Next Generation Sequencing Technology in Lung Cancer Diagnosis
Abstract
:Simple Summary
Abstract
1. Lung Cancer
2. Next Generation Sequencing
3. NGS in Lung Cancer Diagnosis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- System, E.-E.C.I. Lung cancer incidance and mortality 2020. 2021. Available online: https://ecis.jrc.ec.europa.eu (accessed on 26 July 2021).
- Mao, Y.; Yang, D.; He, J.; Krasna, M.J. Epidemiology of Lung Cancer. Surg. Oncol. Clin. N. Am. 2016, 25, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Travis, W.D.; Brambilla, E.; Burke, A.P.; Marx, A.; Nicholson, A.G. Introduction to The 2015 World Health Organization Classification of Tumors of the Lung, Pleura, Thymus, and Heart. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2015, 10, 1240–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, D.E.; Kazerooni, E.A.; Baum, S.L.; Eapen, G.A.; Ettinger, D.S.; Hou, L.; Jackman, D.M.; Klippenstein, D.; Kumar, R.; Lackner, R.P.; et al. Lung Cancer Screening, Version 3.2018, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. JNCCN 2018, 16, 412–441. [Google Scholar] [CrossRef]
- Becker, N.; Motsch, E.; Trotter, A.; Heussel, C.P.; Dienemann, H.; Schnabel, P.A.; Kauczor, H.U.; Maldonado, S.G.; Miller, A.B.; Kaaks, R.; et al. Lung cancer mortality reduction by LDCT screening-Results from the randomized German LUSI trial. Int. J. Cancer 2020, 146, 1503–1513. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Heuvelmans, M.A.; Oudkerk, M. Volume versus diameter assessment of small pulmonary nodules in CT lung cancer screening. Transl. Lung Cancer Res. 2017, 6, 52–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cainap, C.; Pop, L.A.; Balacescu, O.; Cainap, S.S. Early diagnosis and screening in lung cancer. Am. J. Cancer Res. 2020, 10, 1993–2009. [Google Scholar]
- Chu, G.C.W.; Lazare, K.; Sullivan, F. Serum and blood based biomarkers for lung cancer screening: A systematic review. BMC Cancer 2018, 18, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Børresen-Dale, A.L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Oudkerk, M.; Devaraj, A.; Vliegenthart, R.; Henzler, T.; Prosch, H.; Heussel, C.P.; Bastarrika, G.; Sverzellati, N.; Mascalchi, M.; Delorme, S.; et al. European position statement on lung cancer screening. Lancet. Oncol. 2017, 18, e754–e766. [Google Scholar] [CrossRef]
- Johnson, D.B.; Dahlman, K.H.; Knol, J.; Gilbert, J.; Puzanov, I.; Means-Powell, J.; Balko, J.M.; Lovly, C.M.; Murphy, B.A.; Goff, L.W.; et al. Enabling a genetically informed approach to cancer medicine: A retrospective evaluation of the impact of comprehensive tumor profiling using a targeted next-generation sequencing panel. Oncologist 2014, 19, 616–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, O.; Shrestha, R.; Cunich, M.; Schofield, D.J. Application of next-generation sequencing to improve cancer management: A review of the clinical effectiveness and cost-effectiveness. Clin. Genet. 2018, 93, 533–544. [Google Scholar] [CrossRef] [Green Version]
- Meric-Bernstam, F.; Brusco, L.; Shaw, K.; Horombe, C.; Kopetz, S.; Davies, M.A.; Routbort, M.; Piha-Paul, S.A.; Janku, F.; Ueno, N.; et al. Feasibility of Large-Scale Genomic Testing to Facilitate Enrollment Onto Genomically Matched Clinical Trials. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 2753–2762. [Google Scholar] [CrossRef]
- Schwaederle, M.; Zhao, M.; Lee, J.J.; Lazar, V.; Leyland-Jones, B.; Schilsky, R.L.; Mendelsohn, J.; Kurzrock, R. Association of Biomarker-Based Treatment Strategies With Response Rates and Progression-Free Survival in Refractory Malignant Neoplasms: A Meta-analysis. JAMA Oncol. 2016, 2, 1452–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Consortium, N. NCCN Guidlines-Non Small Cell Lung Cancer; NCCN: Plymouth Meeting, PA, USA, 2021. [Google Scholar]
- Cirulli, E.T.; Goldstein, D.B. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat. Rev. Genet. 2010, 11, 415–425. [Google Scholar] [CrossRef]
