Unveiling Comparative Genomic Trajectories of Selection and Key Candidate Genes in Egg-Type Russian White and Meat-Type White Cornish Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Birds and Ethics Statement
2.2. Sampling and DNA Extraction
2.3. SNP Genotyping and Quality Control
2.4. Genetic Diversity
2.5. PCA, Neighbor-Net, and Admixture
2.6. Selection Signature Analysis
2.6.1. FST Analysis
2.6.2. Runs of Homozygosity
2.6.3. HapFLK Analysis
2.7. Search for Genes and QTLs Localized within Identified Genomic Regions
2.8. Gene Ontology Mining
3. Results
3.1. Genetic Diversity
3.2. Breed Relationship and Admixture
3.3. ROH Distribution in the Genomes of Studied Chicken Breeds
3.4. Analysis of the Signatures of Selection
3.5. Identification of Key Candidate Genes Affected by Selection
3.6. QTLs Overlapped with the Identified Genomic Regions
3.7. Functional Annotation and GO Term Enrichment
4. Discussion
4.1. Genetic Diversity and Evolutionary Relationships
4.2. Genomic Trajectories of Selection
4.3. Key Candidate Genes and Overlapping QTLs within Sweep Regions
4.3.1. GGA1 Region Candidate Genes and QTLs
4.3.2. GGA2 Region Candidate Genes and QTLs
4.3.3. GGA3 Region Candidate Genes and QTLs
4.3.4. GGA4 Region Candidate Genes and QTLs
4.3.5. GGA5 Region I Candidate Genes and QTLs
4.3.6. GGA5 Region II Candidate Genes and QTLs
4.3.7. GGA8 Region I Candidate Genes and QTLs
4.3.8. GGA8 Region II Candidate genes
4.3.9. GGA28 Region Candidate Genes and QTLs
4.3.10. Other Important Candidate Genes
4.4. GO Term Annotation Clustering of Candidate Genes
4.5. Gene Richness
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weigend, S.; Romanov, M.N. Molekulare Charakterisierung genetischer Vielfalt beim Geflügel—Molecular characterization of genetic diversity in chicken. In Jahresbericht 1998; Bundesforschungsanstalt Für Landwirtschaft (FAL): Braunschweig, Germany, 1999; p. 66. [Google Scholar]
- Romanov, M.N.; Weigend, S. Using RAPD markers for assessment of genetic diversity in chickens. Arch. Geflügelkunde 2001, 65, 145–148. [Google Scholar]
- Weigend, S.; Romanov, M.N. Genetische Diversitätsanalysen bei Hühnern mit Hilfe molekularer Marker—Assessment of genetic diversity in chickens using molecular markers. In Jahresbericht 2001; Bundesforschungsanstalt Für Landwirtschaft (FAL): Braunschweig, Germany, 2002; p. 67. [Google Scholar]
- Weigend, S.; Romanov, M.N.; Rath, D. Methodologies to identify, evaluate and conserve poultry genetic resources. In Proceedings of the XXII World’s Poultry Congress & Exhibition: Participant List & Full Text CD + Book of Abstracts, Istanbul, Turkey, 8–13 June 2004; WPSA—Turkish Branch: Istanbul, Turkey, 2004; p. 84. [Google Scholar]
- Deniskova, T.E.; Dotsev, A.V.; Selionova, M.I.; Kunz, E.; Medugorac, I.; Reyer, H.; Wimmers, K.; Barbato, M.; Traspov, A.A.; Brem, G.; et al. Population structure and genetic diversity of twenty-five Russian sheep breeds based on whole-genome genotyping. Genet. Sel. Evol. 2018, 50, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Zinovieva, N.A.; Dotsev, A.V.; Sermyagin, A.A.; Deniskova, T.E.; Abdelmanova, A.S.; Kharzinova, V.R.; Sölkner, J.; Reyer, H.; Wimmers, K.; Brem, G. Selection signatures in two oldest Russian native cattle breeds revealed using high-density single nucleotide polymorphism analysis. PLoS ONE 2020, 15, e0242200. [Google Scholar] [CrossRef]
- Zinovieva, N.A.; Sheiko, I.P.; Dotsev, A.V.; Sheiko, R.I.; Mikhailova, M.E.; Sermyagin, A.A.; Abdelmanova, A.S.; Kharzinova, V.R.; Reyer, H.; Wimmers, K.; et al. Genome-wide SNP analysis clearly distinguished the Belarusian Red cattle from other European cattle breeds. Anim. Genet. 2021. [Google Scholar] [CrossRef]
- International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 2004, 432, 695–716. [Google Scholar] [CrossRef]
- Moiseyeva, I.G.; Romanov, M.N.; Nikiforov, A.A.; Sevastyanova, A.A.; Semyenova, S.K. Evolutionary relationships of Red Jungle Fowl and chicken breeds. Genet. Sel. Evol. 2003, 35, 403–423. [Google Scholar] [CrossRef] [Green Version]
- Paronyan, I.A.; Yurchenko, O.P. Domestic fowl. In Animal Genetic Resources of the USSR; Dmitriev, N.G., Ernst, L.K., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 1989; FAO Animal Production and Health Paper 65, Chapter 13; pp. 437–468. [Google Scholar]
- Sokolova, A.N. Genetic and Selection Methods of Creation of a Chicken Population with an Increased Resistance to Neoplasms: Author’s Abstract. Dissertation of the Doctor of Agricultural Sciences; RRIFAGB: Pushkin, St. Petersburg, Russia, 1999; 56p. [Google Scholar]
- Dementeva, N.V.; Romanov, M.N.; Kudinov, A.A.; Mitrofanova, O.V.; Stanishevskaya, O.I.; Terletsky, V.P.; Fedorova, E.S.; Nikitkina, E.V.; Plemyashov, K.V. Studying the structure of a gene pool population of the Russian White chicken breed by genome-wide SNP scan. Agric. Biol. 2017, 52, 1166–1174. [Google Scholar] [CrossRef] [Green Version]
- Sokolova, A.N. Selection as a function of thermoregulation productivity. In Proceedings of the 13th World’s Poultry Science Congress, Kiev, Ukraine, 15–21 August 1966; Kolos: Moscow, Russia, 1966; pp. 151–155. [Google Scholar]
- Hutt, F.B. Snow-white down in the chick. J. Hered. 1951, 42, 117–120. [Google Scholar] [CrossRef]
- Kudinov, A.A.; Dementieva, N.V.; Mitrofanova, O.V.; Stanishevskaya, O.I.; Fedorova, E.S.; Larkina, T.A.; Mishina, A.I.; Plemyashov, K.V.; Griffin, D.K.; Romanov, M.N. Genome-wide association studies targeting the yield of extraembryonic fluid and production traits in Russian White chickens. BMC Genom. 2019, 20, 270. [Google Scholar] [CrossRef] [PubMed]
- Dementieva, N.V.; Fedorova, E.S.; Krutikova, A.A.; Mitrofanova, O.V.; Stanishevskaya, O.I.; Pleshanov, N.V.; Smaragdov, M.G.; Kudinov, A.A.; Terletsky, V.P.; Romanov, M.N. Genetic variability of indels in the prolactin and dopamine receptor D2 genes and their association with the yield of allanto-amniotic fluid in Russian White laying hens. Tarım Bilim. Derg.—J. Agric. Sci. 2020, 26, 373–379. [Google Scholar] [CrossRef]
- Dementieva, N.V.; Kudinov, A.A.; Larkina, T.A.; Mitrofanova, O.V.; Dysin, A.P.; Terletsky, V.P.; Tyshchenko, V.I.; Griffin, D.K.; Romanov, M.N. Genetic variability in local and imported germplasm chicken populations as revealed by analyzing runs of homozygosity. Animals 2020, 10, 1887. [Google Scholar] [CrossRef]
