Association of IFNA16 and TNFRSF19 Polymorphisms with Intramuscular Fat Content and Fatty Acid Composition in Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and DNA Isolation
2.2. Phenotype Measurements
2.3. Genotyping
2.4. Statistical Analysis
3. Results
3.1. Porcine IFNA16 and TNFRSF19 Polymorphisms
3.2. Genotype and Allele Frequencies
3.3. Association Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Fernandez, X.; Monin, G.; Talmant, A.; Mourot, J.; Lebret, B. Influence of intramuscular fat content on the quality of pig meat - 2. Consumer acceptability of m. longissimus lumborum. Meat Sci. 1999, 53, 67–72. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Cameron, N.D.; Enser, M.; Nute, G.R.; Whittington, F.M.; Penman, J.C.; Fisken, A.C.; Perry, M.A.; Wood, J.D. Genotype with nutrition interaction on fatty acid composition of intramuscular fat and the relationship with flavour of pig meat. Meat Sci. 2000, 55, 187–195. [Google Scholar] [CrossRef]
- Ros-Freixedes, R.; Gol, S.; Pena, R.N.; Tor, M.; Ibáñez-Escriche, N.; Dekkers, J.C.M.; Estany, J. Genome-Wide Association Study Singles Out SCD and LEPR as the Two Main Loci Influencing Intramuscular Fat Content and Fatty Acid Composition in Duroc Pigs. PLoS ONE 2016, 11, e0152496. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, J.; Gong, H.; Cui, L.; Zhang, W.; Ma, J.; Chen, C.; Ai, H.; Xiao, S.; Huang, L.; et al. Genetic correlation of fatty acid composition with growth, carcass, fat deposition and meat quality traits based on GWAS data in six pig populations. Meat Sci. 2018, 150, 47–55. [Google Scholar] [CrossRef]
- Estany, J.; Ros-Freixedes, R.; Tor, M.; Pena, R.N. A functional variant in the stearoyl-CoA desaturase gene promoter enhances fatty acid desaturation in pork. PLoS ONE 2014, 9, e86177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Prendes, R.; Quintanilla, R.; Mármol-Sánchez, E.; Pena, R.N.; Ballester, M.; Cardoso, T.F.; Manunza, A.; Casellas, J.; Cánovas, Á.; Díaz, I. Comparing the mRNA expression profile and the genetic determinism of intramuscular fat traits in the porcine gluteus medius and longissimus dorsi muscles. BMC Genom. 2019, 20, 170. [Google Scholar] [CrossRef]
- Puig-Oliveras, A.; Revilla, M.; Castelló, A.; Fernández, A.I.; Folch, J.M.; Ballester, M. Expression-based GWAS identifies variants, gene interactions and key regulators affecting intramuscular fatty acid content and composition in porcine meat. Sci. Rep. 2016, 6, 31803. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Zhang, W.; Zhang, Z.; Fan, Y.; Xie, X.; Ai, H.; Ma, J.; Xiao, S.; Huang, L.; Ren, J. Genome-Wide Association Analyses for Fatty Acid Composition in Porcine Muscle and Abdominal Fat Tissues. PLoS ONE 2013, 8, e65554. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Yang, B.; Zhang, J.; Cui, L.; Ma, J.; Chen, C.; Ai, H.; Xiao, S.; Ren, J.; Huang, L. Genome-wide association studies for fatty acid metabolic traits in five divergent pig populations. Sci. Rep. 2016, 6, 24718. [Google Scholar] [CrossRef] [Green Version]
- Corominas, J.; Ramayo-Caldas, Y.; Puig-Oliveras, A.; Estellé, J.; Castelló, A.; Alves, E.; Pena, R.N.; Ballester, M.; Folch, J.M. Analysis of porcine adipose tissue transcriptome reveals differences in de novo fatty acid synthesis in pigs with divergent muscle fatty acid composition. BMC Genom. 2013, 14, 843. [Google Scholar] [CrossRef]