- Sultan, M.; Schulz, M.H.; Richard, H.; Magen, A.; Klingenhoff, A.; Scherf, M.; Seifert, M.; Borodina, T.; Soldatov, A.; Parkhomchuk, D.; et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 2008, 321, 956–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, Y.S.; Kim, J.I.; Kim, S.; Hong, D.; Park, H.; Shin, J.Y.; Lee, S.; Lee, W.C.; Kim, S.; Yu, S.B.; et al. Extensive genomic and transcriptional diversity identified through massively parallel DNA and RNA sequencing of eighteen Korean individuals. Nat. Genet. 2011, 43, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Behjati, S.; Tarpey, P.S. What is next generation sequencing? Arch. Dis. Child. Educ. Pract. Ed. 2013, 98, 236–238. [Google Scholar] [CrossRef]
- Levy, S.E.; Myers, R.M. Advancements in Next-Generation Sequencing. Annu. Rev. Genom. Hum. Genet. 2016, 17, 95–115. [Google Scholar] [CrossRef] [Green Version]
- Slatko, B.E.; Gardner, A.F.; Ausubel, F.M. Overview of Next-Generation Sequencing Technologies. Curr. Protoc. Mol. Biol. 2018, 122, e59. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.A.; Malta, F.S.V.; Freire, M.C.M.; Couto, P.G.P. Application of Next-Generation Sequencing in the Era of Precision Medicine. In Applications of RNA-Seq and Omics Strategies—From Microorganisms to Human Health; Marchi, F., Cirillo, P., Mateo, E.C., Eds.; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Spaulding, T.P.; Stockton, S.S.; Savona, M.R. The evolving role of next generation sequencing in myelodysplastic syndromes. Br. J. Haematol. 2020, 188, 224–239. [Google Scholar] [CrossRef]
- Besser, J.; Carleton, H.A.; Gerner-Smidt, P.; Lindsey, R.L.; Trees, E. Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2018, 24, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Pipis, M.; Rossor, A.M.; Laura, M.; Reilly, M.M. Next-generation sequencing in Charcot-Marie-Tooth disease: Opportunities and challenges. Nat. Rev. Neurol. 2019, 15, 644–656. [Google Scholar] [CrossRef]
- Mellis, R.; Chandler, N.; Chitty, L.S. Next-generation sequencing and the impact on prenatal diagnosis. Expert Rev. Mol. Diagn. 2018, 18, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Cha, Y.J.; Koo, J.S. Next-generation sequencing in thyroid cancer. J. Transl. Med. 2016, 14, 322. [Google Scholar] [CrossRef] [Green Version]
- Sabour, L.; Sabour, M.; Ghorbian, S. Clinical Applications of Next-Generation Sequencing in Cancer Diagnosis. Pathol. Oncol. Res. POR 2017, 23, 225–234. [Google Scholar] [CrossRef]
- Karnes, H.E.; Duncavage, E.J.; Bernadt, C.T. Targeted next-generation sequencing using fine-needle aspirates from adenocarcinomas of the lung. Cancer Cytopathol. 2014, 122, 104–113. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Hua, P.; Liu, N.; Li, Q.; Zhu, X.; Jiang, L.; Zheng, K.; Su, X. Targeted next-generation sequencing in cytology specimens for molecular profiling of lung adenocarcinoma. Int. J. Clin. Exp. Pathol. 2018, 11, 3647–3655. [Google Scholar] [PubMed]
- Chen, Y.; Shi, J.X.; Pan, X.F.; Feng, J.; Zhao, H. Identification of candidate genes for lung cancer somatic mutation test kits. Genet. Mol. Biol. 2013, 36, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Huang, R.S.; House, L.; Cho, W.C. Next-generation sequencing for lung cancer. Future Oncol. 2013, 9, 1323–1336. [Google Scholar] [CrossRef]
- Tuononen, K.; Mäki-Nevala, S.; Sarhadi, V.K.; Wirtanen, A.; Rönty, M.; Salmenkivi, K.; Andrews, J.M.; Telaranta-Keerie, A.I.; Hannula, S.; Lagström, S.; et al. Comparison of targeted next-generation sequencing (NGS) and real-time PCR in the detection of EGFR, KRAS, and BRAF mutations on formalin-fixed, paraffin-embedded tumor material of non-small cell lung carcinoma-superiority of NGS. Genes Chromosomes Cancer 2013, 52, 503–511. [Google Scholar] [CrossRef]
- Buttitta, F.; Felicioni, L.; Del Grammastro, M.; Filice, G.; Di Lorito, A.; Malatesta, S.; Viola, P.; Centi, I.; D’Antuono, T.; Zappacosta, R.; et al. Effective assessment of egfr mutation status in bronchoalveolar lavage and pleural fluids by next-generation sequencing. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2013, 19, 691–698. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.M.; Kim, E.Y.; Kim, H.R.; Ali, S.M.; Greenbowe, J.R.; Shim, H.S.; Chang, H.; Lim, S.; Paik, S.; Cho, B.C. Genomic profiling of lung adenocarcinoma patients reveals therapeutic targets and confers clinical benefit when standard molecular testing is negative. Oncotarget 2016, 7, 24172–24178. [Google Scholar] [CrossRef] [Green Version]
