Sex and Regeneration
Abstract
:Simple Summary
Abstract
1. Introduction
2. Types of Regeneration
3. Sex and Regeneration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reddy, P.C.; Gungi, A.; Unni, M. Cellular and Molecular Mechanisms of Hydra Regeneration. Results Probl. Cell Differ. 2009, 68, 259–290. [Google Scholar] [CrossRef]
- Egger, B.; Gschwentner, R.; Rieger, R. Free-living flatworms under the knife: Past and present. Dev. Genes Evol. 2007, 217, 89. [Google Scholar] [CrossRef] [Green Version]
- Abu Hanieh, A.; Hasan, A.; Assi, M. Date palm trees supply chain and sustainable model. J. Clean. Prod. 2020, 258. [Google Scholar] [CrossRef]
- Garcês, H.; Sinha, N. The ‘mother of thousands’ (Kalanchoë daigremontiana): A plant model for asexual reproduction and CAM studies. Cold Spring Harb. Protoc. 2009, 10, pdb.emo133. [Google Scholar] [CrossRef]
- Hosseini, V.; Maroufi, N.F.; Saghati, S.; Asadi, N.; Darabi, M.; Ahmad, S.N.S.; Hosseinkhani, H.; Rahbarghazi, R. Current progress in hepatic tissue regeneration by tissue engineering. J. Transl. Med. 2019, 17, 383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.Q.; Lian, H.; Tang, H.; Dolezal, K.; Zhou, C.M.; Yu, S.; Chen, J.-H.; Chen, Q.; Liu, H.; Ljung, K.; et al. An intrinsic microRNA timer regulates progressive decline in shoot regenerative capacity in plants. Plant Cell 2015, 27, 349–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamakawa, H.; Kusumoto, D.; Hashimoto, H.; Yuasa, S. Stem Cell Aging in Skeletal Muscle Regeneration and Disease. Int. J. Mol. Sci. 2020, 21, 1830. [Google Scholar] [CrossRef] [Green Version]
- Kutsher, Y.; Fisler, M.; Faigenboim-Doron, A.; Reuveni, M. Florigen governs shoot regeneration. Sci. Rep. 2021, 11, 13710. [Google Scholar] [CrossRef]
- Radhakrishnan, D.; Kareem, A.; Durgaprasad, K.; Sreeraj, E.; Sugimoto, K.; Prasad, K. Shoot regeneration: A journey from acquisition of competence to completion. Curr. Opin. Plant Biol. 2018, 41, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Tsonis, P.A. Regeneration in vertebrates. Dev. Biol. 2000, 221, 273–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.; Han, M.; Yan, M.; Lee, E.C.; Lee, J.; Muneoka, K. BMP signaling induces digit regeneration in neonatal mice. Development 2010, 137, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Efroni, I.; Mello, A.; Nawy, T.; Ip, P.L.; Rahni, R.; DelRose, N.; Powers, A.; Satija, R.; Birnbaum, K.D. Root Regeneration Triggers an Embryo-like Sequence Guided by Hormonal Interactions. Cell 2016, 165, 1721–1733. [Google Scholar] [CrossRef] [Green Version]
- Jafari, P.; Muller, C.; Grognuz, A.; Applegate, L.A.; Raffoul, W.; di Summa, P.G.; Durand, S. First Insights into Human Fingertip Regeneration by Echo-Doppler Imaging and Wound Microenvironment Assessment. Int. J. Mol. Sci. 2017, 18, 1054. [Google Scholar] [CrossRef] [Green Version]
- Kareem, A.; Durgaprasad, K.; Sugimoto, K.; Du, Y.; Pulianmackal, A.J.; Trivedi, Z.B.; Abhayadev, P.V.; Pinon, V.; Meyerowitz, E.M.; Scheres, B.; et al. PLETHORA Genes Control Regeneration by a Two-Step Mechanism. Curr. Biol. 2015, 25, 1017–1030. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Sia, J.; Soto, J.; Wang, P.; Li, L.K.; Hsueh, Y.-Y.; Sun, R.; Faull, K.F.; Tidball, J.G.; Li, S. Skeletal muscle regeneration via the chemical induction and expansion of myogenic stem cells in situ or in vitro. Nat. Biomed. Eng. 2021, 5, 864–879. [Google Scholar] [CrossRef]
