Characterization of the Gastrointestinal and Reproductive Tract Microbiota in Fertile and Infertile Pakistani Couples
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participant Identification and Screening
2.2. Sample Collection
2.3. 16S Ribosomal RNA (rRNA) Gene Sequencing, DNA Extraction, and PCR Amplification
2.4. Quality-Control
2.5. Evaluation of within and between Sample Diversity
2.6. Biomarker Discovery
2.7. Metagenome Function Prediction
3. Results
3.1. Microbial Taxonomic Composition of Body Sites in Fertile and Infertile Samples
3.2. Significantly Different within-Sample Diversity in the Genital Microbiome of Fertile and Infertile Men
3.3. No Visible Structure but Significant between Sample Diversity Differences among Fertile and Infertile Genital Samples
3.4. Biomarker Discovery
3.5. Metagenome Profiling of Genital and Gut Samples
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zegers-Hochschild, F.; Adamson, G.D.; Dyer, S.; Racowsky, C.; de Mouzon, J.; Sokol, R.; Rienzi, L.; Sunde, A.; Schmidt, L.; Cooke, I.D.; et al. The International Glossary on Infertility and Fertility Care, 2017. Hum. Reprod. 2017, 32, 1786–1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Practice Committee of the American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss: A committee opinion. Fertil. Steril. 2020, 113, 533–535. [Google Scholar] [CrossRef] [PubMed]
- Inhorn, M.C.; Patrizio, P. Infertility around the globe: New thinking on gender, reproductive technologies and global movements in the 21st century. Hum. Reprod. Updat. 2015, 21, 411–426. [Google Scholar] [CrossRef] [Green Version]
- Vander Borght, M.; Wyns, C. Fertility and infertility: Definition and epidemiology. Clin. Biochem. 2018, 62, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Direkvand-Moghadam, A.; Sayehmiri, K.; Delpisheh, A. The global trend of infertility: An original review and meta-analysis. Int. J. Epidemiol. Res. 2014, 1, 35–43. [Google Scholar]
- Infertility Statistics CDC. 2020. Available online: https://www.cdc.gov/nchs/fastats/infertility.htm (accessed on 3 January 2020).
- Ahmed, H.M.; Khan, M.; Yasmin, F.; Jawaid, H.; Khalid, H.; Shigri, A.; Nawaz, F.; Hasan, C.A. Awareness Regarding Causes of Infertility Among Out-patients at a Tertiary Care Hospital in Karachi, Pakistan. Cureus 2020, 12, e7685. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, R.; Subhan, F.; Sultan, S.; Subhan, K.; Tahir, F. Prevalence of Infertility in a Cross Section of Pakistani Population. Pak. J. Zool. 2010, 42, 389–393. [Google Scholar]
- Sami, N.; Ali, T.S.; Wasim, S.; Saleem, S. Risk Factors for Secondary Infertility among Women in Karachi, Pakistan. PLoS ONE 2012, 7, e35828. [Google Scholar] [CrossRef] [Green Version]
- Deyhoul, N.; Mohamaddoost, T.; Hosseini, M. Infertility-Related Risk Factors: A Systematic Review. Int. J. Women’s Health Reprod. Sci. 2017, 5, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Babakhanzadeh, E.; Nazari, M.; Ghasemifar, S.; Khodadadian, A. Some of the Factors Involved in Male Infertility: A Prospective Review. Int. J. Gen. Med. 2020, 13, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.; Vukina, J. Recent advances in clinical diagnosis and treatment of male factor infertility. Postgrad. Med. 2020, 132, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Shanmugham, D.; Sahitya, N.D.; Natarajan, S.; Saravanany, D.K. Role of diagnostic hystero-laparoscopy in the evaluation of female infertility. Int. J. Reprod. Contracept. Obstet. Gynecol. 2019, 8, 3156–3161. [Google Scholar] [CrossRef]
- Khan, M.; Zafar, S.; Syed, S. Successful intravaginal culture of human embryos for the first time in Pakistan—An experience at the Sindh Institute of Reproductive Medicine, Karachi. J. Pak. Med. Assoc. 2013, 63, 630–632. [Google Scholar]
- Rehman, R.; Irfan, T.; Jawed, S.; Hussain, M.; Ali, R. Embryo quality in intracytoplasmic sperm injection: A quasi experimental design in Pakistan. J. Pak. Med. Assoc. 2018, 68, 1451–1455. [Google Scholar] [PubMed]
- Bhamani, S.S.; Zahid, N.; Zahid, W.; Farooq, S.; Sachwani, S.; Chapman, M.; Asad, N. Association of depression and resilience with fertility quality of life among patients presenting to the infertility centre for treatment in Karachi, Pakistan. BMC Public Health 2020, 20, 1607. [Google Scholar] [CrossRef] [PubMed]
- D’Argenio, V.; Salvatore, F. The role of the gut microbiome in the healthy adult status. Clin. Chim. Acta 2015, 451, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Cani, P.D. Human gut microbiome: Hopes, threats and promises. Gut 2018, 67, 1716–1725. [Google Scholar] [CrossRef]
