Bone Regeneration Improves with Mesenchymal Stem Cell Derived Extracellular Vesicles (EVs) Combined with Scaffolds: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Selection Process
2.3. Data Extraction and Synthesis
3. Results
3.1. In Vitro Studies
3.1.1. Effect on Bone Mineralization
- (i.)
- Diomede et al. [48,51] provided evidence that EVs associated with PEI nanoparticles induced calcium deposition after 6 weeks of culture in basal conditions, with an upregulation of the key genes involved in the pathway of bone differentiation, such as tuftelin 1 (TUFT1), tuftelin 11 (TFIP11), bone morphogenetic proteins (BMP2–BMP), and transforming growth factor (TGFβ) in hPDLSCs and hGMSC. So, PEI associated to EVs synergistically demonstrate a positive effect on cell morphology and gene transcription by increasing the ability to differentiate the osteogenic lineage.
- (ii.)
- Pizzicanella J et al. [49] investigated the ability of PEI complexed with hPDLSCs to induce the osteogenic differentiation of hPDLSCs grown on a collagen membrane. In fact, they demonstrated that this system based on collagen membrane plus hPDLSCs and PEI may help to induce bone regeneration.
- (iii.)
- Gandolfi et al. [50] showed the ability of exosomes secreted by hAD-MSCs combined with PLA-based scaffolds to trigger the osteogenic commitment of hAD-MSCs, improving their osteogenic properties. Particularly, they used two formulations of PLA+calcium silicates (CaSi)+dicalcium phosphate dihydrate (DCPD), namely: PLA-10CaSi-10DCPD and PLA-5CaSi-5DCPD. Exosomes, encapsulated on the surface of the scaffolds, the improve gene expression of major markers of osteogenesis such as collagen type I (COL1), osteopontin (OPN), osteonectin (ON), and osteocalcin (OCN). The experimental scaffolds enriched with exosomes, in particular PLA-10CaSi-10DCPD, increased the differentiation of MSCs from the osteogenic lineage.
- (iv.)
- Benton Swanson W et al. [47] provided strong evidence that osteogenic hDPSCs-derived exosomes facilitate pro-mineralization cues to drive local stem/progenitor cells towards osteogenic lineage on PLLA in vitro.
3.1.2. Effect on Proangiogenic Ability
3.2. In Vivo Studies
3.2.1. Effect on Bone Mineralization
- (i.)
- Diomede et al. [48] suggested that a commercially available collagen membrane enriched with oral derived stem cells and EVs is capable of inducing bone regeneration.
- (ii.)
- It has been shown that engineered EVs with an improvement of the adhesion onto a scaffold could be useful to favor the osteogenic differentiation of MSCs. Particularly, Diomede et al. [51] evaluated the regenerative effects of 3D PLA scaffolds enriched with hGMSCs and complexed with engineered EVs, demonstrating their advantageous use both in vivo and in vitro. EVs were engineered by coating EVs with branched PEI.
- (iii.)
- Benton Swanson et al. [47] highlighted how the delivery of the exosomes with a scaffold is able to recruit endogenous cells and stimulates the neogenesis of bone tissue in vivo, without transplantation of the stem cells.
- (iv.)
- Not only exosomes, but also secretoma, mainly composed of various growth factors, cytokines, and microRNAs, may affect the differentiation abilities of MSCs as an alternative, as demonstrated by Wang et al. [52]. Particularly, they investigated the effects of secretion factors of hucMSCs on the osteogenesis of hBMSCs both in subcutaneous implantation and in critical-size calvarian defects [52], demonstrating enhanced bone repair.
3.2.2. Effect on Activation of Pathway for Bone Regeneration
- (i.)
- Zhang et al. [56] provided evidence that the exosomes secreted by hiPS and scaffold based on tricalcium phosphate can effectively promote bone repair and regeneration in a rat model of calvarial bone defects through the activation of the phosphoinositide 3-kinases/protein kinase B (PI3K/Akt) signaling pathway on BMSCs [56].
- (ii.)
- Cell-free bone regeneration was demonstrated by Zhai et al. [57], who revealed that scaffolds without cells can induce bone regeneration as efficiently as the hMSC-seeded exosome-free scaffolds. Particularly, osteogenic exosomes can be identified from pre-differentiated stem cells and thus used to replace stem cells in tissue regeneration. In fact, exosomes contain upregulated osteogenic miRNAs and thus trigger PI3K/Akt and mitogen-activated protein kinase (MAPK) osteogenic differentiation pathways [57].