- Gierer, A.; Berking, S.; Bode, H.; David, C.N.; Flick, K.; Hansmann, G.; Schaller, H.; Trenkner, E. Regeneration of hydra from reaggregated cells. Nat. New Biol. 1972, 239, 98–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subban, P.; Kutsher, Y.; Evenor, D.; Belausov, E.; Zemach, H.; Faigenboim-Doron, A.; Bocobza, S.; Timko, M.P.; Reuveni, M. Shoot Regeneration Is Not a Single Cell Event. Plants 2021, 10, 58. [Google Scholar] [CrossRef] [PubMed]
- Leal, F.J.; Krezdorn, A.H. Rooting avocado cuttings. Fla. State Hortic. Soc. 1964, 77, 358–362. [Google Scholar]
- Ye, B.; Shang, G.D.; Pan, Y.; Xu, Z.G.; Zhou, C.M.; Mao, Y.B.; Bao, N.; Sun, L.; Xu, T.; Wang, J.-W. AP2/ERF transcription factors integrate age and wound signals for root regeneration. Plant Cell 2020, 32, 226–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sena, G.; Wang, X.; Liu, H.Y.; Hofhuis, H.; Birnbaum, K.D. Organ regeneration does not require a functional stem cell niche in plants. Nature 2009, 457, 1150–1153. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.W.; Czech, B.; Weigel, D. MiR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 2009, 138, 738–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G.; Park, M.Y.; Conway, S.R.; Wang, J.W.; Weigel, D.; Poethig, R.S. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 2009, 138, 750–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nodine, M.D.; Bartel, D.P. MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev. 2010, 24, 2678–2692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergonzi, S.; Albani, M.C.; van Themaat, E.V.L.; Nordström, K.J.; Wang, R.; Schneeberger, K.; Moerland, P.D.; Coupland, G. Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabis alpina. Science 2013, 340, 1094–1097. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Somoza, I.; Zhou, C.M.; Confraria, A.; Martinho, C.; von Born, P.; Baena-Gonzalez, E.; Wang, J.-W.; Weigel, D. Temporal control of leaf complexity by miRNA-regulated licensing of protein complexes. Curr. Biol. 2014, 24, 2714–2719. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.M.; Zhang, T.Q.; Wang, X.; Yu, S.; Lian, H.; Tang, H.; Feng, Z.-Y.; Zozomova-Lihová, J.; Wang, J.-W. Molecular basis of age-dependent vernalization in Cardamine flexuosa. Science 2013, 340, 1097–1100. [Google Scholar] [CrossRef]
- Cui, L.; Zheng, F.; Wang, J.; Zhang, C.; Xiao, F.; Ye, J.; Li, C.; Ye, Z.; Zhang, J. miR156a-targeted SBP-Box transcription factor SlSPL13 regulates inflorescence morphogenesis by directly activating SFT in tomato. Plant Biotechnol. J. 2020, 18, 1670–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergonzi, S.; Albani, M.C. Reproductive competence from an annual and a perennial perspective. J. Exp. Bot. 2011, 62, 4415–4422. [Google Scholar] [CrossRef] [Green Version]
- Haine, K.E. Vegetative propagation from the broccoli curd after suppression of flowering. Nature 1951, 168, 919–920. [Google Scholar] [CrossRef]
- Adams, D.G.; Roberts, A.N. Effect of flower buds on rooting response. Oregon Ornam. Nurs. Digest 1965, 9, 1–2. [Google Scholar]
- Wilton, O.C. Correlation of cambial activity with flowering and regeneration. Int. J. Plant Sci. Form. Bot. Gaz. 1938, 99, 854–864. [Google Scholar] [CrossRef]