- Dementieva, N.V.; Mitrofanova, O.V.; Dysin, A.P.; Kudinov, A.A.; Stanishevskaya, O.I.; Larkina, T.A.; Plemyashov, K.V.; Griffin, D.K.; Romanov, M.N.; Smaragdov, M.G. Assessing the effects of rare alleles and linkage disequilibrium on estimates of genetic diversity in the chicken populations. Animal 2021, 15, 100171. [Google Scholar] [CrossRef]
- Stanishevskaya, O.I.; Fedorova, E.S. Comparative evaluation of the peculiarities of stress reactivity of the Russian white breed chicken with sw+ mutation and Amrox in hypothermia conditions during embryonal and early postnatal periods of ontogenesis. Agric. Biol. [Sel’skokhozyaistvennaya Biol.] 2019, 54, 1135–1143. [Google Scholar] [CrossRef]
- Stanishevskaya, O.I.; Fedorova, E.S. Dosed exposure to low temperature as a breeding background in the selection of gene pool breeds of chickens for viral vaccines production. Open Agric. J. 2020, 14, 345–351. [Google Scholar] [CrossRef]
- Mitrofanova, O.V.; Dementieva, N.V.; Fedorova, E.S.; Pozovnikova, M.V.; Tyshchenko, V.I.; Shcherbakov, Y.S.; Plemyashov, K.V. Assessment of variability of egg production traits based on analysis of SNP markers and search for traces of selection in the genome of Russian white chickens. Ekol. Genet. 2020, 18, 423–432. [Google Scholar] [CrossRef]
- Lee, M.O.; Romanov, M.N.; Plemyashov, K.V.; Dementieva, N.V.; Mitrofanova, O.V.; Barkova, O.Y.; Womack, J.E. Haplotype structure and copy number polymorphism of the beta-defensin 7 genes in diverse chicken breeds. Anim. Genet. 2017, 48, 490–492. [Google Scholar] [CrossRef] [Green Version]
- Crawford, R.D. (Ed.) Poultry Breeding and Genetics; Elsevier: New York, NY, USA, 1990. [Google Scholar]
- Julian, R.J. Rapid growth problems: Ascites and skeletal deformities in broilers. Poult. Sci. 1998, 77, 1773–1780. [Google Scholar] [CrossRef] [PubMed]
- Decuypere, E.; Bruggeman, V.; Barbato, G.F.; Buyse, J. Growth and reproduction problems associated with selection for increased broiler meat production. In Poultry Genetics, Breeding and Biotechnology; Muir, W.M., Aggrey, S.E., Eds.; CABI Publishing: Wallingford, UK, 2003; pp. 13–28. [Google Scholar] [CrossRef]
- Song, B.; Tang, D.; Yan, S.; Fan, H.; Li, G.; Shahid, M.S.; Mahmood, T.; Guo, Y. Effects of age on immune function in broiler chickens. J. Anim. Sci. Biotechnol. 2021, 12, 42. [Google Scholar] [CrossRef]
- Wright, S. The genetical structure of populations. Ann. Eugen. 1951, 15, 323–354. [Google Scholar] [CrossRef]
- Holsinger, K.E.; Weir, B.S. Genetics in geographically structured populations: Defining, estimating and interpreting FST. Nat. Rev. Genet. 2009, 10, 639–650. [Google Scholar] [CrossRef] [Green Version]
- Akey, J.M.; Zhang, G.; Zhang, K.; Jin, L.; Shriver, M.D. Interrogating a high-density SNP map for signatures of natural selection. Genome Res. 2002, 12, 1805–1814. [Google Scholar] [CrossRef] [Green Version]
- Fariello, M.I.; Boitard, S.; Naya, H.; SanCristobal, M.; Servin, B. Detecting signatures of selection through haplotype differentiation among hierarchically structured populations. Genetics 2013, 193, 929–941. [Google Scholar] [CrossRef] [Green Version]
- Bonhomme, M.; Chevalet, C.; Servin, B.; Boitard, S.; Abdallah, J.; Blott, S.; Sancristobal, M. Detecting selection in population trees: The Lewontin and Krakauer test extended. Genetics 2010, 186, 241–262. [Google Scholar] [CrossRef] [Green Version]
- Ferenčaković, M.; Hamzić, E.; Gredler, B.; Solberg, T.R.; Klemetsdal, G.; Curik, I.; Sölkner, J. Estimates of autozygosity derived from runs of homozygosity: Empirical evidence from selected cattle populations. J. Anim. Breed. Genet. 2013, 130, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Peripolli, E.; Munari, D.P.; Silva, M.V.G.B.; Lima, A.L.F.; Irgang, R.; Baldi, F. Runs of homozygosity: Current knowledge and applications in livestock. Anim. Genet. 2016, 48, 255–271. [Google Scholar] [CrossRef]
- Pemberton, T.J.; Absher, D.; Feldman, M.W.; Myers, R.M.; Rosenberg, N.A.; Li, J.Z. Genomic patterns of homozygosity in worldwide human populations. Am. J. Hum. Genet. 2012, 91, 275–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadzow, M.; Boocock, J.; Nguyen, H.T.; Wilcox, P.; Merriman, T.R.; Black, M.A. A bioinformatics workflow for detecting signatures of selection in genomic data. Front. Genet. 2014, 5, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Ding, X.; Qanbari, S.; Weigend, S.; Zhang, Q.; Simianer, H. Properties of different selection signature statistics and a new strategy for combining them. Heredity 2015, 115, 426–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubin, C.-J.; Zody, M.C.; Eriksson, J.; Meadows, J.R.S.; Sherwood, E.; Webster, M.T.; Jiang, L.; Ingman, M.; Sharpe, T.; Ka, S.; et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 2010, 464, 587–591. [Google Scholar] [CrossRef] [Green Version]
- Qanbari, S.; Strom, T.M.; Haberer, G.; Weigend, S.; Gheyas, A.A.; Turner, F.; Burt, D.W.; Preisinger, R.; Gianola, D.; Simianer, H. A high resolution genome-wide scan for significant selective sweeps: An application to pooled sequence data in laying chickens. PLoS ONE 2012, 7, e49525. [Google Scholar] [CrossRef] [Green Version]
- Elferink, M.G.; Megens, H.-J.; Vereijken, A.; Hu, X.; Crooijmans, R.P.M.A.; Groenen, M.A.M. Signatures of selection in the genomes of commercial and non-commercial chicken breeds. PLoS ONE 2012, 7, e32720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qanbari, S.; Rubin, C.J.; Maqbool, K.; Weigend, S.; Weigend, A.; Geibel, J.; Kerje, S.; Wurmser, C.; Peterson, A.T.; Brisbin, I.L.; et al. Genetics of adaptation in modern chicken. PLoS Genet. 2019, 15, e1007989. [Google Scholar] [CrossRef]
- Talebi, R.; Szmatoła, T.; Mészáros, G.; Qanbari, S. Runs of homozygosity in modern chicken revealed by sequence data. G3 2020, 10, 4615–4623. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2018. Available online: https://www.R-project.org/ (accessed on 8 May 2021).
- Fan, J.-B.; Oliphant, A.; Shen, R.; Kermani, B.G.; Garcia, F.; Gunderson, K.L.; Hansen, M.; Steemers, F.; Butler, S.L.; Deloukas, P.; et al. Highly parallel SNP genotyping. Cold Spring Harb. Symp. Quant. Biol. 2003, 68, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Genome Reference Consortium Chicken Build 6a. Available online: https://www.ncbi.nlm.nih.gov/assembly/GCF_000002315.6 (accessed on 1 May 2021).
- Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 1978, 89, 583–590. [Google Scholar] [CrossRef]
- Kalinowski, S.T. Counting alleles with rarefaction: Private alleles and hierarchical sampling designs. Conserv. Genet. 2004, 5, 539–543. [Google Scholar] [CrossRef]
- Keenan, K.; McGinnity, P.; Cross, T.F.; Crozier, W.W.; Prodohl, P.A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 2013, 4, 782–788. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef] [Green Version]
- Francis, R.M. POPHELPER: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 2017, 17, 27–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [CrossRef]
- Iso-Touru, T.; Tapio, M.; Vilkki, J.; Kiseleva, T.; Ammosov, I.; Ivanova, Z.; Popov, R.; Ozerov, M.; Kantanen, J. Genetic diversity and genomic signatures of selection among cattle breeds from Siberia, eastern and northern Europe. Anim. Genet. 2016, 47, 647–657. [Google Scholar] [CrossRef]
- Kijas, J.W.; Lenstra, J.A.; Hayes, B.; Boitard, S.; Porto Neto, L.R.; Cristobal, M.S.; Servin, B.; McCulloch, R.; Whan, V.; Gietzen, K.; et al. International Sheep Genomics Consortium Members. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 2012, 10, e1001258. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; McParland, S.; Kearney, F.; Du, L.; Berry, D.P. Detection of selection signatures in dairy and beef cattle using high-density genomic information. Genet. Sel. Evol. 2015, 47, 49. [Google Scholar] [CrossRef] [Green Version]
- Marras, G.; Gaspa, G.; Sorbolini, S.; Dimauro, C.; Ajmone-Marsam, P.; Valentini, A.; Williams, J.L.; Macciotta, N.P.P. Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy. Anim. Genet. 2014, 46, 110–121. [Google Scholar] [CrossRef]
- Biscarini, F.; Paolo Cozzi, P.; Gaspa, G.; Marras, G. detectRUNS: Detect Runs of Homozygosity and Runs of Heterozygosity in Diploid Genomes. R Package Version 0.9.5. Available online: https://cran.r-project.org/web/packages/detectRUNS/index.html (accessed on 8 May 2021).
- Ferenčaković, M.; Sölkner, J.; Curik, I. Estimating autozygosity from high-throughput information: Effects of SNP density and genotyping errors. Genet. Sel. Evol. 2013, 45, 42. [Google Scholar] [CrossRef] [Green Version]
- Wall, J.D.; Pritchard, J.K. Haplotype blocks and linkage disequilibrium in the human genome. Nat. Rev. Genet. 2003, 4, 587–597. [Google Scholar] [CrossRef]
- Lencz, T.; Lambert, C.; DeRosse, P.; Burdick, K.E.; Morgan, T.V.; Kane, J.M.; Kucherlapati, R.; Malhotra, A.K. Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proc. Natl. Acad. Sci. USA 2007, 104, 19942–19947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purfield, D.C.; Berry, D.P.; McParland, S.; Bradley, D.G. Runs of homozygosity and population history in cattle. BMC Genet. 2012, 13, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peripolli, E.; Stafuzza, N.B.; Munari, D.P.; Lima, A.L.F.; Irgang, R.; Machado, M.A.; Panetto, J.C.D.C.; Ventura, R.V.; Baldi, F.; da Silva, M.V.G.B. Assessment of runs of homozygosity islands and estimates of genomic inbreeding in Gyr (Bos indicus) dairy cattle. BMC Genom. 2018, 19, 34. [Google Scholar] [CrossRef] [PubMed]
- Grilz-Seger, G.; Neuditschko, M.; Ricard, A.; Velie, B.; Lindgren, G.; Mesarič, M.; Cotman, M.; Horna, M.; Dobretsberger, M.; Brem, G.; et al. Genome-wide homozygosity patterns and evidence for selection in a set of European and Near Eastern horse breeds. Genes 2019, 10, 491. [Google Scholar] [CrossRef] [Green Version]
- Scheet, P.; Stephens, M. A fast and flexible statistical model for large-scale population genotype data: Applications to inferring missing genotypes and haplotypic phase. Am. J. Hum. Genet. 2006, 78, 629–644. [Google Scholar] [CrossRef] [Green Version]
- Kinsella, R.J.; Kähäri, A.; Haider, S.; Zamora, J.; Proctor, G.; Spudich, G.; Almeida-King, J.; Staines, D.; Derwent, P.; Kerhornou, A.; et al. Ensembl BioMarts: A hub for data retrieval across taxonomic space. Database 2011, 2011, bar030. [Google Scholar] [CrossRef]
- Kuhn, R.M.; Haussler, D.; Kent, W.J. The UCSC genome browser and associated tools. Brief. Bioinform. 2013, 14, 144–161. [Google Scholar] [CrossRef] [Green Version]
- The Chicken Quantitative Trait Locus (QTL) Database (Chicken QTLdb). Available online: https://www.animalgenome.org/cgi-bin/QTLdb/GG/index (accessed on 17 May 2021).
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, R.E.; Romanov, M.N.; Kiazim, L.G.; Barrett, P.M.; Farré, M.; Damas, J.; Ferguson-Smith, M.; Valenzuela, N.; Larkin, D.M.; Griffin, D.K. Reconstruction of the diapsid ancestral genome permits chromosome evolution tracing in avian and non-avian dinosaurs. Nat. Commun. 2018, 9, 1883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, W.; Lee, W.R.; Abasht, B. Detection of genomic signatures of recent selection in commercial broiler chickens. BMC Genet. 2016, 17, 122. [Google Scholar] [CrossRef] [Green Version]
- Lillie, M.; Sheng, Z.Y.; Honaker, C.F.; Dorshorst, B.J.; Ashwell, C.M.; Siegel, P.B.; Carlborg, Ö. Genome-wide standing variation facilitates long-term response to bidirectional selection for antibody response in chickens. BMC Genom. 2017, 18, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Yang, L.; Su, Z.; Zhu, M.; Li, W.; Wu, K.; Deng, X. Genome-wide scan and analysis of positive selective signatures in Dwarf Brown-egg Layers and Silky Fowl chickens. Poult. Sci. 2017, 96, 4158–4171. [Google Scholar] [CrossRef]
- Li, W.; Liu, R.; Zheng, M.; Feng, F.; Liu, D.; Guo, Y.; Zhao, G.; Wen, J. New insights into the associations among feed efficiency, metabolizable efficiency traits and related QTL regions in broiler chickens. J. Anim. Sci. Biotechnol. 2020, 11, 65. [Google Scholar] [CrossRef] [PubMed]
- de Simoni Gouveia, J.J.; da Silva, M.V.; Paiva, S.R.; de Oliveira, S.M. Identification of selection signatures in livestock species. Genet. Mol. Biol. 2014, 37, 330–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taye, M.; Lee, W.; Jeon, S.; Yoon, J.; Dessie, T.; Hanotte, O.; Mwai, O.A.; Kemp, S.; Cho, S.; Oh, S.J.; et al. Exploring evidence of positive selection signatures in cattle breeds selected for different traits. Mamm. Genome 2017, 28, 528–541. [Google Scholar] [CrossRef]
