Tacrolimus-Based Immunosuppressive Therapy Influences Sex Hormone Profile in Renal-Transplant Recipients—A Research Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Study Design and Population
2.2. Hormones Profile Assay
- Incubation of 30 μL of the sample with biotinylated monoclonal antibodies, specific for particular hormone, and with monoclonal antibodies specific for particular hormone labeled with a ruthenium complex.
- Addition of streptavidin-coated microparticles to the obtained complex.
- Transfer of the reaction mixture to the measuring chamber.
- Removal of unbound substances.
- Measurement of the electrochemiluminescence reactions of the obtained complexes and the photon emission excited by the voltage applied to the electrode by a photomultiplier.
- Reading of the results from the calibration curve.
2.3. Statistical Analysis
3. Results
3.1. Serum Hormones Concentration in Renal Transplant Recipients by Sex
3.2. Serum Hormones Concentration in Renal Transplant Recipients by Sex and Age
3.2.1. Serum Hormones Concentration in Female Renal Transplant Recipients by Age
3.2.2. Serum Hormones Concentration in Male Renal Transplant Recipients by Age
3.3. Hormone Profile under Co-Therapy
3.4. Correlations between Hormones Concentration
3.5. The Relationship of Hormones Concentration with TAC Level by Sex
3.6. The Relationship of TAC Concentration with Age
3.7. The Kidney Parameters by TAC Intake
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sikora-Grabka, E.; Adamczak, M.; Kuczera, P.; Wiecek, A. Serum sex hormones concentrations in young women in the early period after successful kidney transplantation. Endokrynol. Pol. 2018, 69, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Kuczera, P.; Adamczak, M.; Wiecek, A. Endocrine Abnormalities in Patients with Chronic Kidney Disease. Pril (Makedon Akad Nauk. Umet Odd Med. Nauk.) 2015, 36, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Anantharaman, P.; Schmidt, R.J. Sexual function in chronic kidney disease. Adv. Chronic. Kidney Dis. 2007, 14, 119–125. [Google Scholar] [CrossRef]
- Tajar, A.; Huhtaniemi, I.T.; O’Neill, T.W.; Finn, J.D.; Pye, S.R.; Lee, D.M.; Bartfai, G.; Boonen, S.; Casanueva, F.F.F.; Forti, G.; et al. Characteristics of androgen deficiency in late-onset hypogonadism: Results from the European Male Aging Study (EMAS). J. Clin. Endocrinol. Metab. 2012, 97, 1508–1516. [Google Scholar] [CrossRef] [Green Version]
- Hamdi, S.M.; Walschaerts, M.; Bujan, L.; Rostaing, L.; Kamar, N. A prospective study in male recipients of kidney transplantation reveals divergent patterns for inhibin B and testosterone secretions. Basic Clin. Androl. 2014, 24, 11. [Google Scholar] [CrossRef] [Green Version]
- Lofaro, D.; Perri, A.; Aversa, A.; Aquino, B.; Bonofiglio, M.; La Russa, A.; Settino, M.G.; Leone, F.; Ilacqua, A.; Armentano, F.; et al. Testosterone in renal transplant patients: Effect on body composition and clinical parameters. J. Nephrol. 2018, 31, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, W.; Kubber, H.; Dolff, S.; Benson, S.; Fuhrer, D.; Tan, S. Rapid recovery of hypogonadism in male patients with end stage renal disease after renal transplantation. Endocrine 2018, 60, 159–166. [Google Scholar] [CrossRef]