- Biran, I.; Halevy, A.H. The Relationship Between Rooting of Dahlia Cuttings and the Presence and Type of Bud. Physiol. Plant. 1973, 28, 244–247. [Google Scholar] [CrossRef]
- Ross, S.D. Production, propagation, and shoot elongation of cuttings from sheared 1-year-old Douglas- fir seedlings. For. Sci. 1975, 21, 298–300. [Google Scholar]
- Libby, W.J.; Brown, A.G.; Fielding, J.M. Effects of hedging radiata pine on production, rooting, and early growth of cuttings. N. Z. J. For. Sci. 1972, 2, 263–283. [Google Scholar]
- Libby, W.J.; Hood, J.V. Juvenility in hedged radiata pine. Acta Hortic. 1976, 56, 91–98. [Google Scholar] [CrossRef]
- Rauter, R.M. A short-term tree improvement programme through vegetative propagation. N. Z. J. For. Sci. 1974, 4, 373–377. [Google Scholar]
- Sorhaila, C.B.; Batistel, C.; Lohmann, G.; Bisognin, D.A. Rooting competence of mini-cuttings of Cabralea canjerana clones in different seasons. Cienc. Rural. 2020, 50, e20190451. [Google Scholar]
- Danthu, P.; Ramaroson, N.; Rambeloarisoa, G. Seasonal dependence of rooting success in cuttings from natural forest trees in Madagascar. Agrofor. Syst. 2008, 73, 47–53. [Google Scholar] [CrossRef]
- Klein, J.D.; Shlomo Cohen, S.; Yonit Hebbe, Y. Seasonal variation in rooting ability of myrtle (Myrtus communis L.) cuttings. Sci. Hortic. 2000, 83, 71–76. [Google Scholar] [CrossRef]
- McGarry, R.C.; Ayre, B.G. Geminivirus-mediated delivery of florigen promotes determinate growth in aerial organs and uncouples flowering from photoperiod in cotton. PLoS ONE 2012, 7, e36746. [Google Scholar] [CrossRef] [Green Version]
- Shalit, A.; Rozman, A.; Goldshmidt, A.; Alvarez, J.P.; Bowman, J.; Eshed, Y.; Lifschitz, E. The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc. Natl. Acad. Sci. USA 2009, 106, 8392–8397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hecht, V.; Laurie, R.E.; Schoor, J.K.V.; Ridge, S.; Knowles, C.L.; Liew, L.C.; Sussmilch, F.; Murfet, I.C.; Macknight, R.; Weller, J.L. The Pea GIGAS Gene Is a FLOWERING LOCUS T Homolog Necessary for Graft-Transmissible Specification of Flowering but Not for Responsiveness to Photoperiod. Plant Cell 2011, 23, 147–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiraoka, K.; Yamaguchi, A.; Abe, M.; Araki, T. The Florigen Genes FT and TSF Modulate Lateral Shoot Outgrowth in Arabidopsis thaliana. Plant Cell Physiol. 2013, 54, 352–368. [Google Scholar] [CrossRef] [Green Version]
- Perez-Garcia, P.; Moreno-Risueno, M.A. Stem cells and plant regeneration. Dev. Biol. 2018, 442, 3–12. [Google Scholar] [CrossRef]
- Shyh-Chang, N.; Zhu, H.; Yvanka de Soysa, T.; Shinoda, G.; Seligson, M.T.; Tsanov, K.M.; Nguyen, L.; Asara, J.M.; Cantley, L.C.; Daley, G.Q. Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell 2013, 155, 778–792. [Google Scholar] [CrossRef] [Green Version]
- Senyo, S.; Steinhauser, M.L.; Pizzimenti, C.L.; Yang, V.K.; Cai, L.; Wang, M.; Wu, T.-D.; Guerquin-Kern, J.-L.; Lechene, C.P.; Lee, R.T. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 2013, 493, 433–436. [Google Scholar] [CrossRef] [Green Version]
- Young, H.E.; Bailey, C.F.; Dalley, B.K. Gross morphological analysis of limb regeneration in postmetamorphic adult Ambystoma. Anat. Rec. 1983, 206, 295–306. [Google Scholar] [CrossRef]
