Protein Model and Function Analysis in Quorum-Sensing Pathway of Vibrio qinghaiensis sp.-Q67
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Protein Sequence
2.2. Software
2.3. Monomeric Protein Modeling
2.4. Oligomeric Structure Prediction and Evaluation
2.5. Model Evaluation
3. Results and Discussion
3.1. Homologous Model of Monomers and Oligomers
3.1.1. Modeling of Protein Monomers
3.1.2. Modeling of Protein Oligomers
3.2. Autoinducer Synthases and Receptor
3.2.1. LuxI and LuxR
3.2.2. LuxM and LuxN
3.2.3. CqsA and CqsS
3.2.4. LuxS and LuxPQ
3.3. Signal Transmission Protein: Phosphotransferase, RNA Chaperone, and Transcriptional Regulator
3.3.1. Phosphotransferase: LuxU and LuxO
3.3.2. RNA Chaperone: Hfq
3.3.3. Transcriptional Regulator: HapR(LitR)
3.4. Enzymes in the Bacterial Bioluminescence Reaction
3.4.1. Luciferase: LuxA and LuxB
3.4.2. Fatty Acid Reductase Complex: LuxC, LuxD, and LuxE
3.4.3. Flavin Reductase: LuxG
3.5. Homologous Model and Its Application in Q67
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Widder, E.A. Bioluminescence in the ocean: Origins of biological, chemical, and ecological diversity. Science 2010, 328, 704–708. [Google Scholar] [CrossRef] [Green Version]
- Haddock, S.H.D.; Moline, M.A.; Case, J.F. Bioluminescence in the Sea. Annu. Rev. Mar. Sci. 2010, 2, 443–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodl, E.; Winkler, A.; Macheroux, P. Molecular mechanisms of bacterial bioluminescence. Comput. Struct. Biotechnol. J. 2018, 16, 551–564. [Google Scholar]
- Urbanczyk, H.; Ast, J.C.; Kaeding, A.J.; Oliver, J.D.; Dunlap, P.V. Phylogenetic analysis of the incidence of lux gene horizontal transfer in Vibrionaceae. J. Bacteriol. 2008, 190, 3494–3504. [Google Scholar] [CrossRef] [Green Version]
- Nijvipakul, S.; Wongratana, J.; Suadee, C.; Entsch, B.; Ballou, D.P.; Chaiyen, P. LuxG is a functioning flavin reductase for bacterial luminescence. J. Bacteriol. 2008, 190, 1531–1538. [Google Scholar] [CrossRef] [Green Version]
- Meighen, E.A. Molecular-biology of bacterial bioluminescence. Microbiol. Rev. 1991, 55, 123–142. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Liu, Y.J.; Ferre, N.; Fang, W.H. Understanding bacterial bioluminescence: A theoretical study of the entire process, from reduced flavin to light emission. Chem. Eur. J. 2014, 20, 7979–7986. [Google Scholar] [CrossRef]
- Miller, M.B.; Bassler, B.L. Quorum sensing in bacteria. Annu. Rev. Microbiol. 2001, 55, 165–199. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhang, L.K.; Zhang, M.X.; Liu, H.Y.; Lu, P.R.; Lin, K.J. Quorum sensing inhibitors: A patent review (2014–2018). Expert Opin. Ther. Pat. 2018, 28, 849–865. [Google Scholar] [CrossRef]
- Verma, S.C.; Miyashiro, T. Quorum sensing in the squid-Vibrio symbiosis. Int. J. Mol. Sci. 2013, 14, 16386–16401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, C.M.; Bassler, B.L. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 2005, 21, 319–346. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.B.; Skorupski, K.; Lenz, D.H.; Taylor, R.K.; Bassler, B.L. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 2002, 110, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Henke, J.M.; Bassler, B.L. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J. Bacteriol. 2004, 186, 6902–6914. [Google Scholar] [CrossRef] [Green Version]