- Hagemann, I.S.; Devarakonda, S.; Lockwood, C.M.; Spencer, D.H.; Guebert, K.; Bredemeyer, A.J.; Al-Kateb, H.; Nguyen, T.T.; Duncavage, E.J.; Cottrell, C.E.; et al. Clinical next-generation sequencing in patients with non-small cell lung cancer. Cancer 2015, 121, 631–639. [Google Scholar] [CrossRef]
- Moskalev, E.A.; Stöhr, R.; Rieker, R.; Hebele, S.; Fuchs, F.; Sirbu, H.; Mastitsky, S.E.; Boltze, C.; König, H.; Agaimy, A.; et al. Increased detection rates of EGFR and KRAS mutations in NSCLC specimens with low tumour cell content by 454 deep sequencing. Virchows Arch. Int. J. Pathol. 2013, 462, 409–419. [Google Scholar] [CrossRef] [Green Version]
- Taylor, C.; Chacko, S.; Davey, M.; Lacroix, J.; MacPherson, A.; Finn, N.; Wajnberg, G.; Ghosh, A.; Crapoulet, N.; Lewis, S.M.; et al. Peptide-Affinity Precipitation of Extracellular Vesicles and Cell-Free DNA Improves Sequencing Performance for the Detection of Pathogenic Mutations in Lung Cancer Patient Plasma. Int. J. Mol. Sci. 2020, 21, 9083. [Google Scholar] [CrossRef] [PubMed]
- Govind, K.B.; Koppaka, D.; Dasappa, L.; Jacob, L.A.; Babu, S.M.; Lokesh, N.K.; Haleshappa, R.A.; Rajeev, L.K.; Saldanha, S.C.; Abhishek, A.; et al. Detection of clinically relevant epidermal growth factor receptor pathway mutations in circulating cell-free tumor DNA using next generation sequencing in squamous cell carcinoma lung. South Asian J. Cancer 2019, 8, 247–249. [Google Scholar] [CrossRef]
- Yamamoto, G.; Kikuchi, M.; Kobayashi, S.; Arai, Y.; Fujiyoshi, K.; Wakatsuki, T.; Kakuta, M.; Yamane, Y.; Iijima, Y.; Mizutani, H.; et al. Routine genetic testing of lung cancer specimens derived from surgery, bronchoscopy and fluid aspiration by next generation sequencing. Int. J. Oncol. 2017, 50, 1579–1589. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xie, Y.; Lin, Y.; Yu, T.; Yin, Z. Different Gene Mutation Spectrum of the Paired CSF and Plasma Samples in Lung Adenocarcinoma with Leptomeningeal Metastases: The Liquid Biopsy Based on Circulating Tumor DNA. Zhongguo Fei Ai Za Zhi = Chin. J. Lung Cancer 2020, 23, 646–654. [Google Scholar] [CrossRef]
- Eberhard, D.A.; Johnson, B.E.; Amler, L.C.; Goddard, A.D.; Heldens, S.L.; Herbst, R.S.; Ince, W.L.; Jänne, P.A.; Januario, T.; Johnson, D.H.; et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 5900–5909. [Google Scholar] [CrossRef] [PubMed]
- Lam, T.C.; Tsang, K.C.; Choi, H.C.; Lee, V.H.; Lam, K.O.; Chiang, C.L.; So, T.H.; Chan, W.W.; Nyaw, S.F.; Lim, F.; et al. Combination atezolizumab, bevacizumab, pemetrexed and carboplatin for metastatic EGFR mutated NSCLC after TKI failure. Lung Cancer 2021, 159, 18–26. [Google Scholar] [CrossRef]
- Riudavets, M.; Bosch-Barrera, J.; Cabezón-Gutiérrez, L.; Diz Taín, P.; Hernández, A.; Alonso, M.; Blanco, R.; Gálvez, E.; Insa, A.; Mielgo, X.; et al. Efficacy of nintedanib plus docetaxel in patients with refractory advanced epidermal growth factor receptor mutant lung adenocarcinoma. Clin. Transl. Oncol. Off. Publ. Fed. Span. Oncol. Soc. Natl. Cancer Inst. Mex. 2021. [Google Scholar] [CrossRef]
- Pratilas, C.A.; Hanrahan, A.J.; Halilovic, E.; Persaud, Y.; Soh, J.; Chitale, D.; Shigematsu, H.; Yamamoto, H.; Sawai, A.; Janakiraman, M.; et al. Genetic predictors of MEK dependence in non-small cell lung cancer. Cancer Res. 2008, 68, 9375–9383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Facchinetti, F.; Lacroix, L.; Mezquita, L.; Scoazec, J.Y.; Loriot, Y.; Tselikas, L.; Gazzah, A.; Rouleau, E.; Adam, J.; Michiels, S.; et al. Molecular mechanisms of resistance to BRAF and MEK inhibitors in BRAF(V600E) non-small cell lung cancer. Eur. J. Cancer 2020, 132, 211–223. [Google Scholar] [CrossRef]
- Sánchez-Torres, J.M.; Viteri, S.; Molina, M.A.; Rosell, R. BRAF mutant non-small cell lung cancer and treatment with BRAF inhibitors. Transl. Lung Cancer Res. 2013, 2, 244–250. [Google Scholar] [CrossRef]
- Shibata, T.; Kokubu, A.; Tsuta, K.; Hirohashi, S. Oncogenic mutation of PIK3CA in small cell lung carcinoma: A potential therapeutic target pathway for chemotherapy-resistant lung cancer. Cancer Lett. 2009, 283, 203–211. [Google Scholar] [CrossRef] [PubMed]