- Yurchenko, A.A.; Deniskova, T.E.; Yudin, N.S.; Dotsev, A.V.; Khamiruev, T.N.; Selionova, M.I.; Egorov, S.V.; Reyer, H.; Wimmers, K.; Brem, G.; et al. High-density genotyping reveals signatures of selection related to acclimation and economically important traits in 15 local sheep breeds from Russia. BMC Genom. 2019, 20 (Suppl. 3), 294. [Google Scholar] [CrossRef]
- Deniskova, T.E.; Petrov, S.N.; Sermyagin, A.A.; Dosev, A.V.; Fornara, M.S.; Reyer, H.; Wimmers, K.; Bagirov, V.A.; Brem, G.; Zinovieva, N.A. A search for genomic variants associated with body weight in sheep based on high-density SNP genotypes analysis. Agric. Biol. [Sel’skokhozyaistvennaya Biol.] 2021, 56, 279–291. [Google Scholar] [CrossRef]
- François, O.; Martins, H.; Caye, K.; Schoville, S.D. Controlling false discoveries in genome scans for selection. Mol. Ecol. 2016, 25, 454–469. [Google Scholar] [CrossRef] [Green Version]
- Beverdam, A.; Meijlink, F. Expression patterns of group-I aristaless-related genes during craniofacial and limb development. Mech. Dev. 2001, 107, 163–167. [Google Scholar] [CrossRef]
- Kamaid, A.; Giráldez, F. Btg1 and Btg2 gene expression during early chick development. Dev. Dyn. 2008, 237, 2158–2169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wu, P.; Zhou, K.; He, M.; Zhang, X.; Qiu, C.; Li, T.; Zhang, T.; Xie, K.; Dai, G.; et al. Study on the transcriptome for breast muscle of chickens and the function of key gene RAC2 on fibroblasts proliferation. BMC Genom. 2021, 22, 157. [Google Scholar] [CrossRef] [PubMed]
- Sazanov, A.A.; Sazanova, A.L.; Tzareva, V.A.; Kozyreva, A.A.; Smirnov, A.F.; Romanov, M.N.; Price, J.A.; Dodgson, J.B. Refined localization of the chicken KITLG, MGP and TYR genes on GGA1 by FISH mapping using BACs. Anim. Genet. 2004, 35, 148–150. [Google Scholar] [CrossRef]
- Zhang, Q.; Gou, W.; Wang, X.; Zhang, Y.; Ma, J.; Zhang, H.; Zhang, Y.; Zhang, H. Genome resequencing identifies unique adaptations of Tibetan chickens to hypoxia and high-dose ultraviolet radiation in high-altitude environments. Genome Biol. Evol. 2016, 8, 765–776. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Li, D.; Wang, Y.; Zhu, Q. Whole-genome resequencing analysis of Pengxian Yellow Chicken to identify genome-wide SNPs and signatures of selection. 3 Biotech 2019, 9, 383. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.M.; Erf, G.F.; Rowland, K.C.; Kong, B.W. Genome resequencing and bioinformatic analysis of SNP containing candidate genes in the autoimmune vitiligo Smyth line chicken model. BMC Genom. 2014, 15, 707. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhi, L.; Liu, Y.; Shen, J.; Liu, L.; Yao, J.; Yang, X. Effect of in ovo feeding of folic acid on the folate metabolism, immune function and epigenetic modification of immune effector molecules of broiler. Br. J. Nutr. 2016, 115, 411–421. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Xue, Q.; Li, G.; Yin, J.; Zhang, H.; Zhu, Y.; Xing, W.; Cao, Y.; Su, Y.; Wang, K.; et al. Genome-wide analysis of the role of DNA methylation in inbreeding depression of reproduction in Langshan chicken. Genomics 2020, 112, 2677–2687. [Google Scholar] [CrossRef]
- Xue, Q.; Li, G.; Cao, Y.; Yin, J.; Zhu, Y.; Zhang, H.; Zhou, C.; Shen, H.; Dou, X.; Su, Y.; et al. Identification of genes involved in inbreeding depression of reproduction in Langshan chickens. Anim. Biosci. 2021, 34, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Liu, Y.; Zhang, M.; Shan, Y.; Ji, G.; Ju, X.; Zou, J.; Shu, J. Identifying signatures of selection related to comb development. J. Poult. Sci. 2021, 58, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Moreira, G.C.M.; Salvian, M.; Boschiero, C.; Cesar, A.S.M.; Reecy, J.M.; Godoy, T.F.; Ledur, M.C.; Garrick, D.; Mourão, G.B.; Coutinho, L.L. Genome-wide association scan for QTL and their positional candidate genes associated with internal organ traits in chickens. BMC Genom. 2019, 20, 669. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Shi, Z.; Ou, X.; Liu, G. Whole-genome resequencing reveals genetic indels of feathered-leg traits in domestic chickens. J. Genet. 2019, 98, 47. [Google Scholar] [CrossRef]
- Shah, T.M.; Patel, N.V.; Patel, A.B.; Upadhyay, M.R.; Mohapatra, A.; Singh, K.M.; Deshpande, S.D.; Joshi, C.G. A genome-wide approach to screen for genetic variants in broilers (Gallus gallus) with divergent feed conversion ratio. Mol. Genet. Genom. 2016, 291, 1715–1725. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Zhang, X.; Zhang, G.; Chen, F.; He, M.; Zhang, T.; Wang, J.; Xie, K.; Dai, G. Transcriptome for the breast muscle of Jinghai yellow chicken at early growth stages. PeerJ 2020, 8, e8950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qanbari, S.; Seidel, M.; Strom, T.-M.; Mayer, K.F.; Preisinger, R.; Simianer, H. Parallel selection revealed by population sequencing in chicken. Genome Biol. Evol. 2015, 7, 3299–3306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Otecko, N.O.; Peng, M.; Weng, Z.; Li, W.; Chen, J.; Zhong, M.; Zhong, F.; Jin, S.; Geng, Z.; et al. Genome-wide genetic structure and selection signatures for color in 10 traditional Chinese yellow-feathered chicken breeds. BMC Genom. 2020, 21, 316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Freitas Dionizio, A.; de Souza Khatlab, A.; Alcalde, C.R.; Gasparino, E.; Feihrmann, A.C. Supplementation with free methionine or methionine dipeptide improves meat quality in broilers exposed to heat stress. J. Food Sci. Technol. 2021, 58, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Vezyri, E.; Mikrou, A.; Athanassiadou, A.; Zarkadis, I.K. Molecular cloning and expression of Aven gene in chicken. Protein J. 2011, 30, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, B.I.; Voet, T.; De Smet, L.; Vermeesch, J.R.; Devriendt, K.; Fryns, J.-P.; Debeer, P. Genomic rearrangements of the GREM1-FMN1 locus cause oligosyndactyly, radio-ulnar synostosis, hearing loss, renal defects syndrome and Cenani-Lenz-like non-syndromic oligosyndactyly. J. Med. Genet. 2010, 47, 569–574. [Google Scholar] [CrossRef] [Green Version]