- Lupp, C.; Urbanowski, M.; Greenberg, E.P.; Ruby, E.G. The Vibrio fischeri quorum-sensing systems ain and lux sequentially induce luminescence gene expression and are important for persistence in the squid host. Mol. Microbiol. 2003, 50, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Watve, S.; Barrasso, K.; Jung, S.R.A.; Davis, K.J.; Hawver, L.A.; Khataokar, A.; Palaganas, R.G.; Neiditch, M.B.; Perez, L.J.; Ng, W.L. Parallel quorum-sensing system in Vibrio cholerae prevents signal interference inside the host. PLoS Pathog. 2020, 16, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, R.; Sun, H.; Yu, Y.; Lin, Z.; Qin, M.; Liu, Y. Time-dependent hormesis of chemical mixtures: A case study on sulfa antibiotics and a quorum-sensing inhibitor of Vibrio fischeri. Environ. Toxicol. Pharmacol. 2016, 41, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Antunes, L.C.M.; Schaefer, A.L.; Ferreira, R.B.R.; Qin, N.; Stevens, A.M.; Ruby, E.G.; Greenberg, E.P. Transcriptome analysis of the Vibrio fischeri LuxR-LuxI regulon. J. Bacteriol. 2007, 189, 8387–8391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuqua, W.C.; Winans, S.C.; Greenberg, E.P. Quorum sensing in bacteria-the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 1994, 176, 269–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ball, A.S.; van Kessel, J.C. The master quorum-sensing regulators LuxR/HapR directly interact with the alpha subunit of RNA polymerase to drive transcription activation in Vibrio harveyi and Vibrio cholerae. Mol. Microbiol. 2019, 111, 1317–1334. [Google Scholar] [CrossRef]
- Ke, X.B.; Miller, L.C.; Ng, W.L.; Bassler, B.L. CqsA-CqsS quorum-sensing signal-receptor specificity in Photobacterium angustum. Mol. Microbiol. 2014, 91, 821–833. [Google Scholar] [CrossRef] [Green Version]
- Freeman, J.A.; Lilley, B.N.; Bassler, B.L. A genetic analysis of the functions of LuxN: A two-component hybrid sensor kinase that regulates quorum sensing in Vibrio harveyi. Mol. Microbiol. 2000, 35, 139–149. [Google Scholar] [CrossRef]
- Neiditch, M.B.; Federle, M.J.; Miller, S.T.; Bassler, B.L.; Hughson, F.M. Regulation of LuxPQ receptor activity by the quorum-sensing signal autoinducer-2. Mol. Cell 2005, 18, 507–518. [Google Scholar] [CrossRef]
- Freeman, J.A.; Bassler, B.L. Sequence and function of LuxU: A two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. J. Bacteriol. 1999, 181, 899–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyashiro, T.; Wollenberg, M.S.; Cao, X.D.; Oehlert, D.; Ruby, E.G. A single qrr gene is necessary and sufficient for LuxO-mediated regulation in Vibrio fischeri. Mol. Microbiol. 2010, 77, 1556–1567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyaci, H.; Shah, T.; Hurley, A.; Kokona, B.; Li, Z.; Ventocilla, C.; Jeffrey, P.D.; Semmelhack, M.F.; Fairman, R.; Bassler, B.L.; et al. Structure, regulation, and inhibition of the quorum-sensing signal integrator LuxO. PLoS Biol. 2016, 14, 5. [Google Scholar] [CrossRef]
- Fidopiastis, P.M.; Miyamoto, C.M.; Jobling, M.G.; Meighen, E.A.; Ruby, E.G. LitR, a new transcriptional activator in Vibrio fischeri, regulates luminescence and symbiotic light organ colonization. Mol. Microbiol. 2002, 45, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.J.; Wang, J. A new species of luminous bacteria Vibrio qinghaiensis sp. nov. Oceanol. Limnol. Sin. 1994, 25, 273–279. (In Chinese) [Google Scholar]
- Zhou, X.F.; Sang, W.J.; Liu, S.S.; Zhang, Y.L.; Ge, H.L. Modeling and prediction for the acute toxicity of pesticide mixtures to the freshwater luminescent bacterium Vibrio qinghaiensis sp.-Q67. J. Environ. Sci. 2010, 22, 433–440. [Google Scholar] [CrossRef]
- Shi, Y.; Ding, W. Detection of veterinary drug residues in pork by photobacteria. Acat Agric. Boreali Occident. Sin. 2016, 25, 1420–1426. (In Chinese) [Google Scholar]