- (iii.)
- The MAPK pathway was shown to also be activated in hADSCs by hDPSC-EVs as a cell-free biomaterial in a model of the mandibular defects in rat [58].
3.2.3. Effect on Both Bone Regeneration and Vascularization
- (i.)
- Wang et al. [59] produced a hydrogel based on hydroxyapatite, silk fibroin, and glycol chitosan (hydroxyapatite (CHA)/silk fibroin (SF)/glycol chitosan (GCS)/difunctionalized polyethylene glycol (DF-PEG) self-healing hydrogel) with desirable structural and physical properties for bone healing and vehicles of exosomes. Particularly, the combination of the exosomes from hucMSCs and CHA/SF/GCS/DF-PEG, hydrogels could effectively promote the bone healing in Sprague-Dawley rats, with induced femoral condyle defects, by promoting the bone morphogenetic protein-2 (BMP2) deposition, bone collagen deposition, and maturation and enhancing angiogenesis. In this way, Wang et al. [59] demonstrated that hydrogel could become a new type of bone graft material as it has the effect of promoting bone repair, which is more significant after the addition of hucMSC-derived exosomes.
- (ii.)
- Critical-sized calvarial defects in an ovariectomized rat model of osteoporosis were induced for repair along with the application of exosomes secreted by MSCs derived from hiPS through enhanced angiogenesis and osteogenesis [60].
- (iii.)
- Given the important role played by angiogenesis for bone growth and regeneration, Pizzicannella et al. [49] developed a new construct based on collagen membranes enriched with engineered EVs from hPDLSCs able to promote bone regeneration, as well as the expression of pro-angiogenic factors with consequent vascularization both in vitro and in vivo in rats. EVs were engineered by coating EVs with branched PEI.
- (iv.)
- The proangiogenic properties of EVs and hydrogels were also demonstrated by Xie et al. [53], who developed a construct based on MSC-derived microvesicles incorporated into alginate-PCL. These constructs led to increases in vessel formation and tissue-engineered bone regeneration in a subcutaneous bone formation model in nude mice.
- (v.)
- DBM with MSC-derived EVs have been demonstrated to have a pro-angiogenic potential and pro-bone regeneration activities, enhancing bone regeneration in a subcutaneous bone formation model in nude mice [54].
- (vi.)
- Ying et al. [61] evaluated, for the first time, the role of exosomes carrying mutant hypoxia-inducible factor 1α (HIF-1α), which play an important role in promoting osteogenesis and vascular regeneration, for repairing critical-sized bone defects. HIF-1α-mediated promotion of angiogenesis was also evaluated in a rat model of stabilized fractures by Zhang et al., 2019 [62].
3.2.4. Effect on Inflammation and Cytokines
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zioupos, P.; Currey, J.D.; Hamer, A.J. Hamer, The role of collagen in the declining mechanical properties of aging human cortical bone. J. Biomed. Mater. Res. 1999, 45, 108–116. [Google Scholar] [CrossRef]
- SVerrier, S.; Alini, M.; Alsberg, E.; Buchman, S.R.; Kelly, D.J.; Laschke, M.W.; Menger, M.D.; Murphy, W.L.; Stegemann, J.P.; Schütz, M.; et al. Tissue engineering and regenerative approaches to improving the healing of large bone defects. eCM 2016, 32, 87–110. [Google Scholar] [CrossRef]
- A Flierl, M.; Smith, W.R.; Mauffrey, C.; Irgit, K.; E Williams, A.; Ross, E.; Peacher, G.; Hak, D.J.; Stahel, P.F. Outcomes and complication rates of different bone grafting modalities in long bone fracture nonunions: A retrospective cohort study in 182 patients. J. Orthop. Surg. Res. 2013, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, J.P.; O Hollinger, J. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin. Orthop. Relat. Res. 1986, 205, 299–308. [Google Scholar] [CrossRef]