- Jahejo, A.R.; Zhang, D.; Niu, S.; Mangi, R.A.; Khan, A.; Qadir, M.F.; Khan, A.; Chen, H.-C.; Tian, W.-X. Transcriptome-based screening of intracellular pathways and angiogenesis related genes at different stages of thiram induced tibial lesions in broiler chickens. BMC Genom. 2020, 21, 50. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Shen, L.; Li, Y.; Xu, Z.; Zhang, X.; Yu, J.; Cao, Z.; Luan, P. Genome-wide association study for plasma very low-density lipoprotein concentration in chicken. J. Anim. Breed. Genet. 2019, 136, 351–361. [Google Scholar] [CrossRef]
- El Moujahid, E.M.; Chen, S.; Jin, S.; Lu, Y.; Zhang, D.; Ji, C.; Yang, N. Association of leptin receptor gene polymorphisms with growth and feed efficiency in meat-type chickens. Poult. Sci. 2014, 93, 1910–1915. [Google Scholar] [CrossRef]
- Lawal, R.A.; Al-Atiyat, R.M.; Aljumaah, R.S.; Silva, P.; Mwacharo, J.M.; Hanotte, O. Whole-genome resequencing of red junglefowl and indigenous village chicken reveal new insights on the genome dynamics of the species. Front. Genet. 2018, 9, 264. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, J.; Feng, C.; Zhao, Y.; Hu, X.; Li, N. Transcriptome analysis of comb and testis from Rose-comb Silky chicken (R1/R1) and Beijing Fatty wild type chicken (r/r). Poult. Sci. 2017, 96, 1866–1873. [Google Scholar] [CrossRef] [PubMed]
- Elbeltagy, A.R.; Bertolini, F.; Fleming, D.S.; Van Goor, A.; Ashwell, C.M.; Schmidt, C.J.; Kugonza, D.R.; Lamont, S.J.; Rothschild, M.F. Natural selection footprints among African chicken breeds and village ecotypes. Front. Genet. 2019, 10, 376. [Google Scholar] [CrossRef] [Green Version]
- Tarsani, E.; Kranis, A.; Maniatis, G.; Avendano, S.; Hager-Theodorides, A.L.; Kominakis, A. Deciphering the mode of action and position of genetic variants impacting on egg number in broiler breeders. BMC Genom. 2020, 21, 512. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Lu, J.; Yi, G.; Yuan, J.; Duan, Z.; Qu, L.; Xu, G.; Wang, K.; Yang, N. Promising loci and genes for yolk and ovary weight in chickens revealed by a genome-wide association study. PLoS ONE 2015, 10, e0137145. [Google Scholar] [CrossRef] [Green Version]
- Obermajer, N.; Jevnikar, Z.; Doljak, B.; Kos, J. Role of cysteine cathepsins in matrix degradation and cell signalling. Connect. Tissue Res. 2008, 49, 193–196. [Google Scholar] [CrossRef]
- Bae, S.-M.; Lim, W.; Jeong, W.; Kim, J.; Bazer, F.W.; Song, G. Expression and regulation of avian cathepsin L in the oviduct during molting. Gen. Comp. Endocrinol. 2014, 204, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Sazanov, A.A.; Sazanova, A.L.; Stekolnikova, V.A.; Kozyreva, A.A.; Smirnov, A.F.; Romanov, M.N.; Dodgson, J.B. Chromosomal localization of CTSL: Expanding of the region of evolutionary conservation between GGAZ and HSA9. Anim. Genet. 2004, 35, 260. [Google Scholar] [CrossRef]
- Zou, A.; Nadeau, K.; Wang, P.W.; Lee, J.Y.; Guttman, D.S.; Sharif, S.; Korver, D.R.; Brumell, J.H.; Parkinson, J. Accumulation of genetic variants associated with immunity in the selective breeding of broilers. BMC Genet. 2020, 21, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.J.; Guo, Y.Q.; Xie, K.J.; Li, Y.D.; Li, Z.W.; Wang, N.; Xiao, F.; Guo, H.S.; Li, H.; Wang, S.Z. A functional variant in the promoter region of IGF1 gene is associated with chicken abdominal fat deposition. Domest. Anim. Endocrinol. 2021, 75, 106584. [Google Scholar] [CrossRef]
- Kulibaba, R.A.; Tereshchenko, A.V. Transforming growth factor β1, pituitary-specific transcriptional factor 1 and insulin-like growth factor I gene polymorphisms in the population of the Poltava clay chicken breed: Association with productive traits. Agric. Sci. Pract. 2015, 2, 67–72. [Google Scholar] [CrossRef]
- Zhang, Y.; Gou, W.; Ma, J.; Zhang, H.; Zhang, Y.; Zhang, H. Genome methylation and regulatory functions for hypoxic adaptation in Tibetan chicken embryos. PeerJ 2017, 5, e3891. [Google Scholar] [CrossRef]
- Guo, X.; Wang, J.; Ma, C.; Wang, Z.; Chen, H.; Su, H.; Wan, Y.; Jiang, R. Genome-wide re-sequencing and transcriptome analysis reveal candidate genes associated with the pendulous comb phenotype in domestic chickens. Anim. Sci. J. 2020, 91, e13308. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, X.; Cui, H.; Liu, R.; Zhao, G.; Wen, J. Transcriptional insights into key genes and pathways controlling muscle lipid metabolism in broiler chickens. BMC Genom. 2019, 20, 863. [Google Scholar] [CrossRef]
- Ma, Y.; Gu, L.; Yang, L.; Sun, C.; Xie, S.; Fang, C.; Gong, Y.; Li, S. Identifying artificial selection signals in the chicken genome. PLoS ONE 2018, 13, e0196215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piórkowska, K.; Żukowski, K.; Połtowicz, K.; Nowak, J.; Ropka-Molik, K.; Derebecka, N.; Wesoły, J.; Wojtysiak, D. Identification of candidate genes and regulatory factors related to growth rate through hypothalamus transcriptome analyses in broiler chickens. BMC Genom. 2020, 21, 509. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Pu, Y.; Song, C.; Sheng, Z.; Hu, X. A quantitative trait locus on chromosome 2 was identified that accounts for a substantial proportion of phenotypic variance of the yellow plumage color in chicken. Poult. Sci. 2020, 99, 2902–2910. [Google Scholar] [CrossRef]
- Zhang, H.; Du, Z.-Q.; Dong, J.-Q.; Wang, H.-X.; Shi, H.-Y.; Wang, N.; Wang, S.-Z.; Li, H. Detection of genome-wide copy number variations in two chicken lines divergently selected for abdominal fat content. BMC Genom. 2014, 15, 517. [Google Scholar] [CrossRef] [Green Version]