- Zhao, C.; Wei, Z.; Yang, J.; Zhang, J.; Yu, C.; Yang, A.; Zhang, M.; Zhang, L.; Wang, Y.; Mu, X.; et al. Characterization of the Vaginal Microbiome in Women with Infertility and Its Potential Correlation with Hormone Stimulation during In Vitro Fertilization Surgery. Msystems 2020, 5, 00450-20. [Google Scholar] [CrossRef]
- Sirota, I.; Zarek, S.M.; Segars, J.H. Potential influence of the microbiome on infertility and assisted reproductive technology. In Seminars in Reproductive Medicine; Thieme Medical Publishers: New York, NY, USA, 2014; Volume 32, pp. 35–42. [Google Scholar]
- Stevens, J.S.; Criss, A.K. Pathogenesis of Neisseria gonorrhoeae in the female reproductive tract: Neutrophilic host response, sustained infection, and clinical sequelae. Curr. Opin. Hematol. 2018, 25, 13–21. [Google Scholar] [CrossRef]
- Woodhall, S.C.; Gorwitz, R.J.; Migchelsen, S.J.; Gottlieb, S.L.; Horner, P.J.; Geisler, W.M.; Winstanley, C.; Hufnagel, K.; Waterboer, T.; Martin, D.L.; et al. Advancing the public health applications of Chlamydia trachomatis serology. Lancet Infect. Dis. 2018, 18, e399–e407. [Google Scholar] [CrossRef]
- Lewis, F.M.T.; Bernstein, K.T.; Aral, S.O. Vaginal Microbiome and Its Relationship to Behavior, Sexual Health, and Sexually Transmitted Diseases. Obstet. Gynecol. 2017, 129, 643–654. [Google Scholar] [CrossRef]
- Yurchuk, T.O.; Pavlovich, O.V.; Gapon, G.O.; Pugovkin, A.Y.; Petrushko, M.P. Lipid peroxidation and DNA fragmentation in fresh and cryopreserved spermatozoa of men at different spermatogenesis state. Ukr. Biochem. J. 2021, 93, 24–29. [Google Scholar] [CrossRef]
- Mändar, R.; Punab, M.; Korrovits, P.; Türk, S.; Ausmees, K.; Lapp, E.; Preem, J.-K.; Oopkaup, K.; Salumets, A.; Truu, J. Seminal microbiome in men with and without prostatitis. Int. J. Urol. 2017, 24, 211–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baud, D.; Pattaroni, C.; Vulliemoz, N.; Castella, V.; Marsland, B.J.; Stojanov, M. Sperm Microbiota and Its Impact on Semen Parameters. Front. Microbiol. 2019, 10, 234. [Google Scholar] [CrossRef] [Green Version]
- Farahani, L.; Tharakan, T.; Yap, T.; Ramsay, J.W.; Jayasena, C.; Minhas, S. The semen microbiome and its impact on sperm function and male fertility: A systematic review and meta-analysis. Andrology 2021, 9, 115–144. [Google Scholar] [CrossRef] [PubMed]
- Weng, S.-L.; Chiu, C.-M.; Lin, F.-M.; Huang, W.-C.; Liang, C.; Yang, T.; Yang, T.-L.; Liu, C.-Y.; Wu, W.-Y.; Chang, Y.-A.; et al. Bacterial Communities in Semen from Men of Infertile Couples: Metagenomic Sequencing Reveals Relationships of Seminal Microbiota to Semen Quality. PLoS ONE 2014, 9, e110152. [Google Scholar] [CrossRef] [Green Version]
- Koedooder, R.; Singer, M.; Schoenmakers, S.; Savelkoul, P.H.M.; Morré, S.A.; De Jonge, J.D.; Poort, L.; Cuypers, W.J.S.S.; Beckers, N.G.M.; Broekmans, F.J.M.; et al. The vaginal microbiome as a predictor for outcome of in vitro fertilization with or without intracytoplasmic sperm injection: A prospective study. Hum. Reprod. 2019, 34, 1042–1054. [Google Scholar] [CrossRef]
- Salliss, M.E.; Farland, L.V.; Mahnert, N.D.; Herbst-Kralovetz, M.M. The role of gut and genital microbiota and the estrobolome in endometriosis, infertility and chronic pelvic pain. Hum. Reprod. Updat. 2021. [Google Scholar] [CrossRef]
- Ser, H.-L.; Wong, J.Y.J.; Letchumanan, V.; Law, J.W.-F.; Tan, L.T.-H.; Lee, L.-H. IDDF2021-ABS-0132 Moving beyond the gastrointestinal tract: The involvement of gut microbiome in endometriosis. Basic Gastron. 2021, 70, A46–A47. [Google Scholar]
- Lüll, K.; Arffman, R.K.; Sola-Leyva, A.; Molina, N.M.; Aasmets, O.; Herzig, K.-H.; Plaza-Díaz, J.; Franks, S.; Morin-Papunen, L.; Tapanainen, J.S.; et al. The Gut Microbiome in Polycystic Ovary Syndrome and Its Association with Metabolic Traits. J. Clin. Endocrinol. Metab. 2021, 106, 858–871. [Google Scholar] [CrossRef]
- He, Y.; Jin, X.; Wang, H.; Dai, H.; Lu, X.; Zhao, J.; Zhang, H.; Chen, W.; Wang, G. The emerging role of the gut microbiome in polycystic ovary syndrome. F&S Rev. 2021, 2, 214–226. [Google Scholar] [CrossRef]
- Bailey, M.T.; Coe, C.L. Endometriosis is associated with an altered profile of intestinal microflora in female rhesus monkeys. Hum. Reprod. 2002, 17, 1704–1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giampaolino, P.; Foreste, V.; Di Filippo, C.; Gallo, A.; Mercorio, A.; Serafino, P.; Improda, F.; Verrazzo, P.; Zara, G.; Buonfantino, C.; et al. Microbiome and PCOS: State-Of-Art and Future Aspects. Int. J. Mol. Sci. 2021, 22, 2048. [Google Scholar] [CrossRef] [PubMed]