- Roddy, E.; DeBaun, M.R.; Daoud-Gray, A.; Yang, Y.P.; Gardner, M.J. Treatment of critical-sized bone defects: Clinical and tissue engineering perspectives. Eur. J. Orthop. Surg. Traumatol. 2018, 28, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Misch, C.M. Autogenous Bone: Is It Still the Gold Standard? Implant. Dent. 2010, 19, 361. [Google Scholar] [CrossRef] [PubMed]
- Ho-Shui-Ling, A.; Bolander, J.; Rustom, L.E.; Johnson, A.W.; Luyten, F.P.; Picart, C. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 2018, 180, 143–162. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, J.; Zhu, Y.; Han, J. Therapeutic application of mesenchymal stem cells in bone and joint diseases. Clin. Exp. Med. 2012, 14, 13–24. [Google Scholar] [CrossRef]
- Dhand, C.; Ong, S.T.; Dwivedi, N.; Diaz, S.M.; Venugopal, J.R.; Navaneethan, B.; Fazil, M.H.; Liu, S.; Seitz, V.; Wintermantel, E.; et al. Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering. Biomaterials 2016, 104, 323–338. [Google Scholar] [CrossRef] [PubMed]
- Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P.G.; Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 13625–13630. [Google Scholar] [CrossRef] [Green Version]
- Seo, B.-M.; Miura, M.; Gronthos, S.; Bartold, P.M.; Batouli, S.; Brahim, J.; Young, M.; Robey, P.; Wang, C.Y.; Shi, S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004, 364, 149–155. [Google Scholar] [CrossRef]
- E Grawish, M. Gingival-derived mesenchymal stem cells: An endless resource for regenerative dentistry. World J. Stem Cells 2018, 10, 116–118. [Google Scholar] [CrossRef]
- Liu, H.; Li, N.; Zhang, Y.; Li, M. Inflammation, mesenchymal stem cells and bone regeneration. Histochem. Cell Biol. 2018, 149, 393–404. [Google Scholar] [CrossRef]
- Naji, A.; Favier, B.; Deschaseaux, F.; Rouas-Freiss, N.; Eitoku, M.; Suganuma, N. Mesenchymal stem/stromal cell function in modulating cell death. Stem Cell Res. Ther. 2019, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.; Liu, Y.; Wang, B.; Li, G. The Roles of Mesenchymal Stem Cells in Tissue Repair and Disease Modification. Curr. Stem Cell Res. Ther. 2014, 9, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Sottile, V.; Jackson, L.; Jones, D.R.; Scotting, P. Adult mesenchymal stem cells: Differentiation potential and therapeutic applications. J. Postgrad. Med. 2007, 53, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Turner, L.; Knoepfler, P. Selling Stem Cells in the USA: Assessing the Direct-to-Consumer Industry. Cell Stem Cell 2016, 19, 154–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Tang, Y.; Liu, Y.; Zhang, P.; Lv, L.; Zhang, X.; Jia, L.; Zhou, Y. Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif. 2019, 52, e12669. [Google Scholar] [CrossRef] [Green Version]
- Zuo, R.; Liu, M.; Wang, Y.; Li, J.; Wang, W.; Wu, J.; Sun, C.; Li, B.; Wang, Z.; Lan, W.; et al. BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/beta-catenin signaling. Stem. Cell Res. Ther. 2019, 10, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeuchi, R.; Katagiri, W.; Endo, S.; Kobayashi, T. Exosomes from conditioned media of bone marrow-derived mesenchymal stem cells promote bone regeneration by enhancing angiogenesis. PLoS ONE 2019, 14, e0225472. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 2019, 21, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Eleuteri, S.; Fierabracci, A. Insights into the Secretome of Mesenchymal Stem Cells and Its Potential Applications. Int. J. Mol. Sci. 2019, 20, 4597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowal, J.; Tkach, M.; Théry, C. Biogenesis and secretion of exosomes. Curr. Opin. Cell Biol. 2014, 29, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Toh, W.S.; Lai, R.C.; Zhang, B.; Lim, S.K. MSC exosome works through a protein-based mechanism of action. Biochem. Soc. Trans. 2018, 46, 843–853. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.-C.; Yu, T.-T.; Li, J.; Qiao, Y.-Q.; Wang, L.-C.; Zhang, T.; Li, Q.; Zhou, Y.-H.; Liu, D.-W. The Delivery of Extracellular Vesicles Loaded in Biomaterial Scaffolds for Bone Regeneration. Front. Bioeng. Biotechnol. 2020, 8, 1015. [Google Scholar] [CrossRef]