- Ray, R.; Herring, C.M.; Markel, T.A.; Crisostomo, P.R.; Wang, M.; Weil, B.; Lahm, T.; Meldrum, D.R. Deleterious effects of endogenous and exogenous testosterone on mesenchymal stem cell VEGF production. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 294, R1498–R1503. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.H.; Ding, D.C.; Chu, T.Y. Estradiol and Progesterone Induced Differentiation and Increased Stemness Gene Expression of Human Fallopian Tube Epithelial Cells. J. Cancer 2019, 10, 3028–3036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bramble, M.S.; Vashist, N.; Vilain, E. Sex steroid hormone modulation of neural stem cells: A critical review. Biol. Sex Differ. 2019, 10, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasan, A.S.; Luo, L.; Baba, S.; Li, T.-S. Estrogen is required for maintaining the quality of cardiac stem cells. PLoS ONE 2021, 16, e0245166. [Google Scholar] [CrossRef]
- Xia, K.; Chen, H.; Wang, J.; Feng, X.; Gao, Y.; Wang, Y.; Deng, R.; Wu, C.; Luo, P.; Zhang, M.; et al. Restorative functions of Autologous Stem Leydig Cell transplantation in a Testosterone-deficient non-human primate model. Theranostics 2020, 10, 8705–8720. [Google Scholar] [CrossRef] [PubMed]
- Liebmann, E. The correlation between sexual reproduction and regeneration in a series of Oligochaeta. J. Exp. Zool. 1942, 91, 373–389. [Google Scholar] [CrossRef]
- Dijkwel, P.P.; Lai, A.G. Hypothesis: Plant stem cells hold the key to extreme longevity. Transl. Med. Aging 2019, 3, 14–16. [Google Scholar] [CrossRef]
- Vieira, W.A.; Wells, K.M.; McCusker, C.D. Understanding Regeneration in the Context of Aging. Gerontology 2020, 66, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, J.R.; Stier, A.C.; Michonneau, F.; Smith, M.D.; Pasch, B.; Maden, M.; Seifert, A.W. Experimentally induced metamorphosis in axolotls reduces regenerative rate and fidelity. Regeneration 2014, 1, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Rincon, C.; Golding, A.S.; Moran, K.M.; Harrison, C.; Martyniuk, C.J.; Guay, J.A.; Zaltsman, J.; Carabello, H.; Kaplan, D.L.; Levin, M. Brief Local Application of Progesterone via a Wearable Bioreactor Induces Long-Term Regenerative Response in Adult Xenopus Hindlimb. Cell Rep. 2018, 25, 1593–1609.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Easterling, M.R.; Engbrecht, K.M.; Crespi, E.J. Endocrine Regulation of Epimorphic Regeneration. Endocrinology 2019, 160, 2969–2980. [Google Scholar] [CrossRef]
- Kjaergaard, A.D.; Marouli, E.; Papadopoulou, A.; Deloukas, P.; Kuś, A.; Sterenborg, R.; Teumer, A.; Burgess, S.; Åsvold, B.O.; Chasman, D.I.; et al. Thyroid function, sex hormones and sexual function: A Mendelian randomization study. Eur. J. Epidemiol. 2021, 36, 335–344. [Google Scholar] [CrossRef]
- Xu, S.; Xie, F.; Tian, L.; Fallah, S.; Babaei, F.; Manno, S.H.C.; Manno, F.A.M., III; Zhu, L.; Wong, K.F.; Liang, Y.; et al. Estrogen accelerates heart regeneration by promoting the inflammatory response in zebrafish. J. Endocrinol. 2020, 245, 39–51. Available online: https://joe.bioscientifica.com/view/journals/joe/245/1/JOE-19-0413.xml (accessed on 19 May 2021). [CrossRef] [PubMed] [Green Version]
