. C 2010, 30, 763–769. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Z.; Li, S.; Bai, Y.; Xu, H. Osteoconduction of Different Sizes of Anorganic Bone Particles in a Model of Guided Bone Regeneration. Br. J. Oral Maxillofac. Surg. 2011, 49, 37–41. [Google Scholar] [CrossRef]
- Romanos, G.E.; Delgado-Ruiz, R.A.; Gómez-Moreno, G.; López-López, P.J.; de Val, J.E.M.S.; Calvo-Guirado, J.L. Role of Mechanical Compression on Bone Regeneration around a Particulate Bone Graft Material: An Experimental Study in Rabbit Calvaria. Clin. Oral Implant. Res. 2018, 29, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Ruiz, R.; Romanos, G.E.; Alexandre Gerhke, S.; Gomez-Moreno, G.; Maté-Sánchez de Val, J.E.; Calvo-Guirado, J.L. Biological Effects of Compressive Forces Exerted on Particulate Bone Grafts during Socket Preservation: Animal Study. Clin. Oral Implant. Res. 2018, 29, 792–801. [Google Scholar] [CrossRef]
- Beck, F.; Reich, K.M.; Lettner, S.; Heimel, P.; Tangl, S.; Redl, H.; Ulm, C. The Vertical Course of Bone Regeneration in Maxillary Sinus Floor Augmentations: A Histomorphometric Analysis of Human Biopsies. J. Periodontol. 2021, 92, 263–272. [Google Scholar] [CrossRef]
- Tadjoedin, E.S.; De Lange, G.L.; Bronckers, A.L.J.J.; Lyaruu, D.M.; Burger, E.H. Deproteinized Cancellous Bovine Bone (Bio-Oss®) as Bone Substitute for Sinus Floor Elevation. J. Clin. Periodontol. 2003, 30, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Fuerst, G.; Strbac, G.D.; Vasak, C.; Tangl, S.; Leber, J.; Gahleitner, A.; Gruber, R.; Watzek, G. Are Culture-Expanded Autogenous Bone Cells a Clinically Reliable Option for Sinus Grafting? Clin. Oral Implant. Res. 2009, 20, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Payer, M.; Lohberger, B.; Strunk, D.; Reich, K.M.; Acham, S.; Jakse, N. Effects of Directly Autotransplanted Tibial Bone Marrow Aspirates on Bone Regeneration and Osseointegration of Dental Implants. Clin. Oral Implant. Res. 2014, 25, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Wagner, W.; Wiltfang, J.; Pistner, H.; Yildirim, M.; Ploder, B.; Chapman, M.; Schiestl, N.; Hantak, E. Bone Formation with a Biphasic Calcium Phosphate Combined with Fibrin Sealant in Maxillary Sinus Floor Elevation for Delayed Dental Implant. Clin. Oral Implant. Res. 2012, 23, 1112–1117. [Google Scholar] [CrossRef]
- Reich, K.M.; Huber, C.D.; Heimel, P.; Ulm, C.; Redl, H.; Tangl, S. A Quantification of Regenerated Bone Tissue in Human Sinus Biopsies: Influences of Anatomical Region, Age and Sex. Clin. Oral Implant. Res. 2016, 27, 583–590. [Google Scholar] [CrossRef]
- Donath, K. Die Trenn-Dünnschliff-Technik Zur Herstellung Histologischer Präparate von Nicht Schneidbaren Geweben Und Materialien. Präparator 1988, 34, 10. [Google Scholar]
- Laczko, J.; Levai, G. A Simple Differential Staining Method for Semi-Thin Sections of Ossifying Cartilage and Bone Tissues Embedded in Epoxy Resin. Mikroskopie 1975, 31, 1–4. [Google Scholar]