- Garolla, A.; Pizzol, D.; Carosso, A.R.; Borini, A.; Ubaldi, F.M.; Calogero, A.E.; Ferlin, A.; Lanzone, A.; Tomei, F.; Engl, B.; et al. Practical Clinical and Diagnostic Pathway for the Investigation of the Infertile Couple. Front. Endocrinol. 2021, 11, 1032. [Google Scholar] [CrossRef] [PubMed]
- Begum, B.N.; Hasan, S. Psychological problems among women with infertility problem: A comparative study. J. Pak. Med. Assoc. 2014, 64, 1287–1291. [Google Scholar] [PubMed]
- Arya, S.T.; Dibb, B. The experience of infertility treatment: The male perspective. Hum. Fertil. 2016, 19, 242–248. [Google Scholar] [CrossRef]
- Naz, B.; Batool, S.S. Infertility Related Issues and Challenges: Perspectives of Patients, Spouses, and Infertility Experts. Pak. J. Soc. Clin. Psychol. 2017, 15, 3–11. [Google Scholar]
- Batool, M.; Ali, S.B.; Jaan, A.; Khalid, K.; Ali, S.A.; Kamal, K.; Raja, A.A.; Gul, F.; Nasir, A. Initial Sequencing and Characterization of the Gastrointestinal and Oral Microbiota in Urban Pakistani Adults. Front. Cell. Infect. Microbiol. 2020, 10, 409. [Google Scholar] [CrossRef]
- Hummel, W.; Kula, M.-R. Simple method for small-scale disruption of bacteria and yeasts. J. Microbiol. Methods 1989, 9, 201–209. [Google Scholar] [CrossRef]
- Cady, N.C.; Stelick, S.; Batt, C.A. Nucleic acid purification using microfabricated silicon structures. Biosens. Bioelectron. 2003, 19, 59–66. [Google Scholar] [CrossRef]
- Minalla, A.R.; Dubrow, R.S.; Bousse, L.J. Feasibility of high-resolution oligonucleotide separation on a microchip. In Microfluidics and BioMEMS; SPIE: Bellingham, WA, USA, 2001; Volume 4560, pp. 90–97. [Google Scholar]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Kuma, K.I.; Toh, H.; Miyata, T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005, 33, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L. Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [Google Scholar] [CrossRef] [Green Version]
- Faith, D.P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. A Mathematical Model of Communication; University of Illinois Press: Urbana, IL, USA, 1949; p. 11. [Google Scholar]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Sorensen, T.A. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skr. 1948, 5, 4. [Google Scholar]
- Jaccard, P. Nouvelles recherches sur la distribution florale. Bull. De La Société Vaud. Des Sci. Nat. 1908, 44, 223–270. [Google Scholar] [CrossRef]
- Lozupone, C.A.; Hamady, M.; Kelley, S.T.; Knight, R. Quantitative and Qualitative β Diversity Measures Lead to Different Insights into Factors That Structure Microbial Communities. Appl. Environ. Microbiol. 2007, 73, 1576–1585. [Google Scholar] [CrossRef] [Green Version]
- Lozupone, C.; Knight, R. UniFrac: A New Phylogenetic Method for Comparing Microbial Communities. Appl. Environ. Microbiol. 2006, 71, 8228–8235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vázquez-Baeza, Y.; Pirrung, M.; Gonzalez, A.; Knight, R. EMPeror: A tool for visualizing high-throughput microbial community data. Gigascience 2013, 2, 2047-217X-2-16. [Google Scholar] [CrossRef] [Green Version]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [Green Version]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PIC-RUSt2: An improved and customizable approach for metagenome inference. BioRxiv 2020, 672295. [Google Scholar] [CrossRef] [Green Version]
- Kotera, M.; Okuno, Y.; Hattori, M.; Goto, A.S.; Kanehisa, M. Computational Assignment of the EC Numbers for Genomic-Scale Analysis of Enzymatic Reactions. J. Am. Chem. Soc. 2004, 126, 16487–16498. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef] [Green Version]
- Caspi, R.; Billington, R.; Fulcher, C.A.; Keseler, I.M.; Kothari, A.; Krummenacker, M.; Latendresse, M.; Midford, P.E.; Ong, Q.; Ong, W.K.; et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 2018, 46, D633–D639. [Google Scholar] [CrossRef] [Green Version]
- Crovesy, L.; Masterson, D.; Rosado, E.L. Profile of the gut microbiota of adults with obesity: A systematic review. Eur. J. Clin. Nutr. 2020, 74, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients 2020, 12, 1474. [Google Scholar] [CrossRef] [PubMed]