- Dong, K.; Chang, S.; Xie, Q.; Black-Pyrkosz, A.; Zhang, H. Comparative transcriptomics of genetically divergent lines of chickens in response to Marek’s disease virus challenge at cytolytic phase. PLoS ONE 2017, 12, e0178923. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-T.; Lin, Y.-T.; Kuo, T.-F. Investigation of mRNA expression for secreted frizzled-related protein 2 (sFRP2) in chick embryos. J. Reprod. Dev. 2007, 53, 801–810. [Google Scholar] [CrossRef] [Green Version]
- Laptev, G.Y.; Filippova, V.A.; Kochish, I.I.; Yildirim, E.A.; Ilina, L.A.; Dubrovin, A.V.; Brazhnik, E.A.; Novikova, N.I.; Novikova, O.B.; Dmitrieva, M.E.; et al. Examination of the expression of immunity genes and bacterial profiles in the caecum of growing chickens infected with Salmonella Enteritidis and fed a phytobiotic. Animals 2019, 9, 615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grottesi, A.; Gabbianelli, F.; Valentini, A.; Chillemi, G. Structural and dynamic analysis of G558R mutation in chicken TSHR gene shows altered signal transduction and corroborates its role as a domestication gene. Anim. Genet. 2020, 51, 51–57. [Google Scholar] [CrossRef]
- Karlsson, A.-C.; Fallahshahroudi, A.; Johnsen, H.; Hagenblad, J.; Wright, D.; Andersson, L.; Jensen, P. A domestication related mutation in the thyroid stimulating hormone receptor gene (TSHR) modulates photoperiodic response and reproduction in chickens. Gen. Comp. Endocrinol. 2016, 228, 69–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.; Sun, C.; Dou, T.; Yi, G.; Qu, L.; Qu, L.; Wang, K.; Yang, N. Identification of promising mutants associated with egg production traits revealed by genome-wide association study. PLoS ONE 2015, 10, e0140615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Li, D.; Zhai, Y.; Wang, Z.; Ma, X.; Zhang, D.; Li, G.; Han, R.; Jiang, R.; Li, Z.; et al. The landscape of DNA methylation associated with the transcriptomic network of intramuscular adipocytes generates insight into intramuscular fat deposition in chicken. Front. Cell Dev. Biol. 2020, 8, 206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yan, F.-B.; Li, F.; Jiang, K.-R.; Li, D.-H.; Han, R.-L.; Li, Z.-J.; Jiang, R.-R.; Liu, X.-J.; Kang, X.-T.; et al. Genome-wide DNA methylation profiles reveal novel candidate genes associated with meat quality at different age stages in hens. Sci. Rep. 2017, 7, 45564. [Google Scholar] [CrossRef] [Green Version]
- Sazanov, A.A.; Sazanova, A.L.; Stekol’nikova, V.A.; Kozyreva, A.A.; Romanov, M.N.; Malewski, T.; Smirnov, A.F. Chromosomal localization of seven HSA3q13→q23 NotI linking clones on chicken microchromosomes: Orthology of GGA14 and GGA15 to a gene-rich region of HSA3. Cytogenet. Genome Res. 2005, 111, 128–133. [Google Scholar] [CrossRef]
- Sato, H.; Oshiumi, H.; Takaki, H.; Hikono, H.; Seya, T. Evolution of the DEAD box helicase family in chicken: Chickens have no DHX9 ortholog. Microbiol. Immunol. 2015, 59, 633–640. [Google Scholar] [CrossRef]
- Luo, W.; Xu, J.; Li, Z.; Xu, H.; Lin, S.; Wang, J.; Ouyang, H.; Nie, Q.; Zhang, X. Genome-wide association study and transcriptome analysis provide new insights into the white/red earlobe color formation in chicken. Cell. Physiol. Biochem. 2018, 46, 1768–1778. [Google Scholar] [CrossRef]
- Roly, Z.Y.; Godini, R.; Estermann, M.A.; Major, A.T.; Pocock, R.; Smith, C.A. Transcriptional landscape of the embryonic chicken Müllerian duct. BMC Genom. 2020, 21, 688. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.; Bruley, C.K.; Paton, I.R.; Dunn, I.; Jones, C.T.; Windsor, D.; Morrice, D.R.; Law, A.S.; Masabanda, J.; Sazanov, A.; et al. Differences in gene density on chicken macrochromosomes and microchromosomes. Anim. Genet. 2000, 31, 96–103. [Google Scholar] [CrossRef] [PubMed]
Breed | n | HO (M ± SE) | UHE (M ± SE) | UFIS [CI 95%] | AR (M ± SE) |
---|---|---|---|---|---|
RW | 31 | 0.345 ± 0.001 | 0.339 ± 0.001 | –0.016 [–0.018; –0.014] | 1.937 ± 0.001 |
WC | 23 | 0.380 ± 0.001 | 0.383 ± 0.001 | 0.009 [0.006; 0.012] | 1.982 ± 0.001 |
Breed | n | ROH No. | ROH Length, Mb | FROH (M ± SE) | ||||
---|---|---|---|---|---|---|---|---|
(M ± SE) | Min | Max | (M ± SE) | Min | Max | |||
RW | 31 | 109.10 ± 3.08 | 62 | 149 | 183.41 ± 10.63 | 50.92 | 325.96 | 0.195 ± 0.011 |
WC | 23 | 119.09 ± 2.44 | 100 | 144 | 161.97 ± 5.09 | 91.49 | 190.61 | 0.172 ± 0.005 |
GGA 1 | Genomic Regions (Bp) 2 under Selection Identified by Different Methods | ||
---|---|---|---|
FST3,6 | hapFLK4 | ROH505 | |
1 | 41,095,175 … 44,484,517 7 | 41,095,175 … 41,733,094 7 41,955,503 … 43,335,920 7 | |
2 | 69,808,276 … 72,600,534 7,8 | 69,624,561 … 70,806,756 8 71,053,537 … 73,559,354 8 | |
2 | 79,243,261; 79,256,813 | 76,552,199 … 80,316,420 7,8 | 78,172,432 … 78,579,336 8 78,935,731 … 79,963,158 8 79,022,396 … 79,487,897 7 |
3 | 29,676,636 | 29,203,776 … 29,759,199 7,8 | 28,963,634 … 29,993,389 7 |
4 | 70,173,798; 71,530,773 | 70,850,437 … 71,917,421 8 | |
5 | 18,592,354 | 17,793,200 … 18,750,396 7 | |
5 | 30,348,807, 31,277,206 … 32,275,187 | 31,103,041 … 32,810,342 8 | 29,655,633 … 32,895,623 8 |
8 | 7,120,493 … 7,373,397 | 7,120,493 … 7,750,507 8 | |
8 | 28,777,070 … 30,174,896 7 | 28,633,681 … 29,051,709 7 | |
9 | 17,770,251; 17,880,381 | 17,985,436 … 18,286,878 7 | |
28 | 4,011,131; 4,419,938 | 4,240,969 … 5,038,396 8 |
# | GGA 1 | Present Study | Previous Studies | |||||
---|---|---|---|---|---|---|---|---|
Method 2 | Region/SNP Position 3 | Breed/Population 4 | Method 2 | Region/SNP Position 3 | Breed/Population 4 | Citation | ||
1 | 1 | ROH | 53.44 … 55.59 | WC | wFST | 49.37 … 54.56 | VAL | [73] |
XP-EHH, XP-CLR | 54.77 … 55.06 | WC-ML3, WR-FL2 | [72] | |||||
HP | 55.28 … 55.33 | BL | [38] | |||||
wFST | 55.33 … 55.37 | RJF/Coms | [40] | |||||
2 | 1 | ROH | 143.05 … 143.93 | RW | wFST | 142.51 … 144.83 | VAL | [73] |
143.46 … 143.50 | RJF/Coms | [40] | ||||||
143.27 … 144.07 | WC | 142.51 … 144.83 | VAL | [73] | ||||
143.46 … 143.50 | RJF/Coms | [40] | ||||||
3 | 1 | hapFLK | 160.61 … 161.56 | WC | wFST | 157.11 … 162.35 | VAL | [73] |