- André, F.; Ciruelos, E.M.; Juric, D.; Loibl, S.; Campone, M.; Mayer, I.A.; Rubovszky, G.; Yamashita, T.; Kaufman, B.; Lu, Y.S.; et al. Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: Final overall survival results from SOLAR-1. Ann. Oncol. Off. J. Eur. Soc. Med Oncol. 2021, 32, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wu, H.; Shi, X.; Huo, Z.; Zhang, J.; Liang, Z. Comparison of Next-Generation Sequencing, Quantitative PCR, and Sanger Sequencing for Mutation Profiling of EGFR, KRAS, PIK3CA and BRAF in Clinical Lung Tumors. Clin. Lab. 2016, 62, 689–696. [Google Scholar] [CrossRef]
- Xu, X.; Yang, Y.; Li, H.; Chen, Z.; Jiang, G.; Fei, K. Assessment of the clinical application of detecting EGFR, KRAS, PIK3CA and BRAF mutations in patients with non-small cell lung cancer using next-generation sequencing. Scand. J. Clin. Lab. Investig. 2016, 76, 386–392. [Google Scholar] [CrossRef]
- Vaughn, C.P.; Costa, J.L.; Feilotter, H.E.; Petraroli, R.; Bagai, V.; Rachiglio, A.M.; Marino, F.Z.; Tops, B.; Kurth, H.M.; Sakai, K.; et al. Simultaneous detection of lung fusions using a multiplex RT-PCR next generation sequencing-based approach: A multi-institutional research study. BMC Cancer 2018, 18, 828. [Google Scholar] [CrossRef]
- Benayed, R.; Offin, M.; Mullaney, K.; Sukhadia, P.; Rios, K.; Desmeules, P.; Ptashkin, R.; Won, H.; Chang, J.; Halpenny, D.; et al. High Yield of RNA Sequencing for Targetable Kinase Fusions in Lung Adenocarcinomas with No Mitogenic Driver Alteration Detected by DNA Sequencing and Low Tumor Mutation Burden. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 4712–4722. [Google Scholar] [CrossRef] [PubMed]
- Volckmar, A.L.; Leichsenring, J.; Kirchner, M.; Christopoulos, P.; Neumann, O.; Budczies, J.; Morais de Oliveira, C.M.; Rempel, E.; Buchhalter, I.; Brandt, R.; et al. Combined targeted DNA and RNA sequencing of advanced NSCLC in routine molecular diagnostics: Analysis of the first 3000 Heidelberg cases. Int. J. Cancer 2019, 145, 649–661. [Google Scholar] [CrossRef] [PubMed]
- Frampton, G.M.; Ali, S.M.; Rosenzweig, M.; Chmielecki, J.; Lu, X.; Bauer, T.M.; Akimov, M.; Bufill, J.A.; Lee, C.; Jentz, D.; et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015, 5, 850–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peña-Diaz, J.; Bregenhorn, S.; Ghodgaonkar, M.; Follonier, C.; Artola-Borán, M.; Castor, D.; Lopes, M.; Sartori, A.A.; Jiricny, J. Noncanonical Mismatch Repair as a Source of Genomic Instability in Human Cells. Mol. Cell 2017, 67, 162. [Google Scholar] [CrossRef]
- Pfeifer, G.P. Environmental exposures and mutational patterns of cancer genomes. Genome Med. 2010, 2, 54. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Xiong, J. Advances on driver oncogenes of non-small cell lung cancer. Zhongguo Fei Ai Za Zhi = Chin. J. Lung Cancer 2015, 18, 42–47. [Google Scholar] [CrossRef]
- Liang, W.; Zhao, Y.; Huang, W.; Gao, Y.; Xu, W.; Tao, J.; Yang, M.; Li, L.; Ping, W.; Shen, H.; et al. Non-invasive diagnosis of early-stage lung cancer using high-throughput targeted DNA methylation sequencing of circulating tumor DNA (ctDNA). Theranostics 2019, 9, 2056–2070. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Shi, X.; Yang, S.; Zhao, J.; He, Q.; Jin, Y.; Yu, X. Comparison of ALK detection by FISH, IHC and NGS to predict benefit from crizotinib in advanced non-small-cell lung cancer. Lung Cancer 2019, 131, 62–68. [Google Scholar] [CrossRef]
- Christopoulos, P.; Endris, V.; Bozorgmehr, F.; Elsayed, M.; Kirchner, M.; Ristau, J.; Buchhalter, I.; Penzel, R.; Herth, F.J.; Heussel, C.P.; et al. EML4-ALK fusion variant V3 is a high-risk feature conferring accelerated metastatic spread, early treatment failure and worse overall survival in ALK(+) non-small cell lung cancer. Int. J. Cancer 2018, 142, 2589–2598. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Chen, Y.; Chen, H.; Fei, S.; Chen, D.; Cai, X.; Liu, L.; Lin, B.; Su, H.; Zhao, L.; et al. Evaluation of Tumor-Derived Exosomal miRNA as Potential Diagnostic Biomarkers for Early-Stage Non-Small Cell Lung Cancer Using Next-Generation Sequencing. Clin. cancer Res. Off. J. Am. Assoc. Cancer Res. 2017, 23, 5311–5319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, J.; Thompson, J.C.; Carpenter, E.L.; Elkhouly, E.; Aggarwal, C. Plasma Cell-Free DNA Genotyping: From an Emerging Concept to a Standard-of-Care Tool in Metastatic Non-Small Cell Lung Cancer. Oncologist 2021. [Google Scholar] [CrossRef]