- Okoli, A.C.; Agbakoba, N.R.; Ezeanya, C.C.; Oguejiofor, C.B.; Anukam, K.C. Comparative abundance and functional biomarkers of the vaginal and gut microbiome of Nigerian women with bacterial vaginosis: A study with 16S rRNA metagenomics. J. Med. Lab. Sci. 2019, 29, 1–26. [Google Scholar]
- Li, X.-T.; Hu, R.; Yu, J.; Peng, T.; Lu, J. Analysis of the microbiome based on 16S rRNA gene signature in women with preterm versus term birth. Reprod. Dev. Med. 2021, 5, 81–89. [Google Scholar] [CrossRef]
- Jakobsson, T.; Forsum, U. Lactobacillus iners: A Marker of Changes in the Vaginal Flora? J. Clin. Microbiol. 2007, 45, 3145. [Google Scholar] [CrossRef] [Green Version]
- O’Herrin, S.M.; Kenealy, W.R. Glucose and carbon dioxide metabolism by Succinivibrio dextrinosolvens. Appl. Environ. Microbiol. 1993, 59, 748–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hummelen, R.; Fernandes, A.D.; Macklaim, J.M.; Dickson, R.J.; Changalucha, J.; Gloor, G.B.; Reid, G. Deep Sequencing of the Vaginal Microbiota of Women with HIV. PLoS ONE 2010, 5, e12078. [Google Scholar] [CrossRef] [Green Version]
- Onywera, H.; Williamson, A.-L.; Mbulawa, Z.Z.; Coetzee, D.; Meiring, T.L. The cervical microbiota in reproductive-age South African women with and without human papillomavirus infection. Papillomavirus Res. 2019, 7, 154–163. [Google Scholar] [CrossRef]
- Fall, N.; Lo, C.; Fournier, P.-E.; Sokhna, C.; Raoult, D.; Fenollar, F.; Lagier, J.-C. Arcanobacterium ihumii sp. nov., Varibaculum vaginae sp. nov. and Tessaracoccus timonensis sp. nov., isolated from vaginal swabs from healthy Senegalese women. New Microbes New Infect. 2019, 31, 100585. [Google Scholar] [CrossRef] [PubMed]
- Seck, E.; Traore, S.; Khelaifia, S.; Beye, M.; Michelle, C.; Couderc, C.; Brah, S.; Fournier, P.-E.; Raoult, D.; Dubourg, G. Tessaracoccus massiliensis sp. nov., a new bacterial species isolated from the human gut. New Microbes New Infect. 2016, 13, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzatti, G.; Lopetuso, L.R.; Gibiino, G.; Binda, C.; Gasbarrini, A. Proteobacteria: A Common Factor in Human Diseases. BioMed Res. Int. 2017, 2017, 9351507. [Google Scholar] [CrossRef] [Green Version]
- Shin, N.-R.; Whon, T.W.; Bae, J.-W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef]
- Popović, V.B.; Šitum, M.; Chow, C.-E.T.; Chan, L.S.; Roje, B.; Terzić, J. The urinary microbiome associated with bladder cancer. Sci. Rep. 2018, 8, 12157. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Malmuthuge, N.; Steele, M.A.; Guan, L.L. Shift of hindgut microbiota and microbial short chain fatty acids profiles in dairy calves from birth to pre-weaning. FEMS Microbiol. Ecol. 2017, 94, fix179. [Google Scholar] [CrossRef]
- Mancabelli, L.; Milani, C.; Lugli, G.A.; Turroni, F.; Mangifesta, M.; Viappiani, A.; Ticinesi, A.; Nouvenne, A.; Meschi, T.; Van Sinderen, D.; et al. Unveiling the gut microbiota composition and functionality associated with constipation through metagenomic analyses. Sci. Rep. 2017, 7, 9879. [Google Scholar] [CrossRef] [Green Version]
- Shao, T.; Shao, L.; Li, H.; Xie, Z.; He, Z.; Wen, C. Combined Signature of the Fecal Microbiome and Metabolome in Patients with Gout. Front. Microbiol. 2017, 8, 268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandeputte, D.; Falony, G.; Vieira-Silva, S.; Wang, J.; Sailer, M.; Theis, S.; Verbeke, K.; Raes, J. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut 2017, 66, 1968–1974. [Google Scholar] [CrossRef] [PubMed]
- Strati, F.; Cavalieri, D.; Albanese, D.; De Felice, C.; Donati, C.; Hayek, J.; Jousson, O.; Leoncini, S.; Renzi, D.; Calabrò, A.; et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 2017, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Domingo, M.-C.; Huletsky, A.; Boissinot, M.; Bernard, K.A.; Picard, F.J.; Bergeron, M.G. Ruminococcus gauvreauii sp. nov., a glycopeptide-resistant species isolated from a human faecal specimen. Int. J. Syst. Evol. Microbiol. 2008, 58, 1393–1397. [Google Scholar] [CrossRef]
- Engen, P.A.; Green, S.J.; Voigt, R.M.; Forsyth, C.B.; Keshavarzian, A. The gastrointestinal microbiome: Alcohol effects on the composition of intestinal microbiota. Alcohol Res. Curr. Rev. 2015, 37, 223. [Google Scholar]
- Stokholm, J.; Blaser, M.J.; Thorsen, J.; Rasmussen, M.A.; Waage, J.; Vinding, R.K.; Schoos, A.-M.M.; Kunøe, A.; Fink, N.R.; Chawes, B.; et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat. Commun. 2018, 9, 141. [Google Scholar] [CrossRef]
- Habte, M.L.; Beyene, E.A. Biological Application and Disease of Oxidoreductase Enzymes. In Oxidoreductase; IntechOpen: London, UK, 2021. [Google Scholar]