4 | 2 | ROH | 24.86 … 26.03 | WC | wFST | 25.75 … 25.79 | RJF/Coms | [40] |
QTL | 24.54 … 25.09 | broilers | [41] | |||||
5 | 2 | FST | 39.62 | RW/WC | wFST | 34.34 … 42.94 | VAL | [73] |
6 | 2 | FST | 67.57 | RW/WC | wFST | 66.93 … 67.93 | VAL | [73] |
7 | 2 | ROH | 69.62 … 70.81 | WC | ROH | 68.23 … 73.46 | RW | [21] |
hapFLK | 69.81 … 72.60 | RW, WC | wFST | 72.49 … 73.27 | VAL | [73] | ||
ROH | 71.05 … 73.56 | WC | ROH | 68.23 … 73.46 | RW | [21] | ||
wFST | 73.06 … 73.10 | RJF/Coms | [40] | |||||
8 | 2 | ROH | 75.48 … 76.22 | WC | HP | 75.73 … 79.65 | BL | [38] |
9 | 2 | hapFLK | 76.55 … 80.32 | RW, WC | HP | 75.73 … 79.65 | BL | [38] |
FST | 78.19 | VAL | [73] | |||||
wFST | 78.76 … 78.81 79.95 … 80.13 | |||||||
ROH | 76.55 … 77.20 77.64 … 78.58 78.94 … 79.96 | WC | HP | 75.73 … 79.65 | BL | [38] | ||
FST | 78.19 | VAL | [73] | |||||
wFST | 79.95 … 80.13 | |||||||
79.02 … 79.49 | RW | HP | 75.73 … 79.65 | BL | [38] | |||
FST | 79.24 79.26 | RW/WC | ||||||
10 | 2 | ROH | 123.02 … 123.74 | RW | HP | 122.25 … 124.67 | BL | [38] |
GWAS | 123.45 | RW | [15] | |||||
11 | 3 | ROH | 12.80 … 13.45 | WC | FST | 11.56 … 13.00 | VAL | [73] |
12 | 3 | ROH | 28.96 … 29.99 | RW | wFST | 29.44 … 29.48 | RJF/Coms | [40] |
hapFLK | 29.20 … 29.76 | RW, WC | ||||||
13 | 3 | ROH | 83.31 … 84.12 | RW | QTL | 83.74 … 84.06 | broilers | [41] |
14 | 4 | ROH | 17.87 … 20.34 | RW | wFST | 16.90 … 21.86 | VAL | [73] |
QTL | 18.33 … 18.70 | RJF | [40] | |||||
15 | 4 | ROH | 24.23 … 24.99 | RW | ROH | 22.62 … 28.37 | RW | [21] |
wFST | 24.26 … 26.54 | VAL | [73] | |||||
16 | 4 | hapFLK | 33.48 … 34.34 | RW | wFST | 32.61 … 33.48 | VAL | [73] |
17 | 4 | ROH | 57.73 … 58.38 | WC | HP | 57.93 … 58.96 | BL | [38] |
18 | 4 | FST | 70.17 | RW/WC | wFST | 68.02 … 73.21 | VAL | [73] |
ROH | 70.85 … 72.00 | WC | 71.29 … 71.31 | RJF/Coms | [40] | |||
FST | 71.53 | RW/WC | wFST | 68.02 … 73.21 | VAL | [73] | ||
ZHp | 71.37 … 71.60 | broiler, BRS | [39] | |||||
19 | 5 | ROH | 17.79 … 18.75 | RW | HP | 17.31 … 19.10 | BL | [38] |
wFST | 17.45 … 18.39 | VAL | [73] | |||||
QTL | 18.31 … 19.00 | broilers | [75] | |||||
FST | 18.59 | RW/WC | HP | 17.31 … 19.10 | BL | [38] | ||
QTL | 18.31 … 19.00 | broilers | [75] | |||||
20 | 5 | ROH | 29.66 … 32.90 | WC | wFST | 30.12 … 30.16 | RJF/Coms | [40] |
QTL | 30.26 … 32.06 | broilers | [41] | |||||
wFST | 30.46 … 31.39 | VAL | [73] | |||||
31.30 … 31.34 | RJF/Coms | [40] | ||||||
XP-EHH, XP-CLR | 31.99 … 32.75 | WC-ML1, WC-ML3 | [72] | |||||
wFST | 32.50 … 32.54 | RJF/Coms | [40] | |||||
FST | 30.35 | RW/WC | QTL | 30.26 … 32.06 | broilers | [41] | ||
hapFLK | 31.10 … 32.81 | RW | wFST | 30.46 … 31.39 | VAL | [73] | ||
31.30 … 31.34 | RJF/Coms | [40] | ||||||
XP-EHH, XP-CLR | 31.99 … 32.75 | WC-ML1, WC-ML3 | [72] | |||||
wFST | 32.50 … 32.54 | RJF/Coms | [40] | |||||
FST | 31.28 … 32.28 | RW/WC | QTL | 30.26 … 32.06 | broilers | [41] | ||
wFST | 30.46 … 31.39 | VAL | [73] | |||||
31.30 … 31.34 | RJF/Coms | [40] | ||||||
XP-EHH, XP-CLR | 31.99 … 32.75 | WC-ML1, WC-ML3 | [72] | |||||
21 | 5 | ROH | 40.50 … 41.21 | RW | FST, REHH | 40.29 … 40.67 | Silky fowls | [74] |
HP | 40.97 … 41.02 | BL | [38] | |||||
22 | 7 | hapFLK | 24.18 … 24.20 | WC | wFST | 22.84 … 24.25 | VAL | [73] |
23 | 7 | ROH | 30.27 … 30.84 | WC | wFST | 28.46 … 30.33 | VAL | [73] |
24 | 8 | ROH | 7.12 … 7.75 | WC | XP-EHH, XP-CLR | 7.31 … 7.44 | WC-ML1, WC-ML2, WR-FL1 | [72] |
FST | 7.32 7.34 7.37 | RW/WC | ||||||
25 | 8 | ROH | 28.63 … 29.05 | RW | HP | 28.69 … 28.72 | BL | [38] |
ΔAF | 28.72 | RJF, Coms | [40] | |||||
hapFLK | 28.78 … 30.17 | RW | HP | 28.69 … 28.72 | BL | [38] | ||
ΔAF | 28.72 | RJF, Coms | [40] | |||||
26 | 9 | hapFLK | 23.11 … 24.12 | RW | ΔAF | 23.64 | RJF, Coms | [40] |
27 | 13 | hapFLK | 15.70 … 15.98 | RW | wFST | 15.92 … 17.14 | VAL | [73] |
28 | 13 | hapFLK | 18.25 … 18.88 | WC | FST, REHH | 18.38 … 18.60 | dwarf brown-egg layers | [74] |
29 | 15 | FST | 5.63 | RW/WC | wFST | 3.08 … 5.90 | VAL | [73] |
30 | 18 | ROH | 0.02 … 0.83 | WC | wFST | 0.03 … 3.34 | VAL | [73] |
XP-EHH, XP-CLR | 0.25 … 0.43 | WC-ML1, WR-FL1 | [72] | |||||
31 | 28 | FST | 4.01 4.42 | RW/WC | wFST | 3.29 … 4.60 | VAL | [73] |
ROH | 4.24 … 5.04 | WC | ||||||
HP | 4.22 … 4.26 | BL | [38] |
GGA 1 | Region (Mb) | Population | Methods 2 | Genes 3 |
---|---|---|---|---|
1 | 41.1 … 44.5 | RW | ROH, hapFLK | ALX1, ATP2B1, BTG1, CEP290, DCN, DUSP6, EPYC, KERA, KITLG, LUM, MGAT4C, NTS, POC1B, RASSF9, SLC6A15, TMTC2, TMTC3, TSPAN19 |
2 | 69.6 … 73.6 | WC, RW | ROH, hapFLK | CDH10, CDH9, ERV3-1, MIR6545, PODXL2, RNU6-530P |
2 | 76.6 … 80.3 | WC, RW | FST, ROH, hapFLK | ABCA13, ADCY2, ANKRD33B, ATPSCKMT, CCT5, CMBL, CTNND2, DAP, DNAH5, FASTKD3, MARCHF6, MED10, MIR1613, MIR6562, MTRR, NSUN2, PAPD7, RNU6-383P, ROPN1L, SBK2, SEMA5A, SNORD123, SNRNP48, SRD5A1, SUN5, TRIO, UBE2QL1, UPP1 |
3 | 28.9 … 30.0 | WC, RW | FST, ROH, hapFLK | BTBD9, DAAM2, DNAH8, GLO1, GLP1R, KCNK16, KCNK17, KCNK5, KIF6, SAYSD1, ZFAND3 |
4 | 70.1 … 72.0 | WC | FST, ROH | DTHD1, PCDH7 |
5 | 17.8 … 18.8 | RW | FST, ROH | ACTBL2, ANO1, CAPRIN1, CCND1, CD59, CTTN, FADD, FBXO3, FGF19, FGF3, FGF4, LMO2, NAT10, ORAOV1, PPFIA1, SHANK2 |
5 | 29.7 … 32.9 | WC, RW | FST, ROH, hapFLK | ACTC1, AQR, ARHGAP11B, AVEN, CDIN1, CHRM5, DPH6, EIF2AK4, EMC7, FAM98B, FMN1, FSIP1, GJD2, GPR176, GREM1, KATNBL1, MEIS2, MIR1718, MIR6683, RASGRP1, RYR3, SCG5, SPRED1, SRP14, STXBP6, THBS1, ZNF770 |
8 | 7.1 … 7.8 | WC | FST, ROH | ASTN1, CACYBP, LOC112532958, MRPS14, PAPPA2, RABGAP1L, RC3H1, RFWD2, TNN, TNR |
8 | 28.6 … 30.1 | RW | ROH, hapFLK | ANKRD13C, CRYZ, CTH, DEPDC1, DNAJC6, ERICH3, FPGT, GADD45A, GNG12, IL12RB2, LEPR, LEPROT, LHX8, LOC112532951, LOC112532953, LRRC7, LRRC40, MCCC2L, MIER1, MIR6653, MSH4, NEGR1, PDE4B, PTGER3, RABGGTB, RPE65, SERBP1, SGIP1, SLC35D1, SLC44A5, SRSF11, TNNI3K, TYW3, WLS, ZRANB2 |
9 | 17.8 … 18.3 | RW | FST, ROH | KCNMB2, TBL1XR1 |
28 | 4.0 … 5.0 | WC | FST, ROH | AP1M1, CALR3, CHERP, CIB3, CPAMD8, DPP9, ELL, EPS15L1, F2RL3, FAM32A, FEM1A, HAUS8, INSR, KDM4B, KLF2, LOC420160, MED26, MIR6666, MIR6693, MIR7-3, MYDGF, MYO9B, PLIN3, PTPRS, RAB8A, SIN3B, SLC35E1, SMIM7, TICAM1, TMEM38A, TPM4, UHRF1, USE1 |