- Leighl, N.B.; Page, R.D.; Raymond, V.M.; Daniel, D.B.; Divers, S.G.; Reckamp, K.L.; Villalona-Calero, M.A.; Dix, D.; Odegaard, J.I.; Lanman, R.B.; et al. Clinical Utility of Comprehensive Cell-free DNA Analysis to Identify Genomic Biomarkers in Patients with Newly Diagnosed Metastatic Non-small Cell Lung Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 4691–4700. [Google Scholar] [CrossRef] [Green Version]
- Mack, P.C.; Banks, K.C.; Espenschied, C.R.; Burich, R.A.; Zill, O.A.; Lee, C.E.; Riess, J.W.; Mortimer, S.A.; Talasaz, A.; Lanman, R.B.; et al. Spectrum of driver mutations and clinical impact of circulating tumor DNA analysis in non-small cell lung cancer: Analysis of over 8000 cases. Cancer 2020, 126, 3219–3228. [Google Scholar] [CrossRef]
- Cheema, P.K.; Gomes, M.; Banerji, S.; Joubert, P.; Leighl, N.B.; Melosky, B.; Sheffield, B.S.; Stockley, T.; Ionescu, D.N. Consensus Recommendations for Optimizing Biomarker Testing to Identify and Treat Advanced EGFR-Mutated Non-Small-Cell Lung Cancer. Curr. Oncol. 2020, 27, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Mosele, F.; Remon, J.; Mateo, J.; Westphalen, C.B.; Barlesi, F.; Lolkema, M.P.; Normanno, N.; Scarpa, A.; Robson, M.; Meric-Bernstam, F.; et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: A report from the ESMO Precision Medicine Working Group. Ann. Oncol. Off. J. Eur. Soc. Med Oncol. 2020, 31, 1491–1505. [Google Scholar] [CrossRef]
- Sueoka-Aragane, N.; Nakashima, C.; Yoshida, H.; Matsumoto, N.; Iwanaga, K.; Ebi, N.; Nishiyama, A.; Yatera, K.; Kuyama, S.; Fukuda, M.; et al. The role of comprehensive analysis with circulating tumor DNA in advanced non-small cell lung cancer patients considered for osimertinib treatment. Cancer Med. 2021, 10, 3873–3885. [Google Scholar] [CrossRef]
- Wang, B.; Chen, R.; Wang, C.; Guo, J.; Yuan, M.; Chen, H.; Xia, X.; Zhong, D. Identification of novel ALK fusions using DNA/RNA sequencing in immunohistochemistry/RT-PCR discordant NSCLC patients. Hum. Pathol. 2021, 114, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.; Wang, L.; Arcila, M.E.; Balasubramanian, S.; Greenbowe, J.R.; Ross, J.S.; Stephens, P.; Lipson, D.; Miller, V.A.; Kris, M.G.; et al. Broad, Hybrid Capture-Based Next-Generation Sequencing Identifies Actionable Genomic Alterations in Lung Adenocarcinomas Otherwise Negative for Such Alterations by Other Genomic Testing Approaches. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2015, 21, 3631–3639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beadling, C.; Wald, A.I.; Warrick, A.; Neff, T.L.; Zhong, S.; Nikiforov, Y.E.; Corless, C.L.; Nikiforova, M.N. A Multiplexed Amplicon Approach for Detecting Gene Fusions by Next-Generation Sequencing. J. Mol. Diagn. JMD 2016, 18, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Dacic, S.; Villaruz, L.C.; Abberbock, S.; Mahaffey, A.; Incharoen, P.; Nikiforova, M.N. ALK FISH patterns and the detection of ALK fusions by next generation sequencing in lung adenocarcinoma. Oncotarget 2016, 7, 82943–82952. [Google Scholar] [CrossRef] [Green Version]
- Moskalev, E.A.; Frohnauer, J.; Merkelbach-Bruse, S.; Schildhaus, H.U.; Dimmler, A.; Schubert, T.; Boltze, C.; König, H.; Fuchs, F.; Sirbu, H.; et al. Sensitive and specific detection of EML4-ALK rearrangements in non-small cell lung cancer (NSCLC) specimens by multiplex amplicon RNA massive parallel sequencing. Lung Cancer 2014, 84, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Pfarr, N.; Stenzinger, A.; Penzel, R.; Warth, A.; Dienemann, H.; Schirmacher, P.; Weichert, W.; Endris, V. High-throughput diagnostic profiling of clinically actionable gene fusions in lung cancer. Genes Chromosomes Cancer 2016, 55, 30–44. [Google Scholar] [CrossRef]
- Clavé, S.; Rodon, N.; Pijuan, L.; Díaz, O.; Lorenzo, M.; Rocha, P.; Taus, Á.; Blanco, R.; Bosch-Barrera, J.; Reguart, N.; et al. Next-generation Sequencing for ALK and ROS1 Rearrangement Detection in Patients With Non-small-cell Lung Cancer: Implications of FISH-positive Patterns. Clin. Lung Cancer 2019, 20, e421–e429. [Google Scholar] [CrossRef]