- Miki, K.; Qu, W.; Goulding, E.H.; Willis, W.D.; Bunch, D.; Strader, L.F.; Perreault, S.D.; Eddy, E.M.; O’Brien, D.A. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc. Natl. Acad. Sci. USA 2004, 101, 16501–16506. [Google Scholar] [CrossRef] [Green Version]
- Chiware, T.M.; Vermeulen, N.; Blondeel, K.; Farquharson, R.; Kiarie, J.; Lundin, K.; Matsaseng, T.C.; Ombelet, W.; Toskin, I. IVF and other ART in low- and middle-income countries: A systematic landscape analysis. Hum. Reprod. Updat. 2021, 27, 213–228. [Google Scholar] [CrossRef]
- Husain, W.; Imran, M. Infertility as seen by the infertile couples from a collectivistic culture. J. Community Psychol. 2021, 49, 354–360. [Google Scholar] [CrossRef]
- Ullah, A.; Ashraf, H.; Tariq, M.; Aziz, S.Z.; Zubair, S.; Sikandar, K.U.R.; Ali, N.; Shakoor, A.; Nisar, M. Battling the Invisible Infertility Agony: A Case Study of Infertile Women in Khyber Pakhtunkhwa-Pakistan. J. Ethn. Cult. Stud. 2021, 8, 89–105. [Google Scholar] [CrossRef]
- Bouter, K.E.; van Raalte, D.H.; Groen, A.K.; Nieuwdorp, M. Role of the Gut Microbiome in the Pathogenesis of Obesity and Obesity-Related Metabolic Dysfunction. Gastroenterology 2017, 152, 1671–1678. [Google Scholar] [CrossRef] [PubMed]
- White, B.A.; Creedon, D.J.; Nelson, K.E.; Wilson, B.A. The vaginal microbiome in health and disease. Trends Endocrinol. Metab. 2011, 22, 389–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holm, J.B.; France, M.T.; Ma, B.; McComb, E.; Robinson, C.K.; Mehta, A.; Tallon, L.J.; Brotman, R.M.; Ravel, J. Comparative Metagenome-Assembled Genome Analysis of “Candidatus Lachnocurva vaginae”, Formerly Known as Bacterial Vaginosis-Associated Bacterium−1 (BVAB1). Front. Cell. Infect. Microbiol. 2020, 10, 117. [Google Scholar] [CrossRef] [Green Version]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [Green Version]
- Savage, J.H.; Lee-Sarwar, K.A.; Sordillo, J.; Bunyavanich, S.; Zhou, Y.; O’Connor, G.; Sandel, M.; Bacharier, L.B.; Zeiger, R.; Sodergren, E.; et al. A prospective microbiome-wide association study of food sensitization and food allergy in early childhood. Allergy 2018, 73, 145–152. [Google Scholar] [CrossRef]
- Harper, A.; Vijayakumar, V.; Ouwehand, A.C.; ter Haar, J.; Obis, D.; Espadaler, J.; Binda, S.; Desiraju, S.; Day, R. Viral Infections, the Microbiome, and Probiotics. Front. Cell. Infect. Microbiol. 2021, 10, 596166. [Google Scholar] [CrossRef]
- Huda, M.N.; Lewis, Z.; Kalanetra, K.M.; Rashid, M.; Ahmad, S.M.; Raqib, R.; Qadri, F.; Underwood, M.A.; Mills, D.A.; Stephensen, C.B. Stool Microbiota and Vaccine Responses of Infants. Pediatrics 2014, 134, e362–e372. [Google Scholar] [CrossRef] [Green Version]
- Hagan, T.; Cortese, M.; Rouphael, N.; Boudreau, C.; Linde, C.; Maddur, M.S.; Das, J.; Wang, H.; Guthmiller, J.; Zheng, N.-Y.; et al. Antibiotics-Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans. Cell 2019, 178, 1313–1328.e13. [Google Scholar] [CrossRef] [PubMed]
- Palomba, S.; Daolio, J.; Romeo, S.; Battaglia, F.A.; Marci, R.; La Sala, G.B. Lifestyle and fertility: The influence of stress and quality of life on female fertility. Reprod. Biol. Endocrinol. 2018, 16, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Body Site | Gender | Fertile | Infertile | ||
---|---|---|---|---|---|
Phylum | Mean | Phylum | Mean (%) | ||
Genital | Female | Firmicutes | 65.58 | Firmicutes | 83.58 |
Actinobacteria | 29.07 | Actinobacteria | 10.01 | ||
Bacteriodetes | 2.31 | Bacteriodetes | 3.42 | ||
Proteobacteria | 0.27 | Proteobacteria | 1.32 | ||
Tenericutes | 2.73 | Tenericutes | 1.27 | ||
Others | 0.02 | Others | 0.41 | ||
Male | Firmicutes | 22.92 | Firmicutes | 30.92 | |
Actinobacteria | 74.49 | Actinobacteria | 64.27 | ||
Bacteriodetes | 1.16 | Bacteriodetes | 3.18 | ||
Proteobacteria | 1.16 | Proteobacteria | 1.18 | ||
Tenericutes | 0.01 | Tenericutes | 0.20 | ||
Others | 0.25 | Others | 0.23 | ||
Gut | Female | Firmicutes | 58.43 | Firmicutes | 60.79 |
Actinobacteria | 7.36 | Actinobacteria | 12.12 | ||
Bacteriodetes | 23.01 | Bacteriodetes | 13.64 | ||
Proteobacteria | 7.68 | Proteobacteria | 11.45 | ||
Others | 3.51 | Others | 1.98 | ||
Male | Firmicutes | 63.32 | Firmicutes | 53.45 | |
Actinobacteria | 14.55 | Actinobacteria | 10.79 | ||
Bacteriodetes | 11.84 | Bacteriodetes | 16.36 | ||
Proteobacteria | 9.05 | Proteobacteria | 14.13 | ||
Others | 1.24 | Others | 5.26 |
Body Site | Gender | Fertile | Infertile | ||
---|---|---|---|---|---|