- Ponsuksili, S.; Murani, E.; Brand, B.; Schwerin, M.; Wimmers, K. Integrating expression profiling and whole-genome association for dissection of fat traits in a porcine model. J. Lipid Res. 2011, 52, 668–678. [Google Scholar] [CrossRef] [Green Version]
- Ramayo-Caldas, Y.; Mach, N.; Esteve-Codina, A.; Corominas, J.; Castelló, A.; Ballester, M.; Estellé, J.; Ibáñez-Escriche, N.; Fernández, A.I.; Pérez-Enciso, M.; et al. Liver transcriptome profile in pigs with extreme phenotypes of intramuscular fatty acid composition. BMC Genom. 2012, 13, 547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Cui, L.; Ma, J.; Chen, C.; Yang, B.; Huang, L. Transcriptome analyses reveal genes and pathways associated with fatty acid composition traits in pigs. Anim. Genet. 2017, 48, 645–652. [Google Scholar] [CrossRef]
- Pothakam, N.; Supakankul, P.; Norseeda, W.; Liu, G.; Teltathum, T.; Naraballobh, W.; Khamlor, T.; Sringarm, K.; Mekchay, S. Association of adipocytokine IL-1A and IL-6 genes with intramuscular fat content and fatty acid composition traits in pigs. Meat Sci. 2021, 179, 108554. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yu, C.-Y.; Deng, W.-M. The role of pro-inflammatory cytokines in lipid metabolism of metabolic diseases. Int. Rev. Immunol. 2019, 38, 249–266. [Google Scholar] [CrossRef]
- Wang, T.; He, C. Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev. 2018, 44, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.H.; Shiau, M.Y.; Chuang, P.H.; Chang, Y.H.; Hwang, J. Interleukin-4 regulates lipid metabolism by inhibiting adipogenesis and promoting lipolysis. J. Lipid Res. 2014, 55, 385–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pestka, S.; Krause, C.D.; Walter, M.R. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev. 2004, 202, 8–32. [Google Scholar] [CrossRef]
- Sang, Y.; Rowland, R.R.R.; Hesse, R.A.; Blecha, F. Differential expression and activity of the porcine type I interferon family. Physiol. Genom. 2010, 42, 248–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gessani, S.; Belardelli, F. Type I Interferons as Joint Regulators of Tumor Growth and Obesity. Cancers 2021, 13, 196. [Google Scholar] [CrossRef]
- Grunfeld, C.; Dinarello, C.A.; Feingold, K.R. Tumor necrosis factor-α, interleukin-1 and interferon alpha stimulate triglyceride synthesis in HepG2 cells. Metabolism 1991, 40, 894–898. [Google Scholar] [CrossRef]
- Lee, K.; Um, S.H.; Rhee, D.K.; Pyo, S. Interferon-alpha inhibits adipogenesis via regulation of JAK/STAT1 signaling. Biochim. Et Biophys. Acta (BBA) Gen. Subj. 2016, 1860, 2416–2427. [Google Scholar] [CrossRef] [PubMed]
- Quiroga, A.D.; Comanzo, C.G.; Barbini, F.J.H.; Lucci, A.; Vera, M.C.; Lorenzetti, F.; Ferretti, A.C.; Ceballos, M.P.; Alvarez, M.D.L.; Carrillo, M.C. IFN-α-2b treatment protects against diet-induced obesity and alleviates non-alcoholic fatty liver disease in mice. Toxicol. Appl. Pharmacol. 2019, 379, 114650. [Google Scholar] [CrossRef]