- Pekar-Zlotin, M.; Hirsch, F.R.; Soussan-Gutman, L.; Ilouze, M.; Dvir, A.; Boyle, T.; Wynes, M.; Miller, V.A.; Lipson, D.; Palmer, G.A.; et al. Fluorescence in situ hybridization, immunohistochemistry, and next-generation sequencing for detection of EML4-ALK rearrangement in lung cancer. Oncologist 2015, 20, 316–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Z.; Li, C.; Lu, H. Next generation sequencing detection in archival surgically resected lung adenocarcinoma specimens harbouring the anaplastic lymphoma kinase fusion protein. JPMA. J. Pak. Med Assoc. 2021, 71, 531–536. [Google Scholar] [CrossRef]
- Reckamp, K.L.; Melnikova, V.O.; Karlovich, C.; Sequist, L.V.; Camidge, D.R.; Wakelee, H.; Perol, M.; Oxnard, G.R.; Kosco, K.; Croucher, P.; et al. A Highly Sensitive and Quantitative Test Platform for Detection of NSCLC EGFR Mutations in Urine and Plasma. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2016, 11, 1690–1700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Liu, C.; Zou, X.; Shao, L.; Sun, Y.; Guo, Y. Next-generation sequencing facilitates differentiating between multiple primary lung cancer and intrapulmonary metastasis: A case series. Diagn. Pathol. 2021, 16, 21. [Google Scholar] [CrossRef] [PubMed]
- Pruneri, G.; De Braud, F.; Sapino, A.; Aglietta, M.; Vecchione, A.; Giusti, R.; Marchiò, C.; Scarpino, S.; Baggi, A.; Bonetti, G.; et al. Next-Generation Sequencing in Clinical Practice: Is It a Cost-Saving Alternative to a Single-Gene Testing Approach? PharmacoEconomics—Open 2021, 5, 285–298. [Google Scholar] [CrossRef]
Advantages | Disadvantages |
---|---|
Low price | Need for specialized software and computers for data analysis |
Short time from library preparation to results | No standardization or availability of standardized material for clinical application |
Variety of applications | Still expensive in some developing countries |
Useful both in research and clinic | |
High number of commercially available NGS platforms and specialized kits |
Name | Company | Type of Sequencing | Gene Targeted | Target Approach for Gene Fusion Analysis | Input Nucleic Acid (ng) | Type of Test |
---|---|---|---|---|---|---|
AccuFusion | Paragon Genomics, Hayward, USA | RNA fusion | ALK, CIT, EML4, FGFR1, MBIP, MET, NRG1, NTRK1, NTRK3, PDGFRA, RET, ROS1, TACC3. | Amplicon based | 10 | Diagnosis and treatment selection |
OmniFusion | Paragon Genomics, Hayward, USA | RNA fusion | ALK, CIT, MBIP, MET, NRG1, NTRK1, NTRK3, PDGFRA, RET, ROS1, TACC3 | Amplicon based | 25 | Diagnosis and treatment selection |
Ion AmpliSeq™ RNA Fusion Lung Cancer Panel | ThermoFisher Scientific, Waltham, USA | RNA fusion | ALK, RET, ROS1, and NTRK | Amplicon based | 10 | Diagnosis and treatment selection |
QuantideX® NGS RNA Lung Cancer Kit | Asuragen, Austin, USA | RNA expression and fusion | ALK, ROS1, RET, FGFR3NTRK1, NTRK3, NRG1, FGFR1, FGFR2, MBIP, PDGFRA, MET, ABCB1, BRCA1, CD274, CDKN2A, CTLA4, ERCC1, ESR1, IFNGR, ISG15, MSLN, PDCD1, PDCD1LG2, PTEN, RRM1, TDP1, TERT, TLET3, TOP1, TUBB3, TYMS | Amplicon based | 10 | Treatment selection |
TruSight RNA fusion panel | Illumina, San Diego, USA | RNA seq | 507 fusion-associated genes | Hybrid capture based | 10 total RNA20–100 FFPE RNA | Treatment selection |
Archer fusion plex Comprehensive Thyroid and Lung | ArcherDX Inc, Illumina, San Diego, USA | RNA seq | gene fusions, SNV, indels, splicing and gene expression in 36 genes | AMP based | 10 ng | Diagnosis |
Archer fusion plex Lung kit | ArcherDX Inc, Illumina, San Diego, USA | DNA and RNA seq | EGFR vIII and MET exon 14 skipping events along with prominent ALK, BRAF, FGFR, NRG1, NTRK, RET, and ROS1 fusions and select point mutations in 14 key gene targets associated with lung cancer | AMP based | 10 ng | Diagnosis |
Lung Cancer-Targeted Gene Panel, Tumor | MAYO Clinic, Scottsdale, USA | DNA | EGFR, BRAF, KRAS, HRAS, NRAS, ALK, ERBB2, and MET | Amplicon based | NA | Diagnosis and management of lung cancer |
Ion AmpliSeq™ Colon and Lung Research Panel v2 | ThermoFisher Scientific, Waltham, USA | DNA | KRAS, EGFR, BRAF, PIK3CA, AKT1, ERBB2, PTEN, NRAS, STK11, MAP2K1, ALK, DDR2, CTNNB1, MET, TP53, SMAD4, FBXW7, FGFR3, NOTCH1, ERBB4, FGFR1, FGFR2 | Amplicon based | 10 | Diagnosis and treatment selection |
AmpliSeq for Illumina Colon and Lung Research Panel | Illumina, San Diego, USA | DNA | KRAS, EGFR, BRAF, PIK3CA, AKT1, ERBB2, PTEN, NRAS, STK11, MAP2K1, ALK, DDR2, CTNNB1, MET, TP53, SMAD4, FBXW7, FGFR3, NOTCH1, ERBB4, FGFR1, and FGFR2 | Amplicon based | 10 | Diagnosis and treatment selection |