Genus | Abundance (%) | Genus | Abundance (%) | ||
Genital | Female | Lactobacillus | 46.99 | Lactobacillus | 75.97 |
Corynebacterium 1 | 15.57 | Gardnerella | 6.33 | ||
Gardnerella | 7.58 | Atopobium | 1.90 | ||
Anaerococcus | 4.15 | Prevotella | 1.85 | ||
Staphylococcus | 3.08 | Staphylococcus | 1.31 | ||
Male | Corynebacterium 1 | 62.68 | Corynebacterium 1 | 52.19 | |
Staphylococcus | 9.21 | Lactobacillus | 11.02 | ||
Corynebacterium | 8.18 | Staphylococcus | 8.64 | ||
Anaerococcus | 4.78 | Corynebacterium | 5.96 | ||
Finegoldia | 2.82 | Prevotella | 2.67 | ||
Gut | Female | Alloprevotella | 11.40 | Bifidobacterium | 9.47 |
Faecalibacterium | 6.66 | Faecalibacterium | 8.04 | ||
f__Lachnospiraceae;__ | 6.09 | f__Lachnospiraceae; | 5.89 | ||
Bifidobacterium | 5.81 | Alloprevotella | 4.85 | ||
Bacteroides | 5.09 | Megasphaera | 3.93 | ||
Male | Bifidobacterium | 6.27 | Succinivibrio | 8.23 | |
Megasphaera | 5.63 | Bifidobacterium | 8.03 | ||
f__Lachnospiraceae;__ | 5.29 | Alloprevotella | 6.72 | ||
Faecalibacterium | 5.20 | f__Lachnospiraceae; | 5.92 | ||
Alloprevotella | 5.13 | Faecalibacterium | 5.41 |
Method | Group 1 | Group 2 | H | p-Value | Q-Value |
---|---|---|---|---|---|
Genital, female | |||||
Observed | Fertile (14) | Infertile (16) | 0.6576 | 0.4174 | 0.5313 |
Faith PD | Fertile (14) | Infertile (16) | 2.3658 | 0.1240 | 0.1736 |
Shannon | Fertile (14) | Infertile (16) | 0.3387 | 0.5606 | 0.6561 |
Evenness | Fertile (14) | Infertile (16) | 1.4533 | 0.2280 | 0.2776 |
Genital, male | |||||
Observed | Fertile (16) | Infertile (12) | 1.6915 | 0.1934 | 0.2708 |
Faith PD | Fertile (16) | Infertile (12) | 4.9655 | 0.0259 | 0.0402 |
Shannon | Fertile (16) | Infertile (12) | 0.1056 | 0.7452 | 0.7728 |
Evenness | Fertile (16) | Infertile (12) | 2.7931 | 0.0947 | 0.1262 |
Gut, female | |||||
Observed | Fertile (9) | Infertile (13) | 1.2154 | 0.2703 | 0.3603 |
Faith PD | Fertile (9) | Infertile (13) | 0.6968 | 0.4039 | 0.5140 |
Shannon | Fertile (9) | Infertile (13) | 3.6221 | 0.0570 | 0.0798 |
Evenness | Fertile (9) | Infertile (13) | 1.5262 | 0.2167 | 0.2758 |
Gut, male | |||||
Observed | Fertile (11) | Infertile (15) | 0.1139 | 0.7358 | 0.7924 |
Faith PD | Fertile (11) | Infertile (15) | 0.3562 | 0.5506 | 0.6703 |
Shannon | Fertile (11) | Infertile (15) | 0.2970 | 0.5858 | 0.6561 |
Evenness | Fertile (11) | Infertile (15) | 0.5663 | 0.4517 | 0.5059 |
Method | Group 1 | Group 2 | Sample Size | Permutations | Pseudo-F | p-Value | Q-Value |
---|---|---|---|---|---|---|---|
Genital, female | |||||||
Unweighted UniFrac | Fertile | Infertile | 30 (14, 16) | 999 | 1.4235 | 0.0730 | 0.0929 |
Weighted UniFrac | Fertile | Infertile | 30 (14, 16) | 999 | 3.2966 | 0.0240 | 0.0320 |
Bray–Curtis | Fertile | Infertile | 30 (14, 16) | 999 | 2.1047 | 0.0600 | 0.0800 |
Jaccard | Fertile | Infertile | 30 (14, 16) | 999 | 1.2892 | 0.0570 | 0.0725 |
Genital, male | |||||||
Unweighted UniFrac | Fertile | Infertile | 28 (16, 12) | 999 | 2.0719 | 0.0180 | 0.0252 |
Weighted UniFrac | Fertile | Infertile | 28 (16, 12) | 999 | 2.1974 | 0.0720 | 0.0877 |
Bray–Curtis | Fertile | Infertile | 28 (16, 12) | 999 | 1.3802 | 0.1540 | 0.1875 |
Jaccard | Fertile | Infertile | 28 (16, 12) | 999 | 1.4820 | 0.0060 | 0.0080 |
Gut, female | |||||||
Unweighted UniFrac | Fertile | Infertile | 22 (9, 13) | 999 | 1.0265 | 0.4250 | 0.4250 |
Weighted UniFrac | Fertile | Infertile | 22 (9, 13) | 999 | 1.6821 | 0.0650 | 0.0827 |
Bray–Curtis | Fertile | Infertile | 22 (9, 13) | 999 | 1.2738 | 0.1220 | 0.1553 |
Jaccard | Fertile | Infertile | 22 (9, 13) | 999 | 1.0695 | 0.2730 | 0.3058 |
Gut, male | |||||||
Unweighted UniFrac | Fertile | Infertile | 26 (11, 15) | 999 | 1.0341 | 0.3630 | 0.3775 |
Weighted UniFrac | Fertile | Infertile | 26 (11, 15) | 999 | 1.4239 | 0.1470 | 0.1646 |
Bray–Curtis | Fertile | Infertile | 26 (11, 15) | 999 | 0.9728 | 0.4960 | 0.4960 |
Jaccard | Fertile | Infertile | 26 (11, 15) | 999 | 1.0253 | 0.3650 | 0.3931 |
Method | Group 1 | Group 2 | H | p-Value | Q-Value |
---|---|---|---|---|---|
Genital, female | |||||
Observed | Fertile (14) | Infertile (16) | 0.043203 | 0.835344 | 0.899601 |
Shannon | Fertile (14) | Infertile (16) | 0.914171 | 0.33901 | 0.365088 |
Evenness | Fertile (14) | Infertile (16) | 0.762097 | 0.382673 | 0.487039 |
Genital, male | |||||
Observed | Fertile (16) | Infertile (12) | 1.876052 | 0.170784 | 0.298273 |
Shannon | Fertile (16) | Infertile (12) | 0.422414 | 0.515735 | 0.534836 |