- Ma, J.; Yang, J.; Zhou, L.; Zhang, Z.; Ma, H.; Xie, X.; Zhang, F.; Xiong, X.; Cui, L.; Yang, H.; et al. Genome-Wide Association Study of Meat Quality Traits in a White Duroc×Erhualian F2 Intercross and Chinese Sutai Pigs. PLoS ONE 2013, 8, e64047. [Google Scholar] [CrossRef] [Green Version]
- Park, H.B.; Han, S.H.; Yoo, C.K.; Lee, J.B.; Kim, J.H.; Baek, K.S.; Son, J.K.; Shin, S.M.; Lim, H.T.; Cho, I.C. Genome scan linkage analysis identifies a major quantitative trait loci for fatty acid composition in longissimus dorsi muscle in an F2 intercross between Landrace and Korean native pigs. Asian-Australas. J. Anim. Sci. 2017, 30, 1061–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Gao, R.; Gan, J.; Zhu, Y.; Ma, J.; Lv, P.; Zhang, Y.; Li, S.; Tang, H. Downregulation of TNFRSF19 and RAB43 by a novel miRNA, miR-HCC3, promotes proliferation and epithelial-mesenchymal transition in hepatocellular carcinoma cells. Biochem. Biophys. Res. Comm. 2020, 525, 425–432. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, R.; Diao, J.; Chen, X.; Huang, J.; Xu, K.; Ling, L.; Xia, W.; Liang, Y.; Liu, G.; et al. Differentially expressed circular RNAs in orbital adipose/connective tissue from patients with thyroid-associated ophthalmopathy. Exp. Eye Res. 2020, 196, 108036. [Google Scholar] [CrossRef]
- Qiu, W.; Hu, Y.; Andersen, T.E.; Jafari, A.; Li, N.; Chen, W.; Kassem, M. Tumor Necrosis Factor Receptor Superfamily Member 19 (TNFRSF19) Regulates Differentiation Fate of Human Mesenchymal (Stromal) Stem Cells through Canonical Wnt Signaling and C/EBP. J. Biol. Chem. 2010, 285, 14438–14449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.S.; Ros-Freixedes, R.; Pena, R.N.; Baas, T.J.; Estany, J.; Rothschild, M.F. Identification of signatures of selection for intramuscular fat and backfat thickness in two Duroc populations. J. Anim. Sci. 2015, 93, 3292–3302. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, M.; Rodríguez, M.C.; Alves, E.; Folch, J.M.; Ibañez-Escriche, N.; Silió, L.; Fernández, A.I. Genome-wide analysis of porcine backfat and intramuscular fat fatty acid composition using high-density genotyping and expression data. BMC Genom. 2013, 14, 845. [Google Scholar] [CrossRef] [Green Version]
- Won, S.; Jung, J.; Park, E.; Kim, H. Identification of genes related to intramuscular fat content of pigs using genome-wide association study. Asian-Australas. J. Anim. Sci. 2018, 31, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Yalçınkaya, B.; Yumbul, E.; Mozioglu, E.; Akgoz, M. Comparison of DNA extraction methods for meat analysis. Food Chem. 2017, 221, 1253–1257. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Feingold, K.R.; Soued, M.; Serio, M.K.; Moser, A.H.; Dinarello, C.A.; Grunfeld, C. Multiple cytokines stimulate hepatic lipid synthesis in vivo. Endocrinology 1989, 125, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Feingold, K.R.; Doerrler, W.; Dinarello, C.A.; Fiers, W.; Grunfeld, C. Stimulation of lipolysis in cultured fat cells by tumor necrosis factor, interleukin-1 and interferons is blocked by inhibition of prostaglandin synthesis. Endocrinology 1992, 130, 10–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birk, R.Z.; Rubinstein, M. IFN-α induces apoptosis of adipose tissue cells. Biochem. Biophys. Res. Commun. 2006, 345, 669–674. [Google Scholar] [CrossRef]