- Tan, L.; Wu, H.; Liu, Y.; Zhao, M.; Li, D.; Lu, Q. Recent advances of exosomes in immune modulation and autoimmune diseases. Autoimmunity 2016, 49, 357–365. [Google Scholar] [CrossRef]
- Todorova, D.; Simoncini, S.; Lacroix, R.; Sabatier, F.; Dignat-George, F. Extracellular Vesicles in Angiogenesis. Circ. Res. 2017, 120, 1658–1673. [Google Scholar] [CrossRef]
- Deng, C.; Chang, J.; Wu, C. Bioactive scaffolds for osteochondral regeneration. J. Orthop. Transl. 2019, 17, 15–25. [Google Scholar] [CrossRef]
- Golub, E.E. Role of matrix vesicles in biomineralization. Biochim. Biophys. Acta BBA Gen. Subj. 2009, 1790, 1592–1598. [Google Scholar] [CrossRef] [Green Version]
- Morhayim, J.; van de Peppel, J.; Dudakovic, A.; Chiba, H.; van Wijnen, A.J.; van Leeuwen, J.P. Molecular characterization of human osteoblast-derived extracellular vesicle mRNA using next-generation sequencing. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Sun, Y.; Zhang, Q. Emerging Role of Extracellular Vesicles in Bone Remodeling. J. Dent. Res. 2018, 97, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Lee, B.W.; Nakanishi, K.; Villasante, A.; Williamson, R.; Metz, J.; Kim, J.; Kanai, M.; Bi, L.; Brown, K.; et al. Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells. Nat. Biomed. Eng. 2018, 2, 293–303. [Google Scholar] [CrossRef]
- Re, F.; Sartore, L.; Moulisova, V.; Cantini, M.; Almici, C.; Bianchetti, A.; Chinello, C.; Dey, K.; Agnelli, S.; Manferdini, C.; et al. 3D gelatin-chitosan hybrid hydrogels combined with human platelet lysate highly support human mesenchymal stem cell proliferation and osteogenic differentiation. J. Tissue Eng. 2019, 10, 2041731419845852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dey, K.; Agnelli, S.; Re, F.; Russo, D.; Lisignoli, G.; Manferdini, C.; Bernardi, S.; Gabusi, E.; Sartore, L. Rational Design and Development of Anisotropic and Mechanically Strong Gelatin-Based Stress Relaxing Hydrogels for Osteogenic/Chondrogenic Differentiation. Macromol. Biosci. 2019, 19, e1900099. [Google Scholar] [CrossRef]
- Manferdini, C.; Gabusi, E.; Sartore, L.; Dey, K.; Agnelli, S.; Almici, C.; Bianchetti, A.; Zini, N.; Russo, D.; Re, F.; et al. Chitosan-based scaffold counteracts hypertrophic and fibrotic markers in chondrogenic differentiated mesenchymal stromal cells. J. Tissue Eng. Regen. Med. 2019, 13, 1896–1911. [Google Scholar] [CrossRef]
- Tonello, S.; Bianchetti, A.; Braga, S.; Almici, C.; Marini, M.; Piovani, G.; Guindani, M.; Dey, K.; Sartore, L.; Re, F.; et al. Impedance-Based Monitoring of Mesenchymal Stromal Cell Three-Dimensional Proliferation Using Aerosol Jet Printed Sensors: A Tissue Engineering Application. Materials 2020, 13, 2231. [Google Scholar] [CrossRef]
- Bernardi, S.; Balbi, C. Extracellular Vesicles: From Biomarkers to Therapeutic Tools. Biology 2020, 9, 258. [Google Scholar] [CrossRef]
- Bernardi, S.; Re, F.; Bosio, K.; Dey, K.; Almici, C.; Malagola, M.; Guizzi, P.; Sartore, L.; Russo, D. Chitosan-Hydrogel Polymeric Scaffold Acts as an Independent Primary Inducer of Osteogenic Differentiation in Human Mesenchymal Stromal Cells. Materials 2020, 13, 3546. [Google Scholar] [CrossRef]