Evenness | Fertile (16) | Infertile (12) | 4.965517 | 0.025858 | 0.042589 |
Gut, female | |||||
Observed | Fertile (9) | Infertile (13) | 1.214047 | 0.270532 | 0.360837 |
Shannon | Fertile (9) | Infertile (13) | 4.148272 | 0.041677 | 0.055569 |
Evenness | Fertile (9) | Infertile (13) | 0.491639 | 0.483197 | 0.520366 |
Gut, male | |||||
Observed | Fertile (11) | Infertile (15) | 0.29697 | 0.585788 | 0.656083 |
Shannon | Fertile (11) | Infertile (15) | 0.032997 | 0.855858 | 0.855858 |
Evenness | Fertile (11) | Infertile (15) | 0.56633 | 0.451721 | 0.520366 |
Method | Group 1 | Group 2 | H | p-Value | Q-Value |
---|---|---|---|---|---|
Genital, female | |||||
Observed | Fertile (14) | Infertile (16) | 0.02765 | 0.867935 | 0.914146 |
Shannon | Fertile (14) | Infertile (16) | 0.110599 | 0.739463 | 0.739463 |
Evenness | Fertile (14) | Infertile (16) | 1.168203 | 0.279771 | 0.340591 |
Genital, male | |||||
Observed | Fertile (16) | Infertile (12) | 2.793103 | 0.094671 | 0.176719 |
Shannon | Fertile (16) | Infertile (12) | 0.215517 | 0.642477 | 0.666272 |
Evenness | Fertile (16) | Infertile (12) | 4.965517 | 0.025858 | 0.045251 |
Gut, female | |||||
Observed | Fertile (9) | Infertile (13) | 0.93757 | 0.332904 | 0.490595 |
Shannon | Fertile (9) | Infertile (13) | 5.619844 | 0.017758 | 0.023678 |
Evenness | Fertile (9) | Infertile (13) | 1.695652 | 0.192858 | 0.245455 |
Gut, male | |||||
Observed | Fertile (11) | Infertile (15) | 0.420875 | 0.516501 | 0.628783 |
Shannon | Fertile (11) | Infertile (15) | 1.245118 | 0.264487 | 0.296225 |
Evenness | Fertile (11) | Infertile (15) | 2.505724 | 0.113433 | 0.158807 |
Method | Group 1 | Group 2 | H | p-Value | Q-Value |
---|---|---|---|---|---|
Genital, female | |||||
Observed | Fertile (14) | Infertile (16) | 0.043212 | 0.835326 | 0.866264 |
Shannon | Fertile (14) | Infertile (16) | 0.062212 | 0.803033 | 0.803033 |
Evenness | Fertile (14) | Infertile (16) | 0.292051 | 0.588909 | 0.610721 |
Genital, male | |||||
Observed | Fertile (16) | Infertile (12) | 3.627809 | 0.056822 | 0.093588 |
Shannon | Fertile (16) | Infertile (12) | 0.105603 | 0.745206 | 0.772806 |
Evenness | Fertile (16) | Infertile (12) | 3.448276 | 0.063318 | 0.084424 |
Gut, female | |||||
Observed | Fertile (9) | Infertile (13) | 0.188619 | 0.664069 | 0.774747 |
Shannon | Fertile (9) | Infertile (13) | 5.307692 | 0.021231 | 0.028309 |
Evenness | Fertile (9) | Infertile (13) | 2.061315 | 0.15108 | 0.183923 |
Gut, male | |||||
Observed | Fertile (11) | Infertile (15) | 0.016881 | 0.896624 | 0.896624 |
Shannon | Fertile (11) | Infertile (15) | 0.356229 | 0.550608 | 0.616681 |
Evenness | Fertile (11) | Infertile (15) | 1.891582 | 0.169024 | 0.197194 |
Method | Group 1 | Group 2 | Sample Size | Permutations | Pseudo-F | p-Value | Q-Value |
---|---|---|---|---|---|---|---|
Genital, female | |||||||
Bray–Curtis | Fertile | Infertile | 30 (14, 16) | 999 | 2.92481 | 0.061 | 0.074261 |
Jaccard | Fertile | Infertile | 30 (14, 16) | 999 | 0.939749 | 0.389 | 0.473565 |
Genital, male | |||||||
Bray–Curtis | Fertile | Infertile | 28 (16, 12) | 999 | 1.82435 | 0.121 | 0.141167 |
Jaccard | Fertile | Infertile | 28 (16, 12) | 999 | 1.941499 | 0.08 | 0.106667 |
Gut, female | |||||||
Bray–Curtis | Fertile | Infertile | 22 (9, 13) | 999 | 1.985473 | 0.019 | 0.025333 |
Jaccard | Fertile | Infertile | 22 (9, 13) | 999 | 0.961617 | 0.462 | 0.497538 |
Gut, male | |||||||
Bray–Curtis | Fertile | Infertile | 26 (11, 15) | 999 | 1.30249 | 0.184 | 0.190815 |
Jaccard | Fertile | Infertile | 26 (11, 15) | 999 | 0.813824 | 0.632 | 0.655407 |
Method | Group 1 | Group 2 | Sample size | Permutations | Pseudo-F | p-Value | Q-Value |
---|---|---|---|---|---|---|---|
Genital, female | |||||||
Bray–Curtis | Fertile | Infertile | 30 (14, 16) | 999 | 2.836859 | 0.048 | 0.061091 |
Jaccard | Fertile | Infertile | 30 (14, 16) | 999 | 0.940447 | 0.42 | 0.511304 |
Genital, male | |||||||
Bray–Curtis | Fertile | Infertile | 28 (16, 12) | 999 | 1.689142 | 0.146 | 0.157231 |
Jaccard | Fertile | Infertile | 28 (16, 12) | 999 | 2.134797 | 0.065 | 0.086667 |
Gut, female | |||||||
Bray–Curtis | Fertile | Infertile | 22 (9, 13) | 999 | 1.930443 | 0.034 | 0.045333 |
Jaccard | Fertile | Infertile | 22 (9, 13) | 999 | 0.90927 | 0.518 | 0.604333 |
Gut, male | |||||||
Bray–Curtis | Fertile | Infertile | 26 (11, 15) | 999 | 1.441061 | 0.113 | 0.137565 |
Jaccard | Fertile | Infertile | 26 (11, 15) | 999 | 0.808572 | 0.573 | 0.64176 |
Method | Group 1 | Group 2 | Sample Size | Permutations | Pseudo-F | p-Value | Q-Value |