- Tarantino, G.; Costantini, S.; Citro, V.; Conforti, P.; Capone, F.; Sorice, A.; Capone, D. Interferon-alpha 2 but not Interferon-gamma serum levels are associated with intramuscular fat in obese patients with nonalcoholic fatty liver disease. J. Transl. Med. 2019, 17, 8. [Google Scholar] [CrossRef] [PubMed]
- Estany, J.; Ros-Freixedes, R.; Tor, M.; Pena, R.N. Triennial Growth and Development Symposium: Genetics and breeding for intramuscular fat and oleic acid content in pigs. J. Anim. Sci. 2017, 95, 2261–2271. [Google Scholar] [CrossRef]
- Renaville, B.; Bacciu, N.; Lanzoni, M.; Mossa, F.; Piasentier, E. Association of single nucleotide polymorphisms in fat metabolism candidate genes with fatty acid profiles of muscle and subcutaneous fat in heavy pigs. Meat Sci. 2018, 139, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Lanford, R.E.; Guerra, B.; Lee, H.; Chavez, D.; Brasky, K.M.; Bigger, C.B. Genomic response to interferon-α in chimpanzees: Implications of rapid downregulation for hepatitis C kinetics. Hepatology 2006, 43, 961–972. [Google Scholar] [CrossRef]
- Arain, S.Q.; Talpur, F.N.; Channa, N.A. A comparative study of serum lipid contents in pre and post IFN-alpha treated acute hepatitis C patients. Lipids Heal. Dis. 2015, 14, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, N.-K.; Lim, D.; Lee, S.-H.; Cho, Y.-M.; Park, E.-W.; Lee, C.-S.; Shin, B.-S.; Kim, T.-H.; Yoon, D. Heat Shock Protein B1 and Its Regulator Genes Are Negatively Correlated with Intramuscular Fat Content in the Longissimus Thoracis Muscle of Hanwoo (Korean Cattle) Steers. J. Agric. Food Chem. 2011, 59, 5657–5664. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-B.; Li, H.; Wang, Q.-G.; Zhang, X.-Y.; Wang, S.-Z.; Wang, Y.-X.; Wang, X.-P. Profiling of chicken adipose tissue gene expression by genome array. BMC Genom. 2007, 8, 193. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Luo, J.; Li, J.X.; Li, J.J.; Wang, D.Q.; Tian, Y.; Lu, L.Z. Transcriptome analysis of adiposity in domestic ducks by transcriptomic comparison with their wild counterparts. Anim. Genet. 2015, 46, 299–307. [Google Scholar] [CrossRef]
- Bassols, J.; Moreno-Navarrete, J.M.; Ortega, F.J.; Ricart, W.; Fernandez-Real, J.M. Characterization of Herpes Virus Entry Mediator as a Factor Linked to Obesity. Obesity 2010, 18, 239–246. [Google Scholar] [CrossRef]
- Liu, B.; Yu, H.; Sun, G.; Sun, X.; Jin, H.; Zhang, C.; Shi, W.; Tian, D.; Liu, K.; Xu, H.; et al. OX40 promotes obesity-induced adipose inflammation and insulin resistance. Cell. Mol. Life Sci. 2017, 74, 3827–3840. [Google Scholar] [CrossRef] [PubMed]
- Tu, T.H.; Kim, C.-S.; Kang, J.-H.; Nam-Goong, I.S.; Nam, C.W.; Kim, E.S.; Kim, Y.I.; I Choi, J.; Kawada, T.; Goto, T.; et al. Levels of 4-1BB transcripts and soluble 4-1BB protein are elevated in the adipose tissue of human obese subjects and are associated with inflammatory and metabolic parameters. Int. J. Obes. 2014, 38, 1075–1082. [Google Scholar] [CrossRef]
- Davoli, R.; Catillo, G.; Serra, A.; Zappaterra, M.; Zambonelli, P.; Zilio, D.M.; Steri, R.; Mele, M.; Buttazzoni, L.; Russo, V. Genetic parameters of backfat fatty acids and carcass traits in Large White pigs. Animal 2019, 13, 924–932. [Google Scholar] [CrossRef]