- Gamie, Z.; Tran, G.T.; Vyzas, G.; Korres, N.; Heliotis, M.; Mantalaris, A.; Tsiridis, E. Stem cells combined with bone graft substitutes in skeletal tissue engineering. Expert Opin. Biol. Ther. 2012, 12, 713–729. [Google Scholar] [CrossRef]
- Kulkarni, R.K.; Pani, K.C.; Neuman, C.; Leonard, F. Polylactic Acid for surgical implants. Polylactic Acid Surg. Implant. 1966, 93, 839–843. [Google Scholar] [CrossRef]
- Verma, S.; Domb, A.J.; Kumar, N. Nanomaterials for regenerative medicine. Nanomedicine 2011, 6, 157–181. [Google Scholar] [CrossRef]
- Daculsi, G.; Fellah, B.; Miramond, T.; Durand, M. Osteoconduction, Osteogenicity, Osteoinduction, what are the fundamental properties for a smart bone substitutes. IRBM 2013, 34, 346–348. [Google Scholar] [CrossRef]
- Llopis-Hernandez, V.; Cantini, M.; González-García, C.; Cheng, Z.A.; Yang, J.; Tsimbouri, P.; García, A.J.; Dalby, M.J.; Salmerón-Sánchez, M. Material-driven fibronectin assembly for high-efficiency presentation of growth factors. Sci. Adv. 2016, 2, e1600188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.; Tang, X.; Gohil, S.V.; Laurencin, C.T. Biomaterials for Bone Regenerative Engineering. Adv. Healthc. Mater. 2015, 4, 1268–1285. [Google Scholar] [CrossRef]
- Hasan, A.; Byambaa, B.; Morshed, M.; Cheikh, M.I.; Shakoor, R.A.; Mustafy, T.; Marei, H. Advances in osteobiologic materials for bone substitutes. J. Tissue Eng. Regen. Med. 2018, 12, 1448–1468. [Google Scholar] [CrossRef]
- Swanson, W.B.; Zhang, Z.; Xiu, K.; Gong, T.; Eberle, M.; Wang, Z.; Ma, P.X. Scaffolds with controlled release of pro-mineralization exosomes to promote craniofacial bone healing without cell transplantation. Acta Biomater. 2020, 118, 215–232. [Google Scholar] [CrossRef]
- Diomede, F.; D’Aurora, M.; Gugliandolo, A.; Merciaro, I.; Ettorre, V.; Bramanti, A.; Piattelli, A.; Gatta, V.; Mazzon, E.; Fontana, A.; et al. A novel role in skeletal segment regeneration of extracellular vesicles released from periodontal-ligament stem cells. Int. J. Nanomed. 2018, ume 13, 3805–3825. [Google Scholar] [CrossRef] [Green Version]
- Pizzicannella, J.; Gugliandolo, A.; Orsini, T.; Fontana, A.; Ventrella, A.; Mazzon, E.; Bramanti, P.; Diomede, F.; Trubiani, O. Engineered Extracellular Vesicles From Human Periodontal-Ligament Stem Cells Increase VEGF/VEGFR2 Expression During Bone Regeneration. Front. Physiol. 2019, 10, 512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandolfi, M.G.; Gardin, C.; Zamparini, F.; Ferroni, L.; Degli Esposti, M.; Parchi, G.; Ercan, B.; Manzoli, L.; Fava, F.; Fabbri, P.; et al. Mineral-Doped Poly(L-lactide) Acid Scaffolds Enriched with Exosomes Improve Osteogenic Commitment of Human Adipose-Derived Mesenchymal Stem Cells. Nanomaterials 2020, 10, 432. [Google Scholar] [CrossRef] [Green Version]
- Diomede, F.; Gugliandolo, A.; Cardelli, P.; Merciaro, I.; Ettorre, V.; Traini, T.; Bedini, R.; Scionti, D.; Bramanti, A.; Nanci, A.; et al. Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: A new tool for bone defect repair. Stem Cell Res. Ther. 2018, 9, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.-X.; Xu, L.-L.; Rui, Y.-F.; Huang, S.; Lin, S.; Xiong, J.-H.; Li, Y.-H.; Lee, W.Y.-W.; Li, G. The Effects of Secretion Factors from Umbilical Cord Derived Mesenchymal Stem Cells on Osteogenic Differentiation of Mesenchymal Stem Cells. PLoS ONE 2015, 10, e0120593. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Wang, Z.; Zhang, L.; Lei, Q.; Zhao, A.; Wang, H.; Li, Q.; Chen, Z.; Zhang, W. Development of an angiogenesis-promoting microvesicle-alginate-polycaprolactone composite graft for bone tissue engineering applications. PeerJ 2016, 4, e2040. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Wang, Z.; Zhang, L.; Lei, Q.; Zhao, A.; Wang, H.; Li, Q.; Cao, Y.; Zhang, W.J.; Chen, Z. Extracellular Vesicle-functionalized Decalcified Bone Matrix Scaffolds with Enhanced Pro-angiogenic and Pro-bone Regeneration Activities. Sci. Rep. 2017, 7, srep45622. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Kuang, S.; Zhang, Y.; Yang, M.; Qin, W.; Shi, X.; Lin, Z. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a macrophage-dependent mechanism. Bioact. Mater. 2020, 5, 1113–1126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, X.; Li, H.; Chen, C.; Chunyuan, C.; Niu, X.; Li, Q.; Zhao, B.; Xie, Z.; Wang, Y. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Res. Ther. 2016, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zhai, M.; Zhu, Y.; Yang, M.; Mao, C. Human Mesenchymal Stem Cell Derived Exosomes Enhance Cell-Free Bone Regeneration by Altering Their miRNAs Profiles. Adv. Sci. 2020, 7, 2001334. [Google Scholar] [CrossRef]
- Jin, Q.; Li, P.; Yuan, K.; Zhao, F.; Zhu, X.; Zhang, P.; Huang, Z. Extracellular vesicles derived from human dental pulp stem cells promote osteogenesis of adipose-derived stem cells via the MAPK pathway. J. Tissue Eng. 2020, 11, 2041731420975569. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, J.; Zhou, X.; Sun, J.; Zhu, B.; Duan, C.; Chen, P.; Guo, X.; Zhang, T.; Guo, H. A New Self-Healing Hydrogel Containing hucMSC-Derived Exosomes Promotes Bone Regeneration. Front. Bioeng. Biotechnol. 2020, 8, 564731. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, J.; Yuan, H.; Xu, Z.; Li, Q.; Niu, X.; Hu, B.; Wang, Y.; Li, X. Exosomes Secreted by Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Repair Critical-Sized Bone Defects through Enhanced Angiogenesis and Osteogenesis in Osteoporotic Rats. Int. J. Biol. Sci. 2016, 12, 836–849. [Google Scholar] [CrossRef] [Green Version]
- Ying, C.; Wang, R.; Wang, Z.; Tao, J.; Yin, W.; Zhang, J.; Yi, C.; Qi, X.; Han, D. BMSC-Exosomes Carry Mutant HIF-1α for Improving Angiogenesis and Osteogenesis in Critical-Sized Calvarial Defects. Front. Bioeng. Biotechnol. 2020, 8, 565561. [Google Scholar] [CrossRef]
- Zhang, Y.; Hao, Z.; Wang, P.; Xia, Y.; Wu, J.; Xia, D.; Fang, S.; Xu, S. Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF-1α-mediated promotion of angiogenesis in a rat model of stabilized fracture. Cell Prolif. 2019, 52, e12570. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Long, D.; Li, J.; Yu, R.; Song, Y.; Fang, J.; Yang, X.; Zhou, S.; Huang, S.; Zhao, Z. Extracellular vesicles in bone and tooth: A state-of-art paradigm in skeletal regeneration. J. Cell. Physiol. 2019, 234, 14838–14851. [Google Scholar] [CrossRef]
- Wei, J.; Li, H.; Wang, S.; Li, T.; Fan, J.; Liang, X.; Li, J.; Han, Q.; Zhu, L.; Fan, L.; et al. let-7 Enhances Osteogenesis and Bone Formation While Repressing Adipogenesis of Human Stromal/Mesenchymal Stem Cells by Regulating HMGA2. Stem Cells Dev. 2014, 23, 1452–1463. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; Li, Y.; Lin, Z.; Wan, J.; Xu, C.; Zeng, Y.; Zhu, Y. miR-199b-5p modulates BMSC osteogenesis via suppressing GSK-3beta/beta-catenin signaling pathway. Biochem. Biophys. Res. Commun. 2016, 477, 749–754. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.Q.; Maeda, Y.; Taipaleenmaki, H.; Zhang, W.; Jafferji, M.; Gordon, J.A.; Li, Z.; Croce, C.M.; Van Wijnen, A.J.; Stein, J.L.; et al. miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J. Biol. Chem. 2012, 287, 42084–42092. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-Z.; Liu, F.; Song, C.-G.; Cao, X.-L.; Zhang, Y.-F.; Wu, H.-N.; Guo, C.-J.; Li, Y.-Q.; Zheng, Q.-J.; Zheng, M.-H.; et al. Exosomes derived from human umbilical vein endothelial cells promote neural stem cell expansion while maintain their stemness in culture. Biochem. Biophys. Res. Commun. 2018, 495, 892–898. [Google Scholar] [CrossRef]