- Huang, F.X.; Liao, C.; Yang, P.; Qian, S.; Zhang, D.; Fang, W.K.; Dan, D.Z. Toxicity of metal compounds to luminescent bacteria and sensitivity differences of different luminescent bacteria. Acta Sci. Circumstantiae 2010, 30, 1787–1792. (In Chinese) [Google Scholar]
- Zhang, J.; Ding, T.T.; Dong, X.Q.; Bian, Z.Q. Time-dependent and Pb-dependent antagonism and synergism towards Vibrio qinghaiensis sp.-Q67 within heavy metal mixtures. RSC Adv. 2018, 8, 26089–26098. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.Y.; Wang, X.C.; Ngo, H.H.; Guo, W.; Wu, M.N.; Wang, N. Reverse osmosis pretreatment method for toxicity assessment of domestic wastewater using Vibrio qinghaiensis sp.-Q67. Ecotoxicol. Environ. Saf. 2013, 97, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.Y.; Wang, X.C.; Liu, Y.J. Study of the variation of ecotoxicity at different stages of domestic wastewater treatment using Vibrio-qinghaiensis sp.-Q67. J. Hazard. Mater. 2011, 190, 100–105. [Google Scholar] [CrossRef]
- Ma, D.H.; Liu, C.; Zhu, X.B.; Liu, R.; Chen, L.J. Acute toxicity and chemical evaluation of coking wastewater under biological and advanced physicochemical treatment processes. Environ. Sci. Pollut. Res. 2016, 23, 18343–18352. [Google Scholar]
- Zhang, J.; Liu, S.; Wang, C.; Deng, H. Combined toxicity of ionic liquids and industrial wastewater on Vibrio qinghaiensis sp.-Q67. Acta Sci. Circumstantiae 2013, 33, 850–855. (In Chinese) [Google Scholar]
- Mo, L.Y.; Liu, S.S.; Zhu, Y.N.; Liu, H.L.; Liu, H.Y.; Yi, Z.S. Combined toxicity of the mixtures of phenol and aniline derivatives to Vibrio qinghaiensis sp.-Q67. Bull. Environ. Contam. Toxicol. 2011, 87, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, S.S.; Yu, M.; Chen, F. Application of the combination index integrated with confidence intervals to study the toxicological interactions of antibiotics and pesticides in Vibrio qinghaiensis sp.-Q67. Environ. Toxicol. Pharmacol. 2015, 39, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Liu, S.S.; Qu, R.; Li, K.; Liu, H.L. Polymyxin B sulfate inducing time-dependent antagonism of the mixtures of pesticide, ionic liquids, and antibiotics to Vibrio qinghaiensis sp.-Q67. RSC Adv. 2017, 7, 6080–6088. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Liu, S.S.; Fan, Y.; Li, K. Toxicological interaction of multi-component mixtures to Vibrio qinghaiensis sp.-Q67 induced by at least three components. Sci. Total Environ. 2018, 635, 432–442. [Google Scholar] [CrossRef]
- Wang, Z.J.; Liu, S.S.; Feng, L.; Xu, Y.Q. BNNmix: A new approach for predicting the mixture toxicity of multiple components based on the back-propagation neural network. Sci. Total Environ. 2020, 738, 140317. [Google Scholar] [CrossRef]
- Zheng, Q.F.; Ju, Z.; Liu, S.S. Combined toxicity of dichlorvos and its metabolites to Vibrio qinghaiensis sp.-Q67 and Caenorhabditis elegans. Acta Chim. Sin. 2019, 77, 1008–1016. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.S.; Yu, Z.Y.; Liu, H.L.; Zhang, J. The time-dependent hormetic effects of 1-alkyl-3-methylimidazolium chloride and their mixtures on Vibrio Qinghaiensis Sp.-Q67. J. Hazard. Mater. 2013, 258, 70–76. [Google Scholar] [CrossRef]