- Lucini, C.; D’Angelo, L.; Cacialli, P.; Palladino, A.; de Girolamo, P. BDNF, Brain, and Regeneration: Insights from Zebrafish. Int. J. Mol. Sci. 2018, 19, 3155. [Google Scholar] [CrossRef] [Green Version]
- Carbone, D.L.; Handa, R.J. Sex and stress hormone influences on the expression and activity of Brain-Derived Neurotrophic Factor. Neuroscience 2013, 239, 295–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMillan, S.C.; Xu, Z.T.; Zhang, J.; The, C.; Korzh, V.; Trudeau, V.L.; Akimenko, M.A. Regeneration of breeding tubercles on zebrafish pectoral fins requires androgens and two waves of revascularization. Development 2013, 140, 4323–4334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nachtrab, G.; Czerwinski, M.; Poss, K.D. Sexually dimorphic fin regeneration in zebrafish controlled by androgen/GSK3 signaling. Curr. Biol. 2011, 21, 1912–1917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maezawa, T.; Sekii, K.; Ishikawa, M.; Okamoto, H.; Kobayashi, K. Reproductive Strategies in Planarians: Insights Gained from the Bioassay System for Sexual Induction in Asexual Dugesia ryukyuensis Worms. In Reproductive and Developmental Strategies. Diversity and Commonality in Animals; Kobayashi, K., Kitano, T., Iwao, Y., Kondo, M., Eds.; Springer: Tokyo, Japan, 2018. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, K.; Arioka, S.; Hoshi, M. Seasonal changes in the sexualization of the planarian Dugesia ryukyuensis. Zool. Sci. 2002, 19, 1267–1278. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, M.; Funabiki, I.; Hashizume, T.; Osada, K.; Yoshida, W.; Ishida, S. Detection and changes in levels of testosterone during spermatogenesis in the freshwater planarian Bdellocephala brunnea. Zool. Sci. 2008, 25, 760–765. [Google Scholar] [CrossRef]
- Kudikina, N.P.; Ermakov, A.M.; Omelnitskaya, E.A.; Skorobogatykh, I.A. The Morphogenetic Effects of Exogenous Sex Steroid Hormones in the Planarian Girardia tigrina (Turbellaria, Tricladida). Biophysics 2019, 64, 765–771. [Google Scholar] [CrossRef]
- Temuryants, N.A.; Demtsun, N.A. Seasonal Differences in the Regeneration of Planarians under Conditions of Long term Electromagnetic Shielding. Biophysics 2010, 55, 628–632. [Google Scholar] [CrossRef]
- Tardent, P. Regeneration in the hydrozoa. Biol. Rev. 1963, 38, 293–425. [Google Scholar] [CrossRef]
- Sebestyén, F.; Barta, Z.; Tökölyi, J. Reproductive mode, stem cells and regeneration in a freshwater cnidarian with postreproductive senescence. Funct. Ecol. 2018, 32, 2497–2508. [Google Scholar] [CrossRef]
- Schaible, R.; Sussman, M.; Kramer, B.H. Aging and Potential for Self-Renewal: Hydra Living in the Age of Aging. Gerontology 2014, 60, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Fields, C.; Levin, M. Why isn’t sex optional? Stem-cell competition, loss of regenerative capacity, and cancer in metazoan evolution. Commun. Integr.Biol. 2020, 13, 170–183. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reuveni, M. Sex and Regeneration. Biology 2021, 10, 937. https://doi.org/10.3390/biology10090937
Reuveni M. Sex and Regeneration. Biology. 2021; 10(9):937. https://doi.org/10.3390/biology10090937
Chicago/Turabian StyleReuveni, Moshe. 2021. "Sex and Regeneration" Biology 10, no. 9: 937. https://doi.org/10.3390/biology10090937
APA StyleReuveni, M. (2021). Sex and Regeneration. Biology, 10(9), 937. https://doi.org/10.3390/biology10090937