- Diomede, F.; Marconi, G.D.; Fonticoli, L.; Pizzicanella, J.; Merciaro, I.; Bramanti, P.; Mazzon, E.; Trubiani, O. Functional Relationship between Osteogenesis and Angiogenesis in Tissue Regeneration. Int. J. Mol. Sci. 2020, 21, 3242. [Google Scholar] [CrossRef] [PubMed]
- Javed, A.; Chen, H.; Ghori, F.Y. Genetic and Transcriptional Control of Bone Formation. Oral Maxillofac. Surg. Clin. N. Am. 2010, 22, 283–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lian, J.B.; Javed, A.; Zaidi, S.K.; Lengner, C.; Montecino, M.; Van Wijnen, A.J.; Stein, J.L.; Stein, G.S. Regulatory controls for osteoblast growth and differentiation: Role of Runx/Cbfa/AML factors. Crit. Rev. Eukaryot. Gene Expr. 2004, 14, 1–41. [Google Scholar] [CrossRef] [PubMed]
- Costa, V.; Raimondi, L.; Conigliaro, A.; Salamanna, F.; Carina, V.; De Luca, A.; Bellavia, D.; Alessandro, R.; Fini, M.; Giavaresi, G. Hypoxia-inducible factor 1Alpha may regulate the commitment of mesenchymal stromal cells toward angio-osteogenesis by mirna-675-5P. Cytotherapy 2017, 19, 1412–1425. [Google Scholar] [CrossRef]
- Zhao, Z.; Ma, X.; Ma, J.; Sun, X.; Li, F.; Lv, J. Naringin enhances endothelial progenitor cell (EPC) proliferation and tube formation capacity through the CXCL12/CXCR4/PI3K/Akt signaling pathway. Chem. Biol. Interact. 2018, 286, 45–51. [Google Scholar] [CrossRef]
- Ghosh-Choudhury, N.; Abboud, S.L.; Nishimura, R.; Celeste, A.; Mahimainathan, L.; Choudhury, G.G. Requirement of BMP-2-induced Phosphatidylinositol 3-Kinase and Akt Serine/Threonine Kinase in Osteoblast Differentiation and Smad-dependent BMP-2 Gene Transcription. J. Biol. Chem. 2002, 277, 33361–33368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daigang, L.; Jining, Q.; Jinlai, L.; Pengfei, W.; Chuan, S.; Liangku, H.; Ding, T.; Zhe, S.; Wei, W.; Zhong, L.; et al. LPS-stimulated inflammation inhibits BMP-9-induced osteoblastic differentiation through crosstalk between BMP/MAPK and Smad signaling. Exp. Cell Res. 2016, 341, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Xiao, L.; Peng, J.; Qian, Y.-Q.; Huang, C.-C. Exosomes derived from bone marrow mesenchymal stem cells improve osteoporosis through promoting osteoblast proliferation via MAPK pathway. Eur. Rev. Med Pharmacol. Sci. 2018, 22, 3962–3970. [Google Scholar]
- Sicco, C.L.; Reverberi, D.; Balbi, C.; Ulivi, V.; Principi, E.; Pascucci, L.; Becherini, P.; Bosco, M.C.; Varesio, L.; Franzin, C.; et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles as Mediators of Anti-Inflammatory Effects: Endorsement of Macrophage Polarization. STEM CELLS Transl. Med. 2017, 6, 1018–1028. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, X.; Hu, J.; Chen, F.; Qiao, S.; Sun, X.; Gao, L.; Xie, J.; Xu, B. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc. Res. 2019, 115, 1205–1216. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, M.; Xu, T.; Zhang, X.; Lin, C.; Gao, W.; Xu, H.; Lei, B.; Mao, C. Engineering Bioactive Self-Healing Antibacterial Exosomes Hydrogel for Promoting Chronic Diabetic Wound Healing and Complete Skin Regeneration. Theranostics 2019, 9, 65–76. [Google Scholar] [CrossRef]
- Riau, A.K.; Ong, H.S.; Yam, G.H.F.; Mehta, J.S. Sustained Delivery System for Stem Cell-Derived Exosomes. Front. Pharmacol. 2019, 10, 1368. [Google Scholar] [CrossRef]