- Qu, R.; Liu, S.S.; Li, T.; Liu, H.L. Using an interpolation-based method (IDVequ) to predict the combined toxicities of hormetic ionic liquids. Chemosphere 2019, 217, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.Y.; Zhang, J.; Hou, M.F. The time-dependent stimulation of sodium halide salts on redox reactants, energy supply and luminescence in Vibrio fischeri. J. Hazard. Mater. 2018, 342, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.F.; Yu, M.; Liu, S.S.; Chen, F. Hormesis of some organic solvents on Vibrio qinghaiensis sp.-Q67 from first binding to the beta subunit of luciferase. RSC Adv. 2017, 7, 37636–37642. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.Q.; Liu, S.S.; Chen, F.; Wang, Z.J. pH affects the hormesis profiles of personal care product components on luminescence of the bacteria Vibrio qinghaiensis sp.-Q67. Sci. Total Environ. 2020, 713, 136656. [Google Scholar] [CrossRef] [PubMed]
- Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinform. 2016, 54, 1–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sali, A.; Blundell, T.L. Comparative protein modeling by satisfaction of spatial restraints. J. Mol. Biol. 1993, 234, 779–815. [Google Scholar] [CrossRef] [PubMed]
- Poupon, A.; Janin, J. Analysis and prediction of protein quaternary structure. In Data Mining Techniques for the Life Sciences; Carugo, O., Eisenhaber, F., Eds.; Humana Press Inc.: Totowa, Passaic, 2010; Volume 609, pp. 349–364. [Google Scholar]
- Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Cassarino, T.G.; Bertoni, M.; Bordoli, L.; et al. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014, 42, W252–W258. [Google Scholar] [CrossRef]
- Mariani, V.; Kiefer, F.; Schmidt, T.; Haas, J.; Schwede, T. Assessment of template based protein structure predictions in CASP9. Proteins 2011, 79, 37–58. [Google Scholar] [CrossRef]
- Webb, B.; Sali, A. Protein structure modeling with MODELLER. Methods Mol. Biol. 2021, 2199, 239–255. [Google Scholar]
- Melo, F.; Sali, A. Fold assessment for comparative protein structure modeling. Protein Sci. 2007, 16, 2412–2426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, W.T.; Minogue, T.D.; Val, D.L.; von Bodman, S.B.; Churchill, M.E.A. Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Mol. Cell 2002, 9, 685–694. [Google Scholar] [CrossRef] [Green Version]
- Chung, J.; Goo, E.; Yu, S.; Choi, O.; Lee, J.; Kim, J.; Kim, H.; Igarashi, J.; Suga, H.; Moon, J.S.; et al. Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase. Proc. Natl. Acad. Sci. USA 2011, 108, 12089–12094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gould, T.A.; Schweizer, H.P.; Churchill, M.E.A. Structure of the Pseudomonas aeruginosa acyl-homoserinelactone synthase LasI. Mol. Microbiol. 2004, 53, 1135–1146. [Google Scholar] [CrossRef] [PubMed]
- Vannini, A.; Volpari, C.; Gargioli, C.; Muraglia, E.; Cortese, R.; De Francesco, R.; Neddermann, P.; Di Marco, S. The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J. 2002, 21, 4393–4401. [Google Scholar] [CrossRef]
- Nguyen, Y.; Nguyen, N.X.; Rogers, J.L.; Liao, J.; MacMillan, J.B.; Jiang, Y.X.; Sperandio, V. Structural and mechanistic roles of novel chemical ligands on the SdiA quorum-sensing transcription regulator. mBio 2015, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.Z.; Swem, L.R.; Swem, D.L.; Stauff, D.L.; O’Loughlin, C.T.; Jeffrey, P.D.; Bassler, B.L.; Hughson, F.M. A strategy for antagonizing quorum sensing. Mol. Cell 2011, 42, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Wysoczynski-Horita, C.L.; Boursier, M.E.; Hill, R.; Hansen, K.; Blackwell, H.E.; Churchill, M.E.A. Mechanism of agonism and antagonism of the Pseudomonas aeruginosa quorum sensing regulator QscR with non-native ligands. Mol. Microbiol. 2018, 108, 240–257. [Google Scholar] [CrossRef] [Green Version]
- Wisedchaisri, G.; Wu, M.T.; Sherman, D.R.; Hol, W.G.J. Crystal structures of the response regulator DosR from Mycobacterium tuberculosis suggest a helix rearrangement mechanism for phosphorylation activation. J. Mol. Biol. 2008, 378, 227–242. [Google Scholar] [CrossRef] [Green Version]
- McCready, A.R.; Paczkowski, J.E.; Henke, B.R.; Bassler, B.L. Structural determinants driving homoserine lactone ligand selection in the Pseudomonas aeruginosa LasR quorum-sensing receptor. Proc. Natl. Acad. Sci. USA 2019, 116, 245–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milton, D.L.; Chalker, V.J.; Kirke, D.; Hardman, A.; Camara, M.; Williams, P. The luxM Homologue vanM from Vibrio anguillanrum directs the synthesis of N-(3-hydroxyhexanoyl)homoserine lactone and N-hexanoylhomoserine lactone. J. Bacteriol. 2001, 183, 3537–3547. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Su, M.; Ahmad, A.; Hu, X.; Sang, J.; Kong, L.; Chen, X.; Wang, C.; Shuai, J.; Han, A. Conformational dynamics of the essential sensor histidine kinase WalK. Acta Crystallogr. Sect. D Struct. Biol. 2017, 73, 793–803. [Google Scholar] [CrossRef] [Green Version]
- Kelly, R.C.; Bolitho, M.E.; Higgins, D.A.; Lu, W.Y.; Ng, W.L.; Jeffrey, P.D.; Rabinowitz, J.D.; Semmelhack, M.F.; Hughson, F.M.; Bassler, B.L. The Vibrio cholerae quorum-sensing autoinducer CAI-1: Analysis of the biosynthetic enzyme CqsA. Nat. Chem. Biol. 2009, 5, 891–895. [Google Scholar] [CrossRef] [Green Version]
- Jahan, N.; Potter, J.A.; Sheikh, M.A.; Botting, C.H.; Shirran, S.L.; Westwood, N.J.; Taylor, G.L. Insights into the biosynthesis of the Vibrio cholerae major autoinducer CAI-1 from the crystal structure of the PLP-dependent enzyme CqsA. J. Mol. Biol. 2009, 392, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Lewis, H.A.; Furlong, E.B.; Laubert, B.; Eroshkina, G.A.; Batiyenko, Y.; Adams, J.M.; Bergseid, M.G.; Marsh, C.D.; Peat, T.S.; Sanderson, W.E.; et al. A structural genomics approach to the study of quorum sensing: Crystal structures of three LuxS orthologs. Structure 2001, 9, 527–537. [Google Scholar] [CrossRef] [Green Version]
- Hilgers, M.T.; Ludwig, M.L. Crystal structure of the quorum-sensing protein LuxS reveals a catalytic metal site. Proc. Natl. Acad. Sci. USA 2001, 98, 11169–11174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruzheinikov, S.N.; Das, S.K.; Sedelnikova, S.E.; Hartley, A.; Foster, S.J.; Horsburgh, M.J.; Cox, A.G.; McCleod, C.W.; Mekhalfia, A.; Blackburn, G.M.; et al. The 1.2 angstrom structure of a novel quorum-sensing protein, Bacillus subtilis LuxS. J. Mol. Biol. 2001, 313, 111–122. [Google Scholar] [CrossRef]
- Rajan, R.; Zhu, J.; Hu, X.B.; Pei, D.H.; Bell, C.E. Crystal structure of S-Ribosylhomocysteinase (LuxS) in complex with a catalytic 2-ketone intermediate. Biochemistry 2005, 44, 3745–3753. [Google Scholar] [CrossRef]
- Chen, X.; Schauder, S.; Potier, N.; Van Dorsselaer, A.; Pelczer, I.; Bassler, B.L.; Hughson, F.M. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 2002, 415, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Neiditch, M.B.; Federle, M.J.; Pompeani, A.J.; Kelly, R.C.; Swem, D.L.; Jeffrey, P.D.; Bassler, B.L.; Hughson, F.M. Ligand-induced asymmetry in histidine sensor kinase complex regulates quorum sensing. Cell 2006, 126, 1095–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, G.; Bressloff, P.C. Modeling the role of feedback in the adaptive response of bacterial quorum sensing. Bull. Math. Biol. 2019, 81, 1479–1505. [Google Scholar] [CrossRef]
- Ulrich, D.L.; Kojetin, D.; Bassler, B.L.; Cavanagh, J.; Loria, J.P. Solution structure and dynamics of LuxU from Vibrio harveyi, a phosphotransferase protein involved in bacterial quorum sensing. J. Mol. Biol. 2005, 347, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Lilley, B.N.; Bassler, B.L. Regulation of quorum sensing in Vibrio harveyi by LuxO and Sigma-54. Mol. Microbiol. 2000, 36, 940–954. [Google Scholar] [CrossRef]