- Colak, H.; Sert, I.; Kurtulmus, Y.; Karaca, C.; Toz, H.; Kursat, S. The relation between serum testosterone levels and cardiovascular risk factors in patients with kidney transplantation and chronic kidney disease. Saudi J. Kidney Dis. Transpl. 2014, 25, 951–959. [Google Scholar] [CrossRef]
- Pietrzak, B.; Bobrowska, K.; Jabiry-Zieniewicz, Z.; Kaminski, P.; Wielgos, M.; Pazik, J.; Durlik, M. Oral and transdermal hormonal contraception in women after kidney transplantation. Transplant. Proc. 2007, 39, 2759–2762. [Google Scholar] [CrossRef]
- Dlugosz, A.; Srednicka, D.; Boratynski, J. The influence of tacrolimus on oxidative stress and free-radical processes. Postepy Hig. Med. Dosw. 2007, 61, 466–471. [Google Scholar]
- Rezzani, R. Cyclosporine A and adverse effects on organs: Histochemical studies. Prog. Histochem. Cytochem. 2004, 39, 85–128. [Google Scholar] [CrossRef] [PubMed]
- Ferjani, H.; Draz, H.; Abid, S.; Achour, A.; Bacha, H.; Boussema-Ayed, I. Combination of tacrolimus and mycophenolate mofetil induces oxidative stress and genotoxicity in spleen and bone marrow of Wistar rats. Mutat. Res. 2016, 810, 48–55. [Google Scholar] [CrossRef]
- Kim, J.M.; Song, R.K.; Kim, M.-J.; Lee, D.Y.; Jang, H.R.; Kwon, C.H.D.; Huh, W.S.; Kim, G.S.; Kim, S.J.; Choi, D.S.; et al. Hormonal differences between female kidney transplant recipients and healthy women with the same gynecologic conditions. Transplant. Proc. 2012, 44, 740–743. [Google Scholar] [CrossRef]
- Iaria, G.; Urbani, L.; Catalano, G.; de Simone, P.; Carrai, P.; Petruccelli, S.; Morelli, L.; Coletti, L.; Garcia, C.; Liermannet, R.; et al. Switch to tacrolimus for cyclosporine-induced gynecomastia in liver transplant recipients. Transplant. Proc. 2005, 37, 2632–2633. [Google Scholar] [CrossRef]
- Tauchmanovà, L.; Selleri, C.; de Rosa, G.; Esposito, M.; Jr, F.O.; Palomba, S.; Bifulco, G.; Nappi, C.; Lombardi, G.; Rotoli, B.; et al. Gonadal status in reproductive age women after haematopoietic stem cell transplantation for haematological malignancies. Hum. Reprod. 2003, 18, 1410–1416. [Google Scholar] [CrossRef] [Green Version]
- Kaczmarek, I.; Groetzner, J.; Adamidis, I.; Landwehr, P.; Mueller, M.; Vogeser, M.; Gerstorfer, M.; Uberfuhr, P.; Meiser, B.; Reichart, B. Sirolimus impairs gonadal function in heart transplant recipients. Am. J. Transplant. 2004, 4, 1084–1088. [Google Scholar] [CrossRef]
- Szypulska-Koziarska, D.; Wilk, A.; Kabat-Koperska, J.; Kolasa-Wolosiuk, A.; Wolska, J.; Wiszniewska, B. The Effects of Short-Term Immunosuppressive Therapy on Redox Parameters in the Livers of Pregnant Wistar Rats. Int. J. Environ. Res. Public Health 2019, 16, 1370. [Google Scholar] [CrossRef] [Green Version]
- Wilk, A.; Szypulska-Koziarska, D.; Kedzierska-Kapuza, K.; Kolasa-Wolosiuk, A.; Misiakiewicz-Has, K.; Ciechanowski, K.; Wiszniewska, B. Effect of long-term immunosuppressive therapy on native rat liver morphology and hepatocyte- apoptosis. Transpl. Immunol. 2018, 50, 1–7. [Google Scholar] [CrossRef]
- Kabat-Koperska, J.; Kolasa-Wolosiuk, A.; Baranowska-Bosiacka, I.; Safranow, K.; Kosik-Bogacka, D.; Gutowska, I.; Pilutin, A.; Golembiewska, E.; Kedzierska, K.; Ciechanowski, K. The influence of exposure to immunosuppressive treatment during pregnancy on renal function and rate of apoptosis in native kidneys of female Wistar rats. Apoptosis 2016, 21, 1240–1248. [Google Scholar] [CrossRef] [Green Version]
- Perri, A.; Izzo, G.; Lofaro, D.; la Vignera, S.; Brunetti, A.; Calogero, A.E.; Aversa, A. Erectile Dysfunction after Kidney Transplantation. J. Clin. Med. 2020, 9, 502–504. [Google Scholar] [CrossRef]
- Saleem, T.S.; Basha, S.D. Red wine: A drink to your heart. J. Cardiovasc. Dis. Res. 2010, 1, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Parry, C.D.; Patra, J.; Rehm, J. Alcohol consumption and non-communicable diseases: Epidemiology and policy implications. Addiction 2011, 106, 1718–1724. [Google Scholar] [CrossRef]
- Inci, K.; Duzova, A.; Aki, F.T.; Bilginer, Y.; Erkan, I.; Tasar, C.; Bakkaloglu, A.; Bakkaloglu, M. Semen variables and hormone profiles after kidney transplantation during adolescence. Transplant. Proc. 2006, 38, 541–542. [Google Scholar] [CrossRef]
- Koyun, M.; Baysal, Y.E.; Usta, M.F.; Akman, S.; Guven, A.G. Evaluation of reproductive functions in male adolescents following renal transplantation. Pediatr. Transplant. 2009, 13, 697–700. [Google Scholar] [CrossRef] [PubMed]
- Kantarci, G.; Sahin, S.; Uras, A.R.; Ergin, H. Effects of different calcineurin inhibitors on sex hormone levels in transplanted male patients. Transplant. Proc. 2004, 36, 178–179. [Google Scholar] [CrossRef] [PubMed]
- Pertuz, W.; Castaneda, D.A.; Rincon, O.; Lozano, E. Sexual dysfunction in patients with chronic renal disease: Does it improve with renal transplantation? Transplant. Proc. 2014, 46, 3021–3026. [Google Scholar] [CrossRef] [PubMed]
- Peces, R.; de la Torre, M.; Urra, J.M. Pituitary-testicular function in cyclosporin-treated renal transplant patients. Nephrol. Dial Transpl. 1994, 9, 1453–1455. [Google Scholar] [CrossRef]
- Zhaeentan, S.; Amjadi, F.S.; Zandie, Z.; Joghataei, M.T.; Bakhtiyari, M.; Aflatoonian, R. The effects of hydrocortisone on tight junction genes in an in vitro model of the human fallopian epithelial cells. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 229, 127–131. [Google Scholar] [CrossRef]
- Georgiou, G.K.; Dounousi, E.; Harissis, H.V. Calcineurin inhibitors and male fertility after renal transplantation—A review. Andrologia 2016, 48, 483–490. [Google Scholar] [CrossRef]
- Fritsche, L.; Budde, K.; Dragun, D.; Einecke, G.; Diekmann, F.; Neumayer, H.H. Testosterone concentrations and sirolimus in male renal transplant patients. Am. J. Transplant. 2004, 4, 130–131. [Google Scholar] [CrossRef]
- Yilmaz, M.I.; Sonmez, A.; Qureshi, A.R.; Saglam, M.; Stenvinkel, P.; Yaman, H.; Eyileten, T.; Caglar, K.; Oguz, Y.; Taslipinar, A.; et al. Endogenous Testosterone, Endothelial Dysfunction, and Cardiovascular Events in Men with Nondialysis Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 1617–1625. [Google Scholar] [CrossRef] [PubMed]
- Cappelletti, M.; Wallen, K. Increasing women’s sexual desire: The comparative effectiveness of estrogens and androgens. Horm. Behav. 2016, 78, 178–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huyghe, E.; Zairi, A.; Nohra, J.; Kamar, N.; Plante, P.; Rostaing, L. Gonadal impact of target of rapamycin inhibitors (sirolimus and everolimus) in male patients: An overview. Transpl. Int. 2007, 20, 305–311. [Google Scholar] [CrossRef] [PubMed]
Parameter | TAC+ | TAC- | |||
---|---|---|---|---|---|
<45 | >45 | <45 | >45 | ||
AGE [years] | n | 19 | 21 | 7 | 10 |
Med | 39 | 62 | 37 | 61.5 | |
Q1–Q3 | 30–42 | 56–65 | 30–42 | 59–64 | |
SMOKING | n | 5 | 4 | 6 | 5 |
CONTRACEPTIVES | n | 1 | 0 | 1 | 0 |
HRT | n | 1 | 3 | 1 | 1 |
BMI [kg/m2] | n | 19 | 21 | 7 | 10 |
Med | 23 | 23.6 | 22.6 | 24.05 | |
Q1–Q3 | 21.6–23.6 | 22.5–25.00 | 21.2–24.2 | 22.6–24.6 | |
GFR [mL/min/m3] | n | 19 | 21 | 7 | 10 |
Med | 55 | 51 | 54 | 33 | |
Q1–Q3 | 39.0–65.0 | 35.0–61.0 | 30.0–90.0 | 26.0–56.0 | |
CRE [mg/dL] | n | 19 | 21 | 7 | 10 |
Med | 1.22 | 1.2 | 1.28 | 1.75 | |
Q1–Q3 | 1.05–1.61 | 0.98–1.59 | 0.87–2.02 | 1.07–2.12 | |
HEM [mmol/L] | n | 18 | 21 | 7 | 7 |
Med | 7.95 | 8 | 7 | 7.6 | |
Q1–Q3 | 7.5–8.5 | 7.4–8.5 | 6.1–8.7 | 6.5–8.4 | |
ALT [IU/L] | n | 19 | 21 | 7 | 10 |
Med | 17 | 19 | 17 | 19 | |
Q1–Q3 | 14.0–27.0 | 14.0–25.0 | 10.0–21.0 | 15.0–20.0 | |
PRED [mg/d] | n | 3 | 1 | 3 | 2 |
Med | 5 | 5 | 6.6 | 5 | |
Q1–Q3 | 4.00–6.00 | 5.00–5.00 | 5.00–10.00 | 5.00–5.00 | |
PRED [mg/kg] | n | 3 | 1 | 3 | 2 |
Med | 0.08 | 0.08 | 0.09 | 0.08 | |
Q1–Q3 | 0.08–0.09 | 0.08–0.08 | 0.08–0.1 | 0.08–0.08 |
Parameter | TAC+ | TAC- | |||
---|---|---|---|---|---|
<45 | >45 | <45 | >45 | ||
Age [years] | n | 16 | 30 | 4 | 14 |
Med | 34.5 | 60 | 36 | 61.5 | |
Q1–Q3 | 33–38 | 55–63 | 33–38 | 56–64 | |
SMOKING | n | 5 | 7 | 2 | 2 |
ED | n | 2 | 10 | 1 | 5 |
BMI [kg/m2] | n | 16 | 30 | 4 | 14 |
Med | 23.6 | 23.6 | 22.55 | 23.95 | |
Q1–Q3 | 22.5–24.5 | 22.5–24.5 | 21.85–23.3 | 23.0–25.0 | |
GFR [mL/min/m3] | n | 16 | 30 | 4 | 14 |
Med | 69 | 53 | 53.5 | 39.5 | |
Q1–Q3 | 50.5–78.0 | 44.0–73.0 | 35.0–76.6 | 25.0–53.0 | |
CRE [mg/dL] | n | 16 | 30 | 4 | 14 |
Med | 1.33 | 1.34 | 1.63 | 1.76 | |
Q1–Q3 | 1.17–1.74 | 1.09–1.78 | 1.28–2.68 | 1.4–2.88 | |
HEM [mmol/L] | n | 16 | 30 | 4 | 14 |
Med | 8 | 19 | 8.6 | 8.1 | |
Q1–Q3 | 7.7–8.55 | 15.0–26.0 | 7.15–9.7 | 7.0–9.2 | |
ALT [IU/L] | Q1–Q3 | 16 | 30 | 4 | 14 |
Med | 20.5 | 19 | 33.5 | 25 | |
Q1–Q3 | 14.5–29.5 | 15.0–26.0 | 23.5–37.0 | 15.0–29.0 | |
PRED [mg/d] | n | 1 | 2 | 1 | 2 |
Med | 5 | 7 | 5 | 7.5 | |
Q1–Q3 | 5.00–5.00 | 4.00–10.00 | 5.00–5.00 | 5.00–10.00 | |
PRED [mg/kg] | n | 1 | 2 | 1 | 2 |
Med | 0.08 | 0.08 | 0.07 | 0.09 | |
Q1–Q3 | 0.08–0.08 | 0.07–0.08 | 0.07–0.07 | 0.08–0.09 |
Parameter | Females (n = 57) | Males (n = 62) | |||
---|---|---|---|---|---|
TAC+ (n = 40) | TAC- (n = 17) | TAC+ (n = 44) | TAC- (n = 18) | ||
FSH [mLU/mL] | Med Q1–Q3 | 21.50 3.75–80.50 | 8.40 4.20–28.10 | 6.90 4.35–10.45 | 4.80 3.61–7.30 |
MW U p = 0.453 | MW U * p = 0.048 | ||||
LH [mLU/mL] | Med Q1–Q3 | 26.75 8.46–50.80 | 14.80 9.71–21.90 | 7.10 4.15–9.65 | 7.26 5.60–13.30 |
MW U p = 0.524 | MW U p = 0.393 | ||||
T [ng/mL] | Med Q1–Q3 | 0.121 0.05–0.21 | 0.137 0.02–0.53 | 4.04 3.31–4.78 | 3.47 2.56–4.25 |
MW U * p = 0.048 | MW U * p = 0.042 | ||||
E2 [pg/mL] | Med Q1–Q3 | 32.90 8.30–137.00 | 55.40 6.13–136.80 | 26.55 18.45–30.25 | 24.45 17.40–31.40 |
MW U p = 0.870 | MW U p = 0.912 | ||||
PRL [ng/mL] | Med Q1–Q3 | 14.40 10.60–18.40 | 17.60 15.90–127.00 | 11.30 8.30–12.50 | 12.45 9.31–19.70 |
MW U ** p = 0.004 | MW U p = 0.172 | ||||
CORT [μg/mL] | Med Q1–Q3 | 82.45 57.55–115.00 | 105.00 88.40–165.00 | 82.60 55.70–116.00 | 97.80 77.30–123.00 |
MW U * p = 0.011 | MW U p = 0.300 | ||||
TAC[ng/mL] | Med Q1–Q3 | 6.45 4.90–8.20 | - | 5.70 4.70–7.90 | - |
Parameter | <45 (n = 26) | >45 (n = 31) | |||
---|---|---|---|---|---|
TAC+ (n = 19) | TAC- (n = 7) | TAC+ (n = 21) | TAC- (n = 10) | ||
FSH [mLU/mL] | Med Q1–Q3 | 3.90 2.80–6.60 | 4.50 2.30–6.27 | 73.90 53.60–91.30 | 24.80 8.40–81.80 |
MW U p = 0.917 | MW U p = 0.156 | ||||
LH [mLU/mL] | Med Q1–Q3 | 9.60 4.80–20.90 | 9.80 5.59–17.20 | 45.70 36.00–69.70 | 18.60 10.70–79.80 |
MW U p = 0.817 | MW U p = 0.386 | ||||
T [ng/mL] | Med Q1–Q3 | 0.13 0.06–0.27 | 0.17 0.02–0.53 | 0.09 0.02–0.21 | 0.09 0.02–3.13 |
MW U p = 0.602 | MW U p = 0.945 | ||||
E2 [pg/mL] | Med Q1–Q3 | 132.0 57.50–179.00 | 58.20 4.50– 158.00 | 11.70 4.50–20.30 | 38.70 7.76–88.00 |
MW U p = 0.272 | MW U p = 0.056 | ||||
PRL [ng/mL] | Med Q1–Q3 | 16.40 12.80–23.10 | 17.00 14.10–19.60 | 11.45 9.12–16.10 | 20.65 16.00–32.90 |
MW U p = 0.09 | MW U * p = 0.007 | ||||
CORT [μg/mL] | Med Q1–Q3 | 75.10 45.10–124.00 | 104.00 88.40–179.00 | 97.30 61.50–110.00 | 105.00 87.50–165.00 |
MW U * p = 0.049 | MW U p = 0.122 | ||||
TAC[ng/mL] | Med Q1–Q3 | 6.80 5.30–8.20 | - | 6.40 4.70–8.00 | - |
Parameter | <45 (n = 21) | >45 (n = 41) | |||
---|---|---|---|---|---|
TAC+ (n = 16) | TAC- (n = 5) | TAC+ (n = 28) | TAC- (n = 13) | ||
FSH [mLU/mL] | Med Q1–Q3 | 5.81 3.75–9.34 | 4.76 3.81–5.92 | 7.35 4.99–11.70 | 4.90 3.61–7.96 |
MW U p = 0.363 | MW U p = 0.207 | ||||
LH [mLU/mL] | Med Q1–Q3 | 5.73 3.89–7.60 | 7.30 6.40–12.72 | 7.35 4.66–10.40 | 7.22 5.08–13.30 |
MW U p = 0.301 | MW U p = 0.833 | ||||
T [ng/mL] | Med Q1–Q3 | 4.03 3.61–4.91 | 3.85 3.21–5.33 | 3.96 3.02–4.66 | 3.15 2.50–4.25 |
MW U p = 0.649 | MW U p = 0.244 | ||||
E2 [pg/mL] | Med Q1–Q3 | 20.10 13.20–26.00 | 18.70 10.19–19.80 | 27.80 21.65–33.90 | 29.10 22.50–38.60 |
MW U p = 0.710 | MW U p = 0.988 | ||||