- Gupte, M.J.; Swanson, W.B.; Hu, J.; Jin, X.; Ma, H.; Zhang, Z.; Liu, Z.; Feng, K.; Feng, G.; Xiao, G.; et al. Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization. Acta Biomater. 2018, 82, 1–11. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Chen, Y.E.; Chen, J.; Ma, P.X. Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects. Nat. Commun. 2016, 7, 10376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, O.Z.; Khademhosseini, A.; Langer, R.; Peppas, N.A. Bioinspired Materials for Controlling Stem Cell Fate. Acc. Chem. Res. 2010, 43, 419–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, N.; Ogose, A.; Tokunaga, K.; Umezu, H.; Arai, K.; Kudo, N.; Hoshino, M.; Inoue, H.; Irie, H.; Kuroda, K.; et al. Osteoinduction with highly purified beta-tricalcium phosphate in dog dorsal muscles and the proliferation of osteoclasts before heterotopic bone formation. Biomaterials 2006, 27, 4419–4427. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.-Q.; Nakamura, T.; Kawanabe, K.; Nishigochi, S.; Oka, M.; Kokubo, T. Apatite layer-coated titanium for use as bone bonding implants. Biomaterials 1997, 18, 1185–1190. [Google Scholar] [CrossRef]
- Lv, Q.; Deng, M.; Ulery, B.D.; Nair, L.S.; Laurencin, C.T. Nano-ceramic Composite Scaffolds for Bioreactor-based Bone Engineering. Clin. Orthop. Relat. Res. 2013, 471, 2422–2433. [Google Scholar] [CrossRef] [Green Version]
- Zuber, G.; Dauty, E.; Nothisen, M.; Belguise, P.; Behr, J.P. Towards synthetic viruses. Adv. Drug Deliv. Rev. 2001, 52, 245–253. [Google Scholar] [CrossRef]
- Zhu, H.; Ji, J.; Barbosa, M.A.; Shen, J. Protein electrostatic self-assembly on poly(DL-lactide) scaffold to promote osteoblast growth. J. Biomed. Mater. Res. 2004, 71, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chuah, S.J.; Lai, R.C.; Hui, J.H.P.; Lim, S.K.; Toh, W. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials 2018, 156, 16–27. [Google Scholar] [CrossRef]
- Zhang, W.; Bai, X.; Zhao, B.; Li, Y.; Zhang, Y.; Li, Z.; Wang, X.; Luo, L.; Han, F.; Zhang, J.; et al. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway. Exp. Cell Res. 2018, 370, 333–342. [Google Scholar] [CrossRef] [PubMed]
Cells Derived EV | EV Carrier | EV Concentrations | Targets | Main Results | Reference |
---|---|---|---|---|---|
Human periodontal-ligament stem cells (hPDLSCs) | Collagen/Polyethylenimine (PEI) | Not indicated | Osteogenic differentiation induction of hPDLSCs grown on Collagen membrane | Increase of mineralized matrix and osteogenic genes (TGFB1, MMP8,TUFT1, TFIP11,BMP2, and BMP4) | Diomede F et al., 2018 [48] |
Human gingival stem cell (hGMSC) | Polylactide (PLA)/Polyethylenimine (PEI) | Not indicated | Osteogenic differentiation induction of hGMSC grown on Collagen membrane | Increase of mineralized matrix and osteogenic genes (TGFBR1, SMAD1, MAPK1, MAPK14, RUNX2, and BMP2/4) | Diomede F et al., 2018 [51] |
Human periodontal-ligament stem cells (hPDLSCs) | Collagen/Polyethylenimine (PEI) | Not indicated | Osteogenic differentiation induction of hPDLSCs grown on Collagen membrane | Increase of osteogenic (RUNX2, COL1A1, and BMP2/4) and angiogenic (VEGF and VEGFR2) genes | Pizzicanella J et al., 2019 [49] |
Human adipose derived-mesenchymal stem cells (hAD-MSC) | Two formulations of Polylactic acid(PLA)+calcium silicates (CaSi)+dicalcium phosphate dihydrate (DCPD): PLA-10CaSi-10DCPD and PLA-5CaSi-5DCPD | 5 × 1010 /cm2 | Osteogenic differentiation of hAD-MSC | PLA-10CaSi-10DCPD increased Collagen type 1, osteopontin, osteonectin, and osteocalcin runx osteogenic genes | Gandolfi MG et al., 2020 [50] |
Osteogenic induced human dental pulp stem cell (hDPSC) | Poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) | 2000 µg/ml | Osteogenic differentiation induction of hDPSC grown on Poly (L-lactic-acid) (PLLA) | Increase mineralization | Swanson BW et al., 2020 [47] |
Cells Derived EV | EV Carrier | Species | Target | Time Points | Main Results | