Heterologous Expression of Cyanobacterial Cyanase Gene (CYN) in Microalga Chlamydomonas reinhardtii for Bioremediation of Cyanide Pollution
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cultivation of Chlamydomonas Reinhardtii
2.2. Transformation of E. coli (DH5α) by Synechococcus Elongatus Cyanase Gene
2.3. Transformation of Agrobacterium Tumefaciens by pTRAK-CYN vector
2.4. Formation and Selection of Transgenic Chlamydomonas reinhardtii
2.5. Quantitative Real-Time PCR Analysis
2.6. Comparison between Growth Parameters of Wild and Transgenic C. reinhardtii under Potassium Cyanide Stress
2.7. Mean Growth Rate (R) (Number of Divisions/Day)
2.8. Relative Growth Rate (K\) Was Calculated according to Formula of Fogg [30]
2.9. Bioremediation of Potassium Cyanide by Wild and Transgenic C. reinhardtii
2.10. Statistical Analysis
3. Results
3.1. Transformation of E. coli (DH5α) by Synechococcus Elongatus Cyanase Gene
3.2. Transformation of Agrobacterium Tumefaciens by pTRAK-CYN Vector
3.3. Formation and Selection of Transgenic Chlamydomonas reinhardtii
3.4. Quantitative Real-Time PCR Analysis for the Expression of CYN Genes in Three Transgenic C. reinhardtii
3.5. Comparison between Growth Parameters of Wild and Transgenic TC. reinhardtii-2 Lines under Potassium Cyanide Stress
3.6. Mean Growth Rate
3.7. Relative Growth Rate
3.8. Generation Time
3.9. Bioremediation of Potassium Cyanide by Wild and Transgenic Line (TC. reinhardtii-2)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGrath, S.P.; Zhao, F.J.; Lombi, E. Plant and rhizosphere process involved in phytoremediation of metal-contaminated soils. Plant Soil 2001, 232, 207–214. [Google Scholar] [CrossRef]
- Dalia, M.A.H.D.; Farghali, M.R.F. Cyanide Pollution in Different Water Sources in Assiut, Egypt: Levels, Distributions and Health Risk Assessment. Res. J. Environ. Sci. 2018, 12, 213–219. [Google Scholar]
- Lintzos, L.; Koumaki, E.; Mendrinou, P.; Chatzikonstantinou, K.; Tzamtzis, N.; Malamis, S. Biological cyanide removal from industrial wastewater by applying membrane bioreactors. J. Chem. Technol. Biotechnol. 2020, 95, 3041–3050. [Google Scholar] [CrossRef]
- Hamel, J. A review of acute cyanide poisoning with a treatment update. Crit. Care Nurse 2011, 31, 72–82. [Google Scholar] [CrossRef]
- White, D.M.; Pilon, T.A.; Woolard, C. Biological treatment of cyanide containing wastewater. Water Res. 2000, 34, 2105–2109. [Google Scholar] [CrossRef]
- Mudder, T.I.; Botz, M.M. Cyanide and society: A critical review. Eur. J. Miner. Process. Environ. Prot. 2004, 4, 62–74. [Google Scholar]
- USEPA, Environment Protection Agency U.S. Drinking Water Criteria Document for Cyanide; EPA/600/X-84-192-1; Environment Criteria and Assessment Office: Cincinnati, OI, USA, 1985. [Google Scholar]
- World Health Organization Cyanide in Drinking-Water, Background Document for Preparation of WHO Guidelines for Drinking-Water Quality; (WHO/SDE/WSH/03.04/05); World Health Organization: Geneva, Switzerland, 2003.