Trait | GGA | Regions 1 | Breed | QTL ID 2 | Associated Genes 2 |
---|---|---|---|---|---|
Abdominal fat percentage | 3 | 109.5 … 110.8 | RW | 14481 | |
7 | 8.3 … 8.8 | WC | 14504, 14505 | ||
Abdominal fat weight | 1 | 53.4 … 55.6 | WC | 193625, 193624 | |
4 | 17.9 … 20.3 | RW | 213534 | ||
28 | 4.2 … 5.0 | WC | 193631 | ||
Aggressive behavior | 1 | 53.4 … 55.6 | WC | 119901, 119903, 119902, 119893 | CRY1, CHST11, TMEM263 |
Albumen height | 7 | 24.1 … 24.2 | WC | 24818, 24820, 24821, 24953 | |
15 | 6.2 | RW/WC | 24953 | ||
Antibody response to SRBC antigen 3 | 2 | 69.8 … 72.6 | RW, WC | 14397 | |
5 | 29.6 … 32.9 | WC | 14402 | ||
Average daily gain | 4 | 70.8 … 72.0 | WC | 15318 | |
Body temperature | 2 | 123.0 … 123.7 | RW | 30853 | |
Body weight, 28 days | 7 | 6.7 … 8.0 | WC | 160884 | |
26 | 3.8 | RW/WC | 95418 | ||
Body weight, 35–49 days | 3 | 29.2 … 29.8 | RW, WC | 24377, 24378, 24379, 30854 | |
Body weight, 56 days | 5 | 29.6 … 32.9 | WC | 153752 | |
31.1 … 32.8 | RW | 153753 | |||
31.3 … 32.3 | RW/WC | 153754 | |||
Breast muscle percentage | 1 | 41.1 … 44.5 | RW | 95427 | |
18 | 0.02 … 0.8 | WC | 166767, 166768, 166766 | ||
Breast muscle pH | 1 | 10.7 … 11.3 | RW | 157157 | |
18.1 … 18.7 | WC | 157158 | |||
2 | 24.8 … 26.0 | WC | 157164 | ||
69.6 … 70.8 | WC | 157165 | |||
4 | 88.8 … 89.2 | RW | 157246 | ||
5 | 17.8 … 18.8 | RW | 157176 | ||
8 | 7.1 … 7.8 | WC | 157180 | ||
9 | 17.8 | RW/WC | 157184 | ||
18.0 … 18.3 | RW | 157185 | |||
26 | 3.8 | RW/WC | 157206 | ||
Carcass fat content | 1 | 53.4 … 55.6 | WC | 193637 | |
28 | 4.2 … 5.0 | WC | 193647, 193655 | ||
Egg production rate | 3 | 12.8 … 13.5 | WC | 214374 | |
13 | 15.7 … 16.0 | RW | 172762, 172763, 172764, 172765 | ||
Feather pigmentation | 1 | 53.4 … 55.6 | WC | 137117, 137118 | NUAK1 |
Feed conversion ratio | 1 | 53.4 … 55.6 | WC | 139668 | |
1 | 75.5 … 76.4 | WC | 139747 | ||
3 | 12.8 … 13.5 | WC | 139401 | ||
3 | 29.2 … 29.8 | RW, WC | 139333 | ||
5 | 17.8 … 18.8 | RW | 139665, 139577 | ||
6 | 9.7 | RW/WC | 139402, 139404, 139406, 139432–139434, 139504, 139531, 139537, 139543, 139589, 139661, 139709, 139712, 139733, 139743, 139760, 139761, 139781, 139786 | ||
7 | 6.7 … 8.0 | WC | 139435, 139472, 139597, 139598, 139741 | ||
8 | 7.1 … 7.8 | WC | 139410 | ||
13 | 15.7 … 16.0 | RW | 64562 | ||
Feed intake | 4 | 38.0 … 38.6 | RW | 195036, 195037, 195038, 195039, 195040, 195041, 195042, 195043, 195044, 195045, 195046, 195047, 195048, 195049, 195085, 195087, 195096 | |
4 | 57.7 … 58.4 | WC | 194985 | BMPR1B | |
Shank circumference | 8 | 7.1 … 7.8 | WC | 213550 | |
Yolk weight | 1 | 41.1 … 44.5 | RW | 24938, 24939, 24940 |
Category | GO Term | Count | p-Value | FE 1 | FDR 2 | Genes 3 |
---|---|---|---|---|---|---|
Annotation cluster 1: Enrichment Score: 2.15 | ||||||
INTERPRO | IPR001202:WW domain | 6 | 0.003 | 5.98 | 1.000 | GAS7, HECW2, MAGI2, TCERG1, WWP1, WWTR1 |
SMART | SM00456:WW | 6 | 0.003 | 5.85 | 0.477 | |
UP_SEQ_FEATURE | domain:WW 1 | 4 | 0.017 | 7.20 | 1.000 | |
UP_SEQ_FEATURE | domain:WW 2 | 4 | 0.017 | 7.20 | 1.000 | |
Annotation cluster 2: Enrichment Score: 1.91 | ||||||
GOTERM_BP_DIRECT | GO:0000187~activation of MAPK activity | 8 | 0.002 | 4.64 | 1.000 | CPNE3, CXCR4, DUSP6, HGF, IGF1, INSR, NTF3, PIK3CB, SEMA3C, SEMA5A, THBS1 |
GOTERM_BP_DIRECT | GO:0030335~positive regulation of cell migration | 8 | 0.022 | 2.83 | 1.000 | |
GOTERM_BP_DIRECT | GO:0032148~activation of protein kinase B activity | 3 | 0.055 | 7.77 | 1.000 | |
Annotation cluster 3: Enrichment Score: 1.57 | ||||||
UP_KEYWORDS | Chromophore | 3 | 0.016 | 14.80 | 0.971 | CLRN1, CRY1, OPN5, RPE65, RRH, TGFBI |
UP_KEYWORDS | Photoreceptor protein | 3 | 0.016 | 14.80 | 0.971 | |
GOTERM_BP_DIRECT | GO:0018298~protein-chromophore linkage | 3 | 0.017 | 14.42 | 1.000 | |
UP_KEYWORDS | Sensory transduction | 6 | 0.126 | 2.25 | 1.000 | |
Annotation cluster 4: Enrichment Score: 1.32 | ||||||
GOTERM_BP_DIRECT | GO:0000187~activation of MAPK activity | 8 | 0.002 | 4.64 | 1.000 | CCND1, COL6A2, CXCR4, DUSP6, HGF, IGF1, INSR, NTF3, PIK3CB, THBS1 |
GOTERM_BP_DIRECT | GO:0031093~platelet alpha granule lumen | 3 | 0.266 | 2.98 | 1.000 | |
KEGG_PATHWAY | hsa04510:Focal adhesion | 7 | 0.268 | 1.59 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelmanova, A.S.; Dotsev, A.V.; Romanov, M.N.; Stanishevskaya, O.I.; Gladyr, E.A.; Rodionov, A.N.; Vetokh, A.N.; Volkova, N.A.; Fedorova, E.S.; Gusev, I.V.; et al. Unveiling Comparative Genomic Trajectories of Selection and Key Candidate Genes in Egg-Type Russian White and Meat-Type White Cornish Chickens. Biology 2021, 10, 876. https://doi.org/10.3390/biology10090876
Abdelmanova AS, Dotsev AV, Romanov MN, Stanishevskaya OI, Gladyr EA, Rodionov AN, Vetokh AN, Volkova NA, Fedorova ES, Gusev IV, et al. Unveiling Comparative Genomic Trajectories of Selection and Key Candidate Genes in Egg-Type Russian White and Meat-Type White Cornish Chickens. Biology. 2021; 10(9):876. https://doi.org/10.3390/biology10090876
Chicago/Turabian StyleAbdelmanova, Alexandra S., Arsen V. Dotsev, Michael N. Romanov, Olga I. Stanishevskaya, Elena A. Gladyr, Andrey N. Rodionov, Anastasia N. Vetokh, Natalia A. Volkova, Elena S. Fedorova, Igor V. Gusev, and et al. 2021. "Unveiling Comparative Genomic Trajectories of Selection and Key Candidate Genes in Egg-Type Russian White and Meat-Type White Cornish Chickens" Biology 10, no. 9: 876. https://doi.org/10.3390/biology10090876
APA StyleAbdelmanova, A. S., Dotsev, A. V., Romanov, M. N., Stanishevskaya, O. I., Gladyr, E. A., Rodionov, A. N., Vetokh, A. N., Volkova, N. A., Fedorova, E. S., Gusev, I. V., Griffin, D. K., Brem, G., & Zinovieva, N. A. (2021). Unveiling Comparative Genomic Trajectories of Selection and Key Candidate Genes in Egg-Type Russian White and Meat-Type White Cornish Chickens. Biology, 10(9), 876. https://doi.org/10.3390/biology10090876