- Miyamoto, C.M.; Dunlap, P.V.; Ruby, E.G.; Meighen, E.A. LuxO controls luxR expression in Vibrio harveyi: Evidence for a common regulatory mechanism in Vibrio. Mol. Microbiol. 2003, 48, 537–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenz, D.H.; Mok, K.C.; Lilley, B.N.; Kulkarni, R.V.; Wingreen, N.S.; Bassler, B.L. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 2004, 118, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Vincent, H.A.; Henderson, C.A.; Stone, C.M.; Cary, P.D.; Gowers, D.M.; Sobott, F.; Taylor, J.E.; Callaghan, A.J. The low-resolution solution structure of Vibrio cholerae Hfq in complex with Qrr1 sRNA. Nucleic Acids Res. 2012, 40, 8698–8710. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.H.; Rutherford, S.T.; Papenfort, K.; Bagert, J.D.; van Kessel, J.C.; Tirrell, D.A.; Wingreen, N.S.; Bassler, B.L. A Qrr noncoding RNA deploys Four different regulatory mechanisms to optimize quorum-sensing dynamics. Cell 2015, 160, 228–240. [Google Scholar] [CrossRef] [Green Version]
- Hammer, B.K.; Bassler, B.L. Regulatory small RNAs circumvent the conventional quorum sensing pathway in pandemic Vibrio cholerae. Proc. Natl. Acad. Sci. USA 2007, 104, 11145–11149. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Koestler, B.J.; Waters, C.M.; Hammer, B.K. Post-transcriptional activation of a diguanylate cyclase by quorum sensing small RNAs promotes biofilm formation in Vibrio cholerae. Mol. Microbiol. 2013, 89, 989–1002. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.W.; Wang, L.J.; Zou, Y.; Zhang, J.H.; Gong, Q.G.; Wu, J.H.; Shi, Y.Y. Cooperation of Escherichia coli Hfq hexamers in DsrA binding. Genes Dev. 2011, 25, 2106–2117. [Google Scholar] [CrossRef] [Green Version]
- Sauer, E.; Weichenrieder, O. Structural basis for RNA 3 ‘-end recognition by Hfq. Proc. Natl. Acad. Sci. USA 2011, 108, 13065–13070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Y.; Feng, L.H.; Rutherford, S.T.; Papenfort, K.; Bassler, B.L. Functional determinants of the quorum-sensing non-coding RNAs and their roles in target regulation. EMBO J. 2013, 32, 2158–2171. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Miller, M.B.; Vance, R.E.; Dziejman, M.; Bassler, B.L.; Mekalanos, J.J. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 2002, 99, 3129–3134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Mekalanos, J.J. Quorum sensing-dependent biofilms enhance colonization in Vibrid cholerae. Dev. Cell 2003, 5, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Fisher, A.J.; Raushel, F.M.; Baldwin, T.O.; Rayment, I. 3-dimensional structure of bacterial luciferase from Vibrio-harveyi at 2.4 angstrom resolution. Biochemistry 1995, 34, 6581–6586. [Google Scholar] [CrossRef]
- Thoden, J.B.; Holden, H.M.; Fisher, A.J.; Sinclair, J.F.; Wesenberg, G.; Baldwin, T.O.; Rayment, I. Structure of the beta(2) homodimer of bacterial luciferase from Vibrio harveyi: X-ray analysis of a kinetic protein folding trap. Protein Sci. 1997, 6, 13–23. [Google Scholar] [CrossRef]
- Tanner, J.J.; Miller, M.D.; Wilson, K.S.; Tu, S.C.; Krause, K.L. Structure of bacterial luciferase beta(2) homodimer: Implications for flavin binding. Biochemistry 1997, 36, 665–672. [Google Scholar] [CrossRef]
- Campbell, Z.T.; Weichsel, A.; Montfort, W.R.; Baldwin, T.O. Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the beta subunit. Biochemistry 2009, 48, 6085–6094. [Google Scholar] [CrossRef]
- Aufhammer, S.W.; Warkentin, E.; Berk, H.; Shima, S.; Thauer, R.K.; Ermler, U. Coenzyme binding in F-420-dependent secondary alcohol dehydrogenase, a member of the bacterial luciferase family. Structure 2004, 12, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Aufhammer, S.W.; Warkentin, E.; Ermler, U.; Hagemeier, C.H.; Thauer, R.K.; Shima, S. Crystal structure of methylenetetrahydromethanopterin reductase (Mer) in complex with coenzyme F420: Architecture of the F-420/FMN binding site of enzymes within the nonprolyl cis-peptide containing bacterial luciferase family. Protein Sci. 2005, 14, 1840–1849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quoc-Thai, N.; Trinco, G.; Binda, C.; Mattevi, A.; Fraaije, M.W. Discovery and characterization of an F-420-dependent glucose-6-phosphate dehydrogenase (Rh-FGD1) from Rhodococcus jostii RHA1. Appl. Microbiol. Biotechnol. 2017, 101, 2831–2842. [Google Scholar]
- Fisher, A.J.; Thompson, T.B.; Thoden, J.B.; Baldwin, T.O.; Rayment, I. The 1.5-angstrom resolution crystal structure of bacterial luciferase in low salt conditions. J. Biol. Chem. 1996, 271, 21956–21968. [Google Scholar] [CrossRef] [Green Version]
- Ferri, S.R.; Meighen, E.A. A Lux-specific myristoyl transferase in luminescent bacteria related to eukaryotic serine esterases. J. Biol. Chem. 1991, 266, 12852–12857. [Google Scholar] [CrossRef]
- Lawson, D.M.; Derewenda, U.; Serre, L.; Ferri, S.; Szittner, R.; Wei, Y.; Meighen, E.A.; Derewenda, Z.S. Structure of a myristoyl-ACP-specific thioesterase from Vibrio-harveyi. Biochemistry 1994, 33, 9382–9388. [Google Scholar] [CrossRef] [PubMed]
- Soly, R.R.; Meighen, E.A. Identification of the acyl transfer site of fatty acyl-protein synthetase from bioluminescent bacteria. J. Mol. Biol. 1991, 219, 69–77. [Google Scholar] [CrossRef]
- Lee, C.Y.; Meighen, E.A. Cysteine-286 as the site of acylation of the Lux-specific fatty acyl-CoA reductase. Biochim. Biophys. Acta-Protein Struct. Molec. Enzym. 1997, 1338, 215–222. [Google Scholar] [CrossRef]
- Ingelman, M.; Ramaswamy, S.; Niviere, V.; Fontecave, M.; Eklund, H. Crystal structure of NAD(P)H: Flavin oxidoreductase from Escherichia coli. Biochemistry 1999, 38, 7040–7049. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, B.; He, Z.; Li, L.; Shi, H.; Wang, M. Enantioselective metabolism of four chiral triazole fungicides in rat liver microsomes. Chemosphere 2019, 224, 77–84. [Google Scholar] [CrossRef]
- Zadorozhnii, P.V.; Kiselev, V.V.; Kharchenko, A.V. In silico toxicity evaluation of Salubrinal and its analogues. Eur. J. Pharm. Sci. 2020, 155, 105538. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Pan, Y.; Gu, Y.; Lin, Z. Mechanistic explanation of time-dependent cross-phenomenon based on quorum sensing: A case study of the mixture of sulfonamide and quorum sensing inhibitor to bioluminescence of Aliivibrio fischeri. Sci. Total Environ. 2018, 630, 11–19. [Google Scholar] [CrossRef] [PubMed]
No. | Target Protein | Template Protein | PDB ID | Sequence Identity | Crystallo-Graphic Resolution | Aligned Positions | Normalized DOPE Score | GA341 Score | Predicted Structure Display |
---|---|---|---|---|---|---|---|---|---|
1 | LuxI | LasI | 1ro5-A | 44% | 2.3Å | 1–193/193 | −114.5 | 1 | (a-1) in Figure 2 |
2 | LuxR(VanR) | CviR | 3qp6-A | 32% | 2.0Å | 1–240/240 | −102.2 | 1 | (b-1) in Figure 2 |
3 | LuxM | TofI | 3p2h-A | 10% | 2.0Å | 1–398/398 | −79.5 | 0.5281 | (c-1) in Figure 2 |
4 | LuxN | WalK | 4u7o-A | 26% | 2.4Å | 450–683/859 | −99.0 | 0.9981 | (d-1) in Figure 2 |
5 | CqsA | CqsA | 3kki-B | 68% | 1.8Å | 1–393/393 | −120.1 | 1 | (a-1) in Figure 3 |
6 | CqsS | Histidine kinase | 2c2a-A | 25% | 1.9Å | 180–413/683 | −97.8 | 1 | (b-1) in Figure 3 |
7 | CqsS * | Histidine kinase | 2c2a/3luf | 25%/21% | 1.9Å/1.8Å | 180–683/683 | −101.8 | 1 | (b-2) in Figure 3 |
8 | LuxS | LuxS | 5e68-B | 72% | 1.6Å | 1–172/172 | −110.1 | 1 | (c-1) in Figure 3 |
9 | LuxP | LuxP | 1zhh-A | 65% | 1.9Å | 39–386/386 | −123.9 | 1 | (d-1) in Figure 3 |
10 | LuxQ | LuxQ | 1zhh-B | 37% | 1.9Å | 23–243/820 | −101.5 | 1 | (d-2) in Figure 3 |
11 | LuxU | LuxU | 1y6d-A | 50% | -- | 1–112/112 | −85.7 | 0.9915 | (a-1) in Figure 4 |
12 | LuxO | LuxO | 5ep0-A | 73% | 1.6Å | 1–393/468 | −118.8 | 1 | (b-1) in Figure 4 |
13 | Hfq | Hfq | 3rer-E | 95% | 1.7Å | 2–65/88 | −101.0 | 1 | (c-1) in Figure 4 |
14 | HapR(LitR) | SmcR | 3kz9-A | 81% | 2.1Å | 1–205/205 | −133.3 | 1 | (d-1) in Figure 4 |
15 | LuxA | LuxA | 3gfc-A | 84% | 2.3Å | 1–355/355 | −121.0 | 1 | (a-1) in Figure 5 |
16 | LuxB | LuxB | 3gfc-B | 61% | 2.3Å | 1–324/324 | −122.9 | 1 | (a-2) in Figure 5 |
17 | LuxC | Retinal dehydrogenase 1A1 | 5abm-A | 16% | 1.7Å | 1–413/481 | −97.8 | 0.9542 | (b-1) in Figure 5 |
18 | LuxD | LuxD | 1tht-B | 69% | 2.1Å | 1–317/317 | −123.7 | 1 | (c-1) in Figure 5 |
19 | LuxE | Acyl-CoA synthetase | 4rvn-A | 19% | 2.2Å | 1–384/384 | −93.5 | 0.6242 | (d-1) in Figure 5 |
20 | LuxG | Fre | 1qfj-A | 36% | 2.2Å | 1–235/235 | −124.1 | 1 | (e-1) in Figure 5 |
NO. | Protein | Template | Sequence Identity | Crystallo-Graphic Resolution | Aligned Positions | Normalized DOPE Score | GA341 Score | Predicted Structure Display |
---|---|---|---|---|---|---|---|---|
1 ** | LuxR(VanR) | 3szt-AB | 30% | 2.0Å | 1–240/240 | −113.8 | 1 | (b-2) in Figure 2 |
2 | LuxN | 4u7o-AB | 24% | 2.4Å | 450–683/859 | −106.2 | 0.9998 | (d-2) in Figure 2 |
3 | CqsA | 3kki-AB | 68% | 1.8Å | 1–393/393 | −131.5 | 1 | (a-2) in Figure 3 |
4 | LuxS | 5e68-AB | 72% | 1.6Å | 1–172/172 | −122.5 | 1 | (c-2) in Figure 3 |
5 * | LuxPQ | 1zhh-AB | 65%/37% | 1.9Å | 43–386/386 23–243/820 | −119.0 | 1 | (d-3) in Figure 3 |
6 | Hfq | 3rer-ABCDEE | 95% | 1.7Å | 1–65/88 | −128.9 | 1 | (c-2) in Figure 4 |
7 | HapR(LitR) | 3kz9-ABCD | 81% | 2.1Å | 1–205/205 | −141.4 | 1 | (d-3) in Figure 4 |
8 * | LuxAB | 3gfc-AB | 84%/61% | 2.3Å | 1–355/355 1–324/324 | −129.5 | 1 | (a-3) in Figure 5 |
9 | LuxC | 5abm-ABCD | 16% | 1.7Å | 1–413/481 | −99.7 | 0.9335 | (d-2) in Figure 5 |
10 | LuxD | 1tht-AB | 69% | 2.1Å | 1–317/317 | −121.9 | 1 | (b-2) in Figure 5 |
11 | LuxE | 4rvn-AB | 19% | 2.2Å | 1–384/384 | −93.9 | 0.7494 | (c-2) in Figure 5 |
12 | LuxG | 1qfj-ABCD | 36% | 2.2Å | 1–235/235 | −124.3 | 1 | (e-2) in Figure 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.-J.; Chen, F.; Xu, Y.-Q.; Huang, P.; Liu, S.-S. Protein Model and Function Analysis in Quorum-Sensing Pathway of Vibrio qinghaiensis sp.-Q67. Biology 2021, 10, 638. https://doi.org/10.3390/biology10070638
Wang Z-J, Chen F, Xu Y-Q, Huang P, Liu S-S. Protein Model and Function Analysis in Quorum-Sensing Pathway of Vibrio qinghaiensis sp.-Q67. Biology. 2021; 10(7):638. https://doi.org/10.3390/biology10070638
Chicago/Turabian StyleWang, Ze-Jun, Fu Chen, Ya-Qian Xu, Peng Huang, and Shu-Shen Liu. 2021. "Protein Model and Function Analysis in Quorum-Sensing Pathway of Vibrio qinghaiensis sp.-Q67" Biology 10, no. 7: 638. https://doi.org/10.3390/biology10070638
APA StyleWang, Z. -J., Chen, F., Xu, Y. -Q., Huang, P., & Liu, S. -S. (2021). Protein Model and Function Analysis in Quorum-Sensing Pathway of Vibrio qinghaiensis sp.-Q67. Biology, 10(7), 638. https://doi.org/10.3390/biology10070638