- Zappaterra, M.; Luise, D.; Zambonelli, P.; Mele, M.; Serra, A.; Costa, L.N.; Davoli, R. Association study between backfat fatty acid composition and SNPs in candidate genes highlights the effect of FASN polymorphism in large white pigs. Meat Sci. 2019, 156, 75–84. [Google Scholar] [CrossRef]
- Crespo-Piazuelo, D.; Criado-Mesas, L.; Revilla, M.; Castelló, A.; Noguera, J.L.; Fernández, A.I.; Ballester, M.; Folch, J.M. Identification of strong candidate genes for backfat and intramuscular fatty acid composition in three crosses based on the Iberian pig. Sci. Rep. 2020, 10, 13962. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, J.; Cui, L.; Ma, J.; Chen, C.; Ai, H.; Xie, X.; Li, L.; Xiao, S.; Huang, L.; et al. Genetic architecture of fatty acid composition in the longissimus dorsi muscle revealed by genome-wide association studies on diverse pig populations. Genet. Sel. Evol. 2016, 48, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
SNPs | Primer Sequence (5′ to 3′) | Size (bp) | Ta (°C) | Restriction Enzymes | PCR-RFLP Pattern (bp) |
---|---|---|---|---|---|
IFNA16 c.199G > C | F: CTGAGGCTCCTGGCACAAAT R: TGAGCCTTCTGGACCTGGTT | 113 | 60 | StyI | G: 83 + 30 C: 113 |
IFNA16 c.413G > A | F: TTCTGCACTGGACTGGATCA R: GGAAGTATTTCCTCACAGCC | 121 | 60 | HinfI | G: 121 A: 91 + 30 |
TNFRSF19 c.250T > A | F: GCCGCACAGGTTCAAGGAG R: CGCTGGTGGCAGAGCAGTT | 104 | 58 | BseNI | T: 78 + 26 A: 104 |
TNFRSF19 c.860G > C | F: TCTGCCCACCCCCATACTAA R: CCGAGGAGGTCAGGGTAAGA | 195 | 60 | Bsh1236I | G: 116 + 79 C: 83 + 79 + 33 |
TNFRSF19 c.1188C > G | F: ACACAGCTCGCTGCCAGAA R: GAGGCCTGTCTGGGGGCT | 109 | 60 | TaiI | C: 78 + 31 G: 109 |
SNPs | n | Genotype Frequencies | Allele Frequencies 1 | p Value 2 (χ2) | |||
---|---|---|---|---|---|---|---|
AA | AB | BB | A | B | |||
IFNA16 c.413G > A | 468 | 0.67 | 0.33 | 0.00 | 0.83 | 0.17 | <0.01 ** |
TNFRSF19 c.860G > C | 463 | 0.13 | 0.79 | 0.08 | 0.52 | 0.48 | <0.01 ** |
Traits | Genotypes (Least Squares Mean ± SE) | p Value | |
---|---|---|---|
GG (n = 313) | GA (n = 155) | ||
IMF | 2.214 ± 0.267 | 2.168 ± 0.355 | 0.7014 |
Lauric acid (C12:0) | 0.108 ± 0.006 | 0.113 ± 0.010 | 0.7269 |
Myristic acid (C14:0) | 1.432 ± 0.085 | 1.549 ± 0.138 | 0.4818 |
Palmitic acid (C16:0) | 15.515 ± 0.731 | 17.028 ± 1.192 | 0.2922 |
Stearic acid (C18:0) | 12.369 ± 0.550 a | 15.177 ± 0.896 b | 0.0148 |
Arachidic acid (C20:0) | 0.336 ± 0.044 | 0.363 ± 0.072 | 0.7494 |
SFAs | 29.654 ± 1.166 a | 34.118 ± 1.899 b | 0.0490 |
Palmitoleic acid (C16:1n-7) | 4.671 ± 0.255 | 4.638 ± 0.415 | 0.9468 |
Oleic acid (C18:1n-9) | 39.737 ± 2.183 | 32.520 ± 3.556 | 0.0991 |
Eicosenoic acid (C20:1n-9) | 2.192 ± 0.250 | 2.119 ± 0.407 | 0.8810 |
MUFAs | 46.601 ± 2.201 | 39.278 ± 3.584 | 0.0971 |
Linoleic acid (C18:2n-6) | 17.464 ± 1.498 | 19.864 ± 2.440 | 0.4121 |
γ-Linolenic acid (C18:3n-6) | 0.096 ± 0.046 | 0.027 ± 0.076 | 0.4472 |
Eicosadienoic acid (C20:2n-6) | 1.424 ± 0.167 | 2.016 ± 0.272 | 0.0791 |
Dihomo-γ-linolenic acid (C20:3n-6) | 0.206 ± 0.036 | 0.303 ± 0.060 | 0.1878 |
Arachidonic acid (C20:4n-6) | 0.062 ± 0.065 | 0.043 ± 0.027 | 0.6259 |
n-6 PUFAs | 19.254 ± 1.594 | 22.211 ± 2.596 | 0.3436 |
MUFAs/SFAs | 1.582 ± 0.079 b | 1.224 ± 0.137 a | 0.0360 |
MUFAs/n-6 PUFAs | 2.392 ± 0.276 | 1.790 ± 0.602 | 0.5508 |