PRL [ng/mL] | Med Q1–Q3 | 11.40 8.82–12.50 | 16.10 13.65–22.20 | 11.20 9.30–13.75 | 12.30 7.92–18.10 |
MW U p = 0.052 | MW U p = 0.726 | ||||
CORT [μg/mL] | Med Q1–Q3 | 69.25 51.75–85.0 | 85.00 60.65–111.0 | 103.0 61.5–124.0 | 98.3 83.7–123.0 |
MW U * p = 0.046 | MW U p = 0.862 | ||||
TAC[ng/mL] | Med Q1–Q3 | 6.90 5.00–9.50 | - | 5.60 4.70–7.70 | - |
Correlated Hormones | Correlation Coefficients | ||
---|---|---|---|
TAC+ | TAC- | All Patients | |
FSH/LH | 0.73 * | 0.66 * | 0.72 * |
FSH/E2 | −0.61 * | −0.16 | −0.49 * |
FSH/PRL | −0.11 | 0.24 | −0.05 |
FSH/T | −0.18 | −0.02 | −0.13 |
FSH/CORT | 0.07 | 0.02 | 0.002 |
LH/E2 | −0.23 * | 0.21 | −0.10 |
LH/PRL | 0.13 | 0.27 | 0.16 |
LH/T | −0.35 * | −0.04 | −0.27 * |
LH/CORT | −0.04 | −0.09 | −0.05 |
E2/PRL | 0.30 * | 0.20 | 0.28 * |
E2/T | −0.01 | 0.05 | 0.01 |
E2/CORT | 0.09 | 0.04 | 0.09 |
PRL/T | −0.29 * | 0.01 | −0.21 * |
PRL/CORT | 0.11 | 0.07 | 0.14 |
T/CORT | −0.02 | 0.06 | 0.005 |
Hormone | Females (n = 40) | Males (n = 44) | ||||
---|---|---|---|---|---|---|
Regression Equation | R | p | Regression Equation | R | p | |
H | Y = 38.22 + 1.97x | 0.11 | 0.51 | Y = 1.22 + 1.94x | 0.22 | 0.164 |
LH | Y = 27.32 + 1.49x | 0.12 | 0.46 | Y = 4.42 + 1.02x | 0.17 | 0.275 |
E2 | Y = 137.41 − 8.42x | −0.17 | 0.32 | Y = 31.32 − 0.86x | −0.23 | 0.148 |
PRL | Y = 13.87 + 0.20x | 0.07 | 0.68 | Y = 11.67 + 0.12x | 0.04 | 0.771 |
T | Y = 0.17 − 0.004x | −0.07 | 0.69 | Y = 4.87 − 0.11x | −0.15 | 0.333 |
CORT | Y = 98.81 − 0.84x | −0.06 | 0.73 | Y = 126.96 − 5.69 | −0.37 | 0.14 |
Parameter | TAC+ (n = 84) | TAC- (n = 35) | |
---|---|---|---|
GFR [mL/min/m3] | Med Q1–Q3 | 54.00 10.00–100.00 | 40.00 9.00–110.00 |
MW U p = 0.018 | |||
CREATININE [mg/dL] | Med Q1–Q3 | 1.285 0.72–4.42 | 1.57 0.74–5.92 |
MW U p = 0.022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szypulska-Koziarska, D.; Wilk, A.; Marchelek-Myśliwiec, M.; Śleboda-Taront, D.; Wiszniewska, B. Tacrolimus-Based Immunosuppressive Therapy Influences Sex Hormone Profile in Renal-Transplant Recipients—A Research Study. Biology 2021, 10, 709. https://doi.org/10.3390/biology10080709
Szypulska-Koziarska D, Wilk A, Marchelek-Myśliwiec M, Śleboda-Taront D, Wiszniewska B. Tacrolimus-Based Immunosuppressive Therapy Influences Sex Hormone Profile in Renal-Transplant Recipients—A Research Study. Biology. 2021; 10(8):709. https://doi.org/10.3390/biology10080709
Chicago/Turabian StyleSzypulska-Koziarska, Dagmara, Aleksandra Wilk, Małgorzata Marchelek-Myśliwiec, Daria Śleboda-Taront, and Barbara Wiszniewska. 2021. "Tacrolimus-Based Immunosuppressive Therapy Influences Sex Hormone Profile in Renal-Transplant Recipients—A Research Study" Biology 10, no. 8: 709. https://doi.org/10.3390/biology10080709
APA StyleSzypulska-Koziarska, D., Wilk, A., Marchelek-Myśliwiec, M., Śleboda-Taront, D., & Wiszniewska, B. (2021). Tacrolimus-Based Immunosuppressive Therapy Influences Sex Hormone Profile in Renal-Transplant Recipients—A Research Study. Biology, 10(8), 709. https://doi.org/10.3390/biology10080709