- Naveen, D.; Majumder, C.B.; Mondal, P.; Shubha, D. Biological treatment of cyanide containing wastewater. Res. J. Chem. Sci. 2011, 1, 15–21. [Google Scholar]
- Akcil, A.; Mudder, T. Microbial destruction of cyanide wastes in gold mining: Process review. Biotechnol. Lett. 2003, 25, 445–450. [Google Scholar] [CrossRef]
- Srivastava, A.C.; Muni, R.R.D. Phytoremediation of cyanide. In Plant Adaptation and Phytoremediation; Ashraf, M., Ozturk, M., Ahmad, M.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 399–426. [Google Scholar]
- Gurbuz, F.; Ciftci, H.; Akcil, A.; Karahan, A.G. Microbial detoxification of cyanide solutions: A new biotechnological approach using algae. Hydrometallurgy 2004, 72, 167–176. [Google Scholar] [CrossRef]
- Ebbs, S. Biological degradation of cyanide compounds. Curr. Opin. Biotechnol. 2004, 15, 231–236. [Google Scholar] [CrossRef]
- Ibrahim, K.K.; Syed, M.; Shukor, Y.; Ahmad, S.A. Biological remediation of cyanide: A review. Biotropia Southeast Asian J. Trop. Biol. 2015, 22, 151–163. [Google Scholar]
- Mpongwana, N.; Ntwampe, S.K.O.; Omodanisi, E.I.; Chidi, B.S.; Razanamahandry, L.C. Sustainable approach to eradicate the inhibitory effect of free-cyanide on simultaneous nitrification and aerobic denitrification during wastewater treatment. Sustainability 2019, 11, 6180. [Google Scholar] [CrossRef]
- Luque-Almagro, V.M.; Huertas, M.J.; Sáez, L.P.; Luque-Romero, M.M.; Moreno-Vivián, C.; Castillo, F.; Blasco, R. Characterization of the Pseudomonas pseudoalcaligenes CECT5344 cyanase, an enzyme that is not essential for cyanide assimilation. Appl. Environ. Microbiol. 2008, 74, 6280–6288. [Google Scholar] [CrossRef]
- Jin, Z.P.; Luo, K.; Zhang, S.; Zheng, Q.; Yang, H. Bioaccumulation and catabolism of prometryne in green algae. Chemosphere 2012, 87, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Ismaiel, M.M.S.; El-Ayouty, Y.M.; Al-Badwy, A.H. Biosorption of cyanate by two strains of Chlamydomonas reinhardtii: Evaluation of the removal efficiency and antioxidants activity. Int. J. Phytoremediat. 2021, 23, 1030–1040. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.V.; Misquitta, R.W.; Reddy, V.S.; Rao, B.J.; Rajam, M.V. Genetic transformation of the green alga-Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci. 2004, 166, 731–738. [Google Scholar] [CrossRef]
- Rosales-Mendoza, S.; Paz-Maldonado, L.M.T.; Soria-Guerra, R.E. Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: Current status and perspectives. Plant Cell Rep. 2012, 31, 479–494. [Google Scholar] [CrossRef] [PubMed]
- ELgammal, R.A.; El-Ayouty, Y.M.; Sobieh, S.S.; Abu EL-Kheir, W.S.; EL-Sheimy, A.A.; Soror, A.E. Efficiency of transgenic Chlamydomonas reinhardtii for removing of toxicity of cyanide compound. J. Sci. Res. Sci. 2021, 38, 82–86. [Google Scholar]
- Varela-Álvarez, E.; Andreakis, N.; Lago-Lestón, A.; Pearson, G.A.; Serrao, E.A.; Procaccini, G.; Marba, N. Genomic DNA isolation from green and brown algae (Caulerpales and Fucales) for microsatellite library construction. J. Phycol. 2006, 42, 741–745. [Google Scholar] [CrossRef]
- Reichel, C.; Mathur, J.; Eckes, P.; Langenkemper, K.; Koncz, C.; Schell, J.; Reiss, B.; Maas, C. Enhanced green fluorescence by the expression of an Aequorea victoria green fluorescent protein mutant in mono-and dicotyledonous plant cells. Proc. Natl. Acad. Sci. USA 1996, 93, 5888–5893. [Google Scholar] [CrossRef]
- Koncz, C.; Schell, J. The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. MGG 1986, 204, 383–396. [Google Scholar] [CrossRef]
- Liu, H.; Rashidbaigi, A. Comparison of various competent cell preparation methods for high efficiency DNA transformation. Biotechniques 1990, 8, 21–25. [Google Scholar] [PubMed]
- Kumar, S.V.; Rajam, M.V. Induction of Agrobacterium tumefaciens vir genes by the green alga, Chlamydomonas reinhardtii. Curr. Sci. 2007, 92, 1727–1729. [Google Scholar]
- Chomczynski, P.; Mackey, K. Substitution of chloroform by bromo-chloropropane in the single-step method of RNA isolation. Anal. Biochem. 1995, 225, 163–164. [Google Scholar] [CrossRef] [PubMed]
- Niessen, M.; Thiruveedhi, K.; Rosenkranz, R.; Kebeish, R.; Hirsch, H.J.; Kreuzaler, F.; Peterhansel, C. Mitochondrial glycolate oxidation contributes to photorespiration in higher plants. J. Exp. Bot. 2007, 58, 2709–2715. [Google Scholar] [CrossRef]
- Robert, R.L.G. Growth measurements. Division rate. In Physiological Methods. Culture and Growth Measurements; Stein, R.J., Ed.; Cambridge University Press: Cambridge, UK, 1979; p. 275. [Google Scholar]
- Fogg, G.E. Algal Cultures and Phytoplankton Ecology; Textbook; The University of Wisconsin Press: London, UK, 1975; pp. 12–36. [Google Scholar]
- APHA; AWWA; WPCF. Standard Method for the Examination of Water and Wastewater, 19th ed.; American Public Health Association: Washington, DC, USA, 1995. [Google Scholar]
- Alvillo-Rivera, A.; Garrido-Hoyos, S.; Buitrón, G.; Thangarasu-Sarasvathi, P.; Rosano-Ortega, G. Biological treatment for the degradation of cyanide: A review. J. Mater. Res. Tech. 2021, 12, 1418–1433. [Google Scholar] [CrossRef]
- Qian, D.; Jiang, L.; Lu, L.; Wei, C.; Li, Y. Biochemical and structural properties of cyanases from Arabidopsis thaliana and Oryza sativa. PLoS ONE 2011, 6, e18300. [Google Scholar] [CrossRef]
- Kebeish, R.; Al-Zoubi, O. Expression of the cyanobacterial enzyme cyanase increases cyanate metabolism and cyanate tolerance in Arabidopsis. Environ. Sci. Pollut. Res. Int. 2017, 12, 11825–11835. [Google Scholar] [CrossRef] [PubMed]
- Anderson, P.M. Purification and properties of the inducible enzyme cyanase. Biochemistry 1980, 19, 2882–2888. [Google Scholar] [CrossRef]
- Kamennaya, N.A.; Post, A.F. Characterization of cyanate metabolism in marine Synechococcus and Prochlorococcus spp. Appl. Environ. Microbiol. 2011, 77, 291–301. [Google Scholar] [CrossRef]
- Schroda, M. Good news for nuclear transgene expression in Chlamydomonas. Cells 2019, 8, 1534. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Qiao, S.Y.; Wu, M. Insertion mutagenesis of Chlamydomonas reinhardtii by electroporation and heterologous DNA. Biochem. Mol. Biol. Int. 1995, 36, 1025–1035. [Google Scholar] [PubMed]
- Cerutti, H.; Johnson, A.M.; Gillham, W.N.; Boynton, J.E. A eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii: Integration into the nuclear genome and gene expression. Genetics 1997, 145, 97–110. [Google Scholar] [CrossRef]
- Cabello, P.; Luque-Almagro, V.M.; Olaya-Abril, A.; Sáez, L.P.; Moreno-Vivián, C.; Roldán, M.D. Assimilation of cyanide and cyano-derivatives by Pseudomonas pseudoalcali genes CECT5344: From omic approaches to biotechnological applications. FEMS Microbiol. Lett. 2018, 365, 1–7. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, G.; Ding, J.; Zou, H.; Shi, H.; Huang, C. Evaluation of the removal of potassium cyanide and its toxicity in green algae (Chlorella vulgaris). Bull. Environ. Contam. Toxicol. 2018, 100, 228–233. [Google Scholar] [CrossRef] [PubMed]
Time | Type of Alga | 0 h | 6 h | 12 h | 24 h | 36 h | 48 h | 72 h | |
---|---|---|---|---|---|---|---|---|---|
Conc. of KCN (mg/L) | |||||||||
25 | Wild type | 00.00 ± 0.00 | 13.53 ± 0.33 | 24.93 ± 0.80 | 41.31 ± 0.36 | 20.39 ± 0.39 | 100 ± 0.00 | 100 ± 0.00 | |
TC. reinhardtii-2 | 00.00 ± 0.00 | 17.54 ± 0.13 | 29.18 ± 0.34 | 53.22 ± 0.23 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | ||
50 | Wild type | 00.00 ± 0.00 | 13.47 ± 0.32 | 21.43 ± 0.00 | 21.45 ± 0.00 | 16.56 ± 0.31 | 4.87 ± 0.39 | 1.18 ± 0.38 | |
TC. reinhardtii-2 | 00.00 ± 0.00 | 19.28 ± 0.57 | 32.01 ± 0.19 | 46.41 ± 1.05 | 20.60 ± 0.85 | 100 ± 0.00 | 10.00 ± 0.00 | ||
100 | Wild type | 00.00 ± 0.00 | 12.50 ± 0.00 | 10.57 ± 0.71 | 19.01 ± 0.98 | 14.29 ± 0.29 | 9.37 ± 0.04 | 2.50 ± 0.13 | |
TC. reinhardtii-2 | 00.00 ± 0.00 | 19.19 ± 0.69 | 13.12 ± 1.02 | 26.24 ± 1.00 | 10.03 ± 1.04 | 20.62 ± 0.16 | 8.33 ± 0.46 | ||
150 | Wild type | 00.00 ± 0.00 | 12.56 ± 0.53 | 11.82 ± 0.45 | 10.32 ± 0.07 | 8.90 ± 0.73 | 0.86 ± 0.72 | 0.59 ± 0.00 | |
TC. reinhardtii-2 | 00.00 ± 0.00 | 18.04 ± 1.00 | 22.15 ± 0.96 | 24.97 ± 0.28 | 13.10 ± 0.00 | 11.48 ± 0.95 | 2.16 ± 0.56 | ||
200 | Wild type | 00.00 ± 0.00 | 00.00 ± 0.00 | 00.00 ± 0.00 | 00.00 ± 0.00 | 00.00 ± 0.00 | 00.00 ± 0.00 | 00.00 ± 0.00 | |
TC. reinhardtii-2 | 00.00 ± 0.00 | 16.16 ± 0.00 | 13.80 ± 0.02 | 13.40 ± 0.25 | 11.36 ± 0.98 | 9.30 ± 0.37 | 1.38 ± 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobieh, S.S.; Abed El-Gammal, R.; El-Kheir, W.S.A.; El-Sheimy, A.A.; Said, A.A.; El-Ayouty, Y.M. Heterologous Expression of Cyanobacterial Cyanase Gene (CYN) in Microalga Chlamydomonas reinhardtii for Bioremediation of Cyanide Pollution. Biology 2022, 11, 1420. https://doi.org/10.3390/biology11101420
Sobieh SS, Abed El-Gammal R, El-Kheir WSA, El-Sheimy AA, Said AA, El-Ayouty YM. Heterologous Expression of Cyanobacterial Cyanase Gene (CYN) in Microalga Chlamydomonas reinhardtii for Bioremediation of Cyanide Pollution. Biology. 2022; 11(10):1420. https://doi.org/10.3390/biology11101420
Chicago/Turabian StyleSobieh, Shaimaa S., Rasha Abed El-Gammal, Wafaa S. Abu El-Kheir, Alia A. El-Sheimy, Alaa A. Said, and Yassein M. El-Ayouty. 2022. "Heterologous Expression of Cyanobacterial Cyanase Gene (CYN) in Microalga Chlamydomonas reinhardtii for Bioremediation of Cyanide Pollution" Biology 11, no. 10: 1420. https://doi.org/10.3390/biology11101420
APA StyleSobieh, S. S., Abed El-Gammal, R., El-Kheir, W. S. A., El-Sheimy, A. A., Said, A. A., & El-Ayouty, Y. M. (2022). Heterologous Expression of Cyanobacterial Cyanase Gene (CYN) in Microalga Chlamydomonas reinhardtii for Bioremediation of Cyanide Pollution. Biology, 11(10), 1420. https://doi.org/10.3390/biology11101420