n-6 PUFAs/SFAs | 0.679 ± 0.059 | 0.659 ± 0.101 | 0.8661 |
Traits | Genotypes (Least Squares Mean ± SE) | p Value | ||
---|---|---|---|---|
GG (n = 60) | GC (n = 365) | CC (n = 38) | ||
IMF | 2.213 ± 0.285 a | 2.031 ± 0.381 a | 2.874 ± 0.545 b | 0.0258 |
Lauric acid (C12:0) | 0.093 ± 0.016 | 0.099 ± 0.004 | 0.098 ± 0.007 | 0.9072 |
Myristic acid (C14:0) | 1.244 ± 0.165 | 1.231 ± 0.045 | 1.247 ± 0.072 | 0.9770 |
Palmitic acid (C16:0) | 14.129 ± 1.590 | 13.728 ± 0.434 | 14.108 ± 0.695 | 0.8643 |
Stearic acid (C18:0) | 11.872 ± 1.279 | 11.501 ± 0.349 | 12.845 ± 0.559 | 0.0904 |
Arachidic acid (C20:0) | 0.534 ± 0.101 b | 0.246 ± 0.027 a | 0.319 ± 0.044 a | 0.0111 |
SFAs | 27.874 ± 2.341 | 26.806 ± 0.639 | 28.618 ± 1.024 | 0.2590 |
Palmitoleic acid (C16:1n-7) | 4.551 ± 0.576 | 4.166 ± 0.157 | 4.197 ± 0.252 | 0.8004 |
Oleic acid (C18:1n-9) | 33.925 ± 3.722 | 34.398 ± 1.016 | 33.503 ± 1.628 | 0.8769 |
Eicosenoic acid (C20:1n-9) | 2.120 ± 0.550 | 1.983 ± 0.150 | 2.076 ± 0.240 | 0.9190 |
MUFAs | 40.597 ± 3.864 | 40.549 ± 1.055 | 39.776 ± 1.69 | 0.9126 |
Linoleic acid (C18:2n-6) | 22.857 ± 2.878 | 23.970 ± 0.785 | 21.380 ± 1.258 | 0.1678 |
γ-Linolenic acid (C18:3n-6) | 0.082 ± 0.085 | 0.132 ± 0.023 | 0.127 ± 0.037 | 0.8445 |
Eicosadienoic acid (C20:2n-6) | 1.895 ± 0.566 | 1.680 ± 0.154 | 1.608 ± 0.247 | 0.8845 |
Dihomo-γ-linolenic acid (C20:3n-6) | 0.247 ± 0.114 | 0.196 ± 0.031 | 0.149 ± 0.049 | 0.5917 |
Arachidonic acid (C20:4n-6) | 0.221 ± 0.156 | 0.224 ± 0.042 | 0.105 ± 0.068 | 0.2923 |
n-6 PUFAs | 25.304 ± 2.893 | 26.003 ± 0.790 | 23.372 ± 1.265 | 0.1633 |
MUFAs/SFAs | 1.497 ± 0.214 | 1.431 ± 0.102 | 1.388 ± 0.134 | 0.8405 |
MUFAs/n-6 PUFAs | 1.587 ± 0.790 | 1.565 ± 0.534 | 1.682 ± 0.657 | 0.8895 |
n-6 PUFAs/SFAs | 0.852 ± 0.132 | 0.826 ± 0.063 | 0.784 ± 0.083 | 0.1634 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mekchay, S.; Pothakam, N.; Norseeda, W.; Supakankul, P.; Teltathum, T.; Liu, G.; Naraballobh, W.; Khamlor, T.; Sringarm, K.; Krutmuang, P. Association of IFNA16 and TNFRSF19 Polymorphisms with Intramuscular Fat Content and Fatty Acid Composition in Pigs. Biology 2022, 11, 109. https://doi.org/10.3390/biology11010109
Mekchay S, Pothakam N, Norseeda W, Supakankul P, Teltathum T, Liu G, Naraballobh W, Khamlor T, Sringarm K, Krutmuang P. Association of IFNA16 and TNFRSF19 Polymorphisms with Intramuscular Fat Content and Fatty Acid Composition in Pigs. Biology. 2022; 11(1):109. https://doi.org/10.3390/biology11010109
Chicago/Turabian StyleMekchay, Supamit, Nanthana Pothakam, Worrarak Norseeda, Pantaporn Supakankul, Tawatchai Teltathum, Guisheng Liu, Watcharapong Naraballobh, Trisadee Khamlor, Korawan Sringarm, and Patcharin Krutmuang. 2022. "Association of IFNA16 and TNFRSF19 Polymorphisms with Intramuscular Fat Content and Fatty Acid Composition in Pigs" Biology 11, no. 1: 109. https://doi.org/10.3390/biology11010109
APA StyleMekchay, S., Pothakam, N., Norseeda, W., Supakankul, P., Teltathum, T., Liu, G., Naraballobh, W., Khamlor, T., Sringarm, K., & Krutmuang, P. (2022). Association of IFNA16 and TNFRSF19 Polymorphisms with Intramuscular Fat Content and Fatty Acid Composition in Pigs. Biology, 11(1), 109. https://doi.org/10.3390/biology11010109