---|---|---|---|---|---|---|---|
Genital, female | |||||||
Bray–Curtis | Fertile | Infertile | 30 (14, 16) | 999 | 1.549936 | 0.189 | 0.203538 |
Jaccard | Fertile | Infertile | 30 (14, 16) | 999 | 0.830535 | 0.477 | 0.580696 |
Genital, male | |||||||
Bray–Curtis | Fertile | Infertile | 28 (16, 12) | 999 | 1.585594 | 0.155 | 0.1736 |
Jaccard | Fertile | Infertile | 28 (16, 12) | 999 | 2.071996 | 0.09 | 0.12 |
Gut, female | |||||||
Bray–Curtis | Fertile | Infertile | 22 (9, 13) | 999 | 2.164885 | 0.037 | 0.049333 |
Jaccard | Fertile | Infertile | 22 (9, 13) | 999 | 0.690923 | 0.599 | 0.645077 |
Gut, male | |||||||
Bray–Curtis | Fertile | Infertile | 26 (11, 15) | 999 | 1.106805 | 0.303 | 0.314222 |
Jaccard | Fertile | Infertile | 26 (11, 15) | 999 | 0.511691 | 0.781 | 0.809926 |
Body Site | Class | Biomarker | Function | |
---|---|---|---|---|
EC # | Genital | Infertile | EC 6.3.5.5 | Ligases; forming carbon nitrogen bonds. |
EC 2.7.8.20 | Transferases; transferring phosphorous containing group | |||
EC 5.1.1.13 | Isomerases; acting on amino acids and derivatives. | |||
EC 3.1.2.21 | Hydrolases; acting on ester bonds | |||
EC 3.4.14.11 | Hydrolases; acting on peptide bonds (peptidases) | |||
EC 2.4.1.8 | Transferases; glycosyltransferases; hexosyltransferases | |||
EC 2.4.2.6 | Nucleoside deoxyribosytransferase; catalyses the cleavage of the glycosidic bonds of 2-deoxyribonucleosides. | |||
EC 3.2.1.70 | Hydrolases; glycosidases, i.e., enzyme that hydrolyse O- and S-glycosyl compounds. | |||
EC 2.7.1.76 | Transferases; transferring phosphorous containing group | |||
EC 1.1.3.21 | Oxidoreductase; acting on the CH-OH group of donors; with oxygen as acceptors. | |||
EC 2.7.7.61 | Transferases; transferring phosphorous containing group | |||
EC 6.3.4.4 | Ligases; forming carbon nitrogen bonds. | |||
Fertile | EC 1.8.4.12 | Oxidoreductase; acting on a sulphur group of donors; with a disulphide as acceptor | ||
EC 1.3.8.6 | Oxidoreductase; acting on the CH-CH group of donors; with flavin as acceptor. | |||
Gut | Infertile | EC 6.2.1.5 | Ligases; forming carbon sulphur bonds. | |
Fertile | EC 3.1.3.18 | Hydrolases; acting on ester bonds | ||
KEGG Ortholog ID | Gut | Infertile | K00057: Glycerol-3-phosphate dehydrogenase | Pathways: Glycerophospholipid metabolism; Biosynthesis of secondary metabolite |
Genital | K00041: Tagaturonate reductase | Pathways: pentose and glucoronate interconversions; metabolic pathways. | ||
MetaCyc Pathway ID | Gut | Infertile | KDO-NAGLIPASYN-PWY | Pathway: Superpathway of (Kdo)2-lipid A biosynthesis |
PWY-6519 | Pathway: 8-amino-7-oxononanoate biosynthesis 1 | |||
PWY-5861 | Pathway: Superpathway of demethylmenaquinol-8 biosynthesis 1 | |||
BIOTIN-BIOSYNTHESIS-PWY | Pathway: Biotin biosynthesis 1 | |||
PWY0-1479 | Pathway: t-RNA processing | |||
PWY-5838 | Pathway: Superpathway of menaquinol-8 biosynthesis 1 | |||
PWY0-845 | Pathway: Superpathway of pyridoxal 5′-phosphate biosynthesis and salvage | |||
PYRIDOXSYN-PWY | Pathway: pyridoxal 5′-phosphate biosynthesis 1 | |||
Fertile | PWY-7221 | Pathway: guanosine ribonucleotides de novo biosynthesis. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manzoor, A.; Amir, S.; Gul, F.; Sidique, M.A.; Kayani, M.u.R.; Zaidi, S.S.A.; Javed, S.; Abbas Shah, S.T.; Nasir, A. Characterization of the Gastrointestinal and Reproductive Tract Microbiota in Fertile and Infertile Pakistani Couples. Biology 2022, 11, 40. https://doi.org/10.3390/biology11010040
Manzoor A, Amir S, Gul F, Sidique MA, Kayani MuR, Zaidi SSA, Javed S, Abbas Shah ST, Nasir A. Characterization of the Gastrointestinal and Reproductive Tract Microbiota in Fertile and Infertile Pakistani Couples. Biology. 2022; 11(1):40. https://doi.org/10.3390/biology11010040
Chicago/Turabian StyleManzoor, Ammara, Saira Amir, Farzana Gul, Muhammad Abubakar Sidique, Masood ur Rehman Kayani, Syed Shujaat Ali Zaidi, Sundus Javed, Syed Tahir Abbas Shah, and Arshan Nasir. 2022. "Characterization of the Gastrointestinal and Reproductive Tract Microbiota in Fertile and Infertile Pakistani Couples" Biology 11, no. 1: 40. https://doi.org/10.3390/biology11010040
APA StyleManzoor, A., Amir, S., Gul, F., Sidique, M. A., Kayani, M. u. R., Zaidi, S. S. A., Javed, S., Abbas Shah, S. T., & Nasir, A. (2022). Characterization of the Gastrointestinal and Reproductive Tract Microbiota in Fertile and Infertile Pakistani Couples. Biology, 11(1), 40. https://doi.org/10.3390/biology11010040