Samples | Correlation with Other Techniques | NGS Method | Type of Lung Cancer | Specificity (%) | Sensitivity (%) | Ref. |
---|---|---|---|---|---|---|
31 tissues lung samples negative for mutations by FISH or PCR | 8/31 presented actionable mutations | Broad, hybrid capture-based NGS | Adenocarcinoma | NA | NA | [70] |
40 FFPE tissue with known fusion (test), 59 FFPE fusion-negative (validation) | Good concordance with FISH, PCR or Sanger | RNA seq gene fusion | NA | 93–100 | 86–100 | [71] |
28 fusion positive FISH sample | 16 were positive in NGS | RNA fusion and DNA seq | NSCLC | NA | NA | [72] |
32 FFPE | Good concordance with FISH and qRT-PCR | RNA seq | NSCLC | 100 | 100 | [73] |
50 FFPE (35 test positive for different fusion alterations, 15 negative) 109 FFPE (validation) | Good concordance with FISH | RNA fusion and DNA seq | NSCLC | 100 | 100 | [74] |
31 FFPE positive for rearrangement by FISH | 26 were positive in NGS and were confirmed by IHC | RNA fusion and DNA seq | NSCLC | NA | NA | [75] |
51 tested with FISH, IHC and NGS | 8 samples positive by NGS and IHC, only 4 by FISH | DNA seq | Adenocarcinoma | 100 | 100 | [76] |
19 FFPE tested with IHC and NGS | Good concordance between NGS and IHC | DNA seq | Adenocarcinoma | NA | NA | [77] |
63 tissue, urine and plasma | NGS testing of urine and plasma presented more EGFR mutated positive samples that tissue samples tested by RT-PCR | DNA seq | NSCLC | 94 for urine 96–100 for plasma | 80–93 for urine 87–100 for plasma | [78] |
3 cases with multiple resected tumors | NGS revealed different molecular characteristics that the normal pathological diagnosis | DNA seq | Adenocarcinoma | NA | NA | [79] |
Trial No | Condition | Scope of the Trial | Sample Type | Number of Patients | Results |
---|---|---|---|---|---|
NCT03558165 | Lung adenocarcinoma stage IV | Diagnostic test: oncomine comprehensive assay | FFPE tissue | 100 | NA |
NCT02420405 | Non-squamous NSCLC stage IIIA-IV | Routine gene testing by NGS for diagnosis | Tissue | 78 | NA |
NCT02297087 | Incurable SCLC | Standard of care based on target(s) identified via GWAS for diagnosis and treatment | Blood and tissue | 12 | NA |
NCT02281214 | Bronchial adenocarcinoma with metastases, epidermoid cancer of the lungs | NGS testing for treatment selection and prognostic | Blood and tissue | 165 | NA |
NCT03257735 | NSCLC with brain metastasis | Consistency of gene mutation status between different types of samples using NGS | Cerebrospinal fluid, blood and tissue | 50 | NA |
NCT04849481 | NSCLC | Large-scale NGS analysis for novel treatment strategies and deciphering the mechanisms of drug resistance | Tissue | 500 | NA |
NCT03244904 | SCLC | NGS analysis for biomarkers for SCLC | Blood and tissue | 80 | NA |
NCT02416726 | Non-squamous NSCLC | NGS for gene profile comparison between different types of samples | Blood and tissue | 35 | NA |
NCT04260295 | Lung cancer and non-lung cancer patients | NGS for identification of microorganisms in lungs | Tissue | 300 | NA |
NCT02705404 | Multifocal lung cancer | NGS for differentiation of primary tumors from metastatic tumors | Blood, cytology and tissue | 100 | NA |
NCT02705404 | NSCLC | Targeted NGS for mutation profile concordance in different types of samples | Blood, fresh frozen and FFPE tissue | 45 | NA |
NCT03833934 | NSCLC | NGS testing for evaluation of ALK resistant mutations | Plasma | 300 | NA |
NCT03220230 | NSCLC | Concordance between NGS and IHC ALK status | Tissue and blood | 4240 | Accuracy 95.9% for 1450 participants, sensitivity 54.2% for 83 participants, specificity 98.4% for 1367 participants |
NCT03658460 | NSCLC | Gene testing using NGS with focus on immuno- oncology markers | Tissue | 100 | NA |
NCT02273336 | Lung cancer | NGS testing for treatment selection | Tissue, blood and cytology | 40 | NA |
NCT02941003 | Lung adenocarcinoma | NGS for early stage diagnosis | Tissue | 540 | NA |
NCT04238130 | NSCLC | NGS assessment of mutation profile in personalized analysis of cancer | Plasma | 200 | NA |
NCT02169349 | Stage IIIb and IV NSCLC | NGS evaluation cfDNA for diagnosis, treatment and disease progression | Plasma | 100 | NA |