- Hruschka, V.; Tangl, S.; Ryabenkova, Y.; Heimel, P.; Barnewitz, D.; Möbus, G.; Keibl, C.; Ferguson, J.; Quadros, P.; Miller, C.; et al. Comparison of Nanoparticular Hydroxyapatite Pastes of Different Particle Content and Size in a Novel Scapula Defect Model. Sci. Rep. 2017, 7, 43425. [Google Scholar] [CrossRef]
- Pepelassi, E.; Perrea, D.; Dontas, I.; Ulm, C.; Vrotsos, I.; Tangl, S. Porous Titanium Granules in Comparison with Autogenous Bone Graft in Femoral Osseous Defects: A Histomorphometric Study of Bone Regeneration and Osseointegration in Rabbits. BioMed Res. Int. 2019, 2019, e8105351. [Google Scholar] [CrossRef]
- Bates, D.; Maechler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. LmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021. [Google Scholar]
- Corbella, S.; Taschieri, S.; Weinstein, R.; Fabbro, M.D. Histomorphometric Outcomes after Lateral Sinus Floor Elevation Procedure: A Systematic Review of the Literature and Meta-Analysis. Clin. Oral Implant. Res. 2016, 27, 1106–1122. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, C.; Sennerby, L.; Mordenfeld, A.; Hallman, M. Clinical Histology of Microimplants Placed in Two Different Biomaterials. Int. J. Oral Maxillofac. Implant. 2009, 24, 1093–1100. [Google Scholar]
- Lorenz, J.; Kubesch, A.; Korzinskas, T.; Barbeck, M.; Landes, C.; Sader, R.A.; Kirkpatrick, C.J.; Ghanaati, S. TRAP-Positive Multinucleated Giant Cells Are Foreign Body Giant Cells Rather Than Osteoclasts: Results From a Split-Mouth Study in Humans. J. Oral Implantol. 2015, 41, e257–e266. [Google Scholar] [CrossRef] [PubMed]
- Pignaton, T.B.; Spin-Neto, R.; Ferreira, C.E.d.A.; Martinelli, C.B.; de Oliveira, G.J.P.L.; Marcantonio, E., Jr. Remodelling of Sinus Bone Grafts According to the Distance from the Native Bone: A Histomorphometric Analysis. Clin. Oral Implant. Res. 2020, 31, 959–967. [Google Scholar] [CrossRef]
- Stacchi, C.; Lombardi, T.; Oreglia, F.; Alberghini Maltoni, A.; Traini, T. Histologic and Histomorphometric Comparison between Sintered Nanohydroxyapatite and Anorganic Bovine Xenograft in Maxillary Sinus Grafting: A Split-Mouth Randomized Controlled Clinical Trial. BioMed Res. Int. 2017, 2017, e9489825. [Google Scholar] [CrossRef]
- Artzi, Z.; Kozlovsky, A.; Nemcovsky, C.E.; Weinreb, M. The Amount of Newly Formed Bone in Sinus Grafting Procedures Depends on Tissue Depth as Well as the Type and Residual Amount of the Grafted Material. J. Clin. Periodontol. 2005, 32, 193–199. [Google Scholar] [CrossRef]
- Price, A.M.; Nunn, M.; Oppenheim, F.G.; Dyke, T.E.V. De Novo Bone Formation After the Sinus Lift Procedure. J. Periodontol. 2011, 82, 1245–1255. [Google Scholar] [CrossRef]
- Artzi, Z.; Weinreb, M.; Carmeli, G.; Lev-Dor, R.; Dard, M.; Nemcovsky, C.E. Histomorphometric Assessment of Bone Formation in Sinus Augmentation Utilizing a Combination of Autogenous and Hydroxyapatite/Biphasic Tricalcium Phosphate Graft Materials: At 6 and 9 Months in Humans. Clin. Oral Implant. Res. 2008, 19, 686–692. [Google Scholar] [CrossRef]
- León y León, C.A. New Perspectives in Mercury Porosimetry. Adv. Colloid Interface Sci. 1998, 76–77, 341–372. [Google Scholar] [CrossRef]
- Nimmo, J.R. Porosity and Pore Size Distribution. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 978-0-12-409548-9. [Google Scholar]
- Solar, P.; Geyerhofer, U.; Traxler, H.; Windisch, A.; Ulm, C.; Watzek, G. Blood Supply to the Maxillary Sinus Relevant to Sinus Floor Elevation Procedures. Clin. Oral Implant. Res. 1999, 10, 34–44. [Google Scholar] [CrossRef]
- Lundgren, S.; Andersson, S.; Sennerby, L. Spontaneous Bone Formation in the Maxillary Sinus after Removal of a Cyst: Coincidence or Consequence? Clin. Implant. Dent. Relat. Res. 2003, 5, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Stricker, A.; Fleiner, J.; Stübinger, S.; Schmelzeisen, R.; Dard, M.; Bosshardt, D.D. Bone Loss after Ridge Expansion with or without Reflection of the Periosteum. Clin. Oral Implant. Res. 2015, 26, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Troedhan, A.; Kurrek, A.; Wainwright, M. Biological Principles and Physiology of Bone Regeneration under the Schneiderian Membrane after Sinus Lift Surgery: A Radiological Study in 14 Patients Treated with the Transcrestal Hydrodynamic Ultrasonic Cavitational Sinus Lift (Intralift). Int. J. Dent. 2012, 2012, e576238. [Google Scholar] [CrossRef]
- Dwek, J.R. The Periosteum: What Is It, Where Is It, and What Mimics It in Its Absence? Skelet. Radiol. 2010, 39, 319–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, D.; Hürzeler, M.B.; Quiñones, C.R.; Ohlms, A.; Caffesse, R.G. Contribution of the Periosteum to Bone Formation in Guided Bone Regeneration. Clin. Oral Implant. Res. 2000, 11, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Pinchasov, G.; Juodzbalys, G. Graft-Free Sinus Augmentation Procedure: A Literature Review. J. Oral Maxillofac. Res 2014, 5, e1. [Google Scholar] [CrossRef]
- Walschot, L.H.; Schreurs, B.W.; Verdonschot, N.; Buma, P. The Effect of Impaction and a Bioceramic Coating on Bone Ingrowth in Porous Titanium Particles. Acta Orthop. 2011, 82, 372–377. [Google Scholar] [CrossRef]
- Alayan, J.; Vaquette, C.; Farah, C.; Ivanovski, S. A Histomorphometric Assessment of Collagen-Stabilized Anorganic Bovine Bone Mineral in Maxillary Sinus Augmentation—A Prospective Clinical Trial. Clin. Oral Implant. Res. 2016, 27, 850–858. [Google Scholar] [CrossRef]
- Alayan, J.; Vaquette, C.; Saifzadeh, S.; Hutmacher, D.; Ivanovski, S. A Histomorphometric Assessment of Collagen-Stabilized Anorganic Bovine Bone Mineral in Maxillary Sinus Augmentation—A Randomized Controlled Trial in Sheep. Clin. Oral Implant. Res. 2016, 27, 734–743. [Google Scholar] [CrossRef]
- Pesce, P.; Menini, M.; Canullo, L.; Khijmatgar, S.; Modenese, L.; Gallifante, G.; Del Fabbro, M. Radiographic and Histomorphometric Evaluation of Biomaterials Used for Lateral Sinus Augmentation: A Systematic Review on the Effect of Residual Bone Height and Vertical Graft Size on New Bone Formation and Graft Shrinkage. J. Clin. Med. 2021, 10, 4996. [Google Scholar] [CrossRef] [PubMed]
- Tadjoedin, E.S.; De Lange, G.L.; Holzmann, P.J.; Kuiper, L.; Burger, E.H. Histological Observations on Biopsies Harvested Following Sinus Floor Elevation Using a Bioactive Glass Material of Narrow Size Range. Clin. Oral Implant. Res. 2000, 11, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Jensen, O.T.; Shulman, L.B.; Block, M.S.; Iacono, V.J. Report of the Sinus Consensus Conference of 1996. Int. J. Oral Maxillofac. Implant. 1998, 13, 11–45. [Google Scholar]
Measurement Unit | Mean | SD | |
---|---|---|---|
BSV/TV | (%) | 19.2 | 16.4 |
BS.N | (1/mm) | 1.4 | 0.7 |
avgBSV | (mm²) | 0.1 | 0.1 |
BS.Sp | (mm) | 0.6 | 0.6 |
BBSC | (%) | 33.5 | 26.6 |
BV | (mm²) | 0.1 | 0.0 |
BV/AV | (%) | 24.2 | 16.2 |
Co.V/TV | (%) | 38.8 | 18.3 |
Distance from SF | BSV/TV | BBSC |
---|---|---|
(mm) | (%) | (%) |
0.1 | 1.7 | 43.2 |
1.5 | 20.7 | 36.4 |
3.0 | 22.3 | 31.0 |
6.0 | 19.6 | 20.8 |
9.0 | 14.5 | 10.8 |
Distance from SF | BS.N | avgBSV | BS.Sp | BV | BV/AV | Co.V/TV |
---|---|---|---|---|---|---|
(mm) | (BS Particles/mm) | (mm²) | (mm) | (mm²) | (%) | (%) |
0.1 | 0.64 ± 0.27 | NaN ± NA | 0.90 ± 0.81 | 0.09 ± 0.08 | 25.5 ± 18.2 | 28.1 ± 18.2 |
1.5 | 1.51 ± 0.64 | 0.09 ± 0.14 | 0.64 ± 0.46 | 0.06 ± 0.04 | 27.5 ± 15.3 | 45.1± 16.2 |
3 | 1.39 ± 0.74 | 0.07 ± 0.09 | 0.64 ± 0.60 | 0.05 ± 0.04 | 23.7 ± 17.1 | 37.9 ± 19.7 |
6 | 1.52 ± 0.72 | 0.05 ± 0.05 | 0.61 ± 0.50 | 0.05 ± 0.03 | 22.7 ± 12.2 | 39.2 ± 14.5 |
9 | 1.90 ± 0.60 | 0.07 ± 0.07 | 0.38 ± 0.35 | 0.04 ± 0.03 | 32.8 ± 20.8 | 43.8 ± 20.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reich, K.M.; Beck, F.; Heimel, P.; Lettner, S.; Redl, H.; Ulm, C.; Tangl, S. Bone Graft Packing and Its Association with Bone Regeneration in Maxillary Sinus Floor Augmentations: Histomorphometric Analysis of Human Biopsies. Biology 2022, 11, 1431. https://doi.org/10.3390/biology11101431
Reich KM, Beck F, Heimel P, Lettner S, Redl H, Ulm C, Tangl S. Bone Graft Packing and Its Association with Bone Regeneration in Maxillary Sinus Floor Augmentations: Histomorphometric Analysis of Human Biopsies. Biology. 2022; 11(10):1431. https://doi.org/10.3390/biology11101431
Chicago/Turabian StyleReich, Karoline Maria, Florian Beck, Patrick Heimel, Stefan Lettner, Heinz Redl, Christian Ulm, and Stefan Tangl. 2022. "Bone Graft Packing and Its Association with Bone Regeneration in Maxillary Sinus Floor Augmentations: Histomorphometric Analysis of Human Biopsies" Biology 11, no. 10: 1431. https://doi.org/10.3390/biology11101431
APA StyleReich, K. M., Beck, F., Heimel, P., Lettner, S., Redl, H., Ulm, C., & Tangl, S. (2022). Bone Graft Packing and Its Association with Bone Regeneration in Maxillary Sinus Floor Augmentations: Histomorphometric Analysis of Human Biopsies. Biology, 11(10), 1431. https://doi.org/10.3390/biology11101431