NCT02299622 | NSCLC, head and neck cancer, esophageal cancer | NGS testing for evaluation of mutation profile | Tissue | 200 | NA |
NCT02778854 | NSCLC | Genetic detection of driver mutation using ddPCR and NGS for evaluation of the efficacy of liquid biopsy in diagnosis and prognosis | Tissue, plasma and other biological liquids | 200 | NA |
NCT03486262 | Lung carcinoma patients with/withoutidiopathic pulmonary fibrosis (IPH) | NGS testing for genetic alterations identification in lung cancer patients with IPH and without IPH | Tissue | 100 | NA |
NCT02113852 | NSCLC | NGS study for identification and characterization of genetic and transcriptomic alteration | Tissue and blood | 250 | NA |
NCT03771404 | Operable (stages I-IIIA) NSCLC Patients | NGS evaluation of the genetic landscape of each patient in order to determine heterogeneity in early stage NSCLC | Blood and tissue | 50 | NA |
NCT04698681 | Stage IV non-squamous NSCLC | NGS evaluation for tumor mutations identification in the KEAP1 or NRF2/NFE2L2 genes in order to determine potential eligibility for a biomarker selected clinical trial | Blood | 200 | NA |
NCT04266483 | NSCLC | Molecular typing of lung cancer in China | Blood and tissue | 2500 | NA |
NCT04624373 | Stage IV lung cancer | Molecular analysis to investigate the sensitivity of cytology supernatant DNA for genotyping | Supernatant, blood and tissue | 50 | NA |
NCT02718651 | NSCLC | New diagnostic test to detect ALK rearrangements using NGS | plasma | 70 | NA |
NCT03576937 | Non-squamous NSCLC | Comparison of blood-based mutational profile with tissue mutational profile for diagnosis | Blood and tissue | 207 | NA |
NCT03248089 | Non-squamous NSCLC | Investigation of the efficacy of cfDNA genotyping for diagnosis | Blood and tissue | 186 | NA |
NCT03317080 | I-IV lung cancer eligible for surgery. | Use of liquid biopsy for lung cancer detection | Blood | 1500 | NA |
NCT04025515 | Asian patients with NSCLC | Comprehensive molecular profiling of “actionable” alterations in lung cancer specimens in order to determine the prevalence of each genetic subtype in the local population. | Tissue | 500 | NA |
NCT03706625 | Immune-suppressed patients suffering from HIV-related NSCLC | Identify novel biomarkers such as tumor mutational profiling and immunomutanome in immunosuppressed patients | Tissue | 170 | NA |
NCT03651986 | Patients with benign and malignant pulmonary nodules | Development of a blood-based assay for early differentiation of benign and malignant pulmonary nodules | Blood | 10,560 | NA |
NCT02906943 | Several cancer including lung cancer | NGS evaluation of different types of cancer for biomarker identification | FFPE tissue | 10,000 | NA |
NCT03609918 | NSCLC | To build NSCLC gene mutation profile in China and find related correlation between gene mutation panel and clinical outcome | Fresh frozen tissues and FFPE tissues | 513 | NA |
NCT03029065 | Lung cancer patients with brain metastases | To determine whether cfDNA can be used for concomitant diagnosis to improve the treatment efficacy and prognosis of patients with brain (meningeal) metastasis | Tissue, plasma and cerebrospinal fluids | 50 | NA |
NCT03971175 | Lung cancer and relapse NSCLC | To evaluate accuracy of molecular genetic characterisation of NSCLC | Tissue, cytology and liquid biopsy | 540 | NA |
NCT04692935 | Lung adenocarcinoma from asian and Caucasian patients | Evaluation of the mutational profile by race | Tissue | 450 | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cainap, C.; Balacescu, O.; Cainap, S.S.; Pop, L.-A. Next Generation Sequencing Technology in Lung Cancer Diagnosis. Biology 2021, 10, 864. https://doi.org/10.3390/biology10090864
Cainap C, Balacescu O, Cainap SS, Pop L-A. Next Generation Sequencing Technology in Lung Cancer Diagnosis. Biology. 2021; 10(9):864. https://doi.org/10.3390/biology10090864
Chicago/Turabian StyleCainap, Calin, Ovidiu Balacescu, Simona Sorana Cainap, and Laura-Ancuta Pop. 2021. "Next Generation Sequencing Technology in Lung Cancer Diagnosis" Biology 10, no. 9: 864. https://doi.org/10.3390/biology10090864
APA StyleCainap, C., Balacescu, O., Cainap, S. S., & Pop, L. -A. (2021). Next Generation Sequencing Technology in Lung Cancer Diagnosis. Biology, 10(9), 864. https://doi.org/10.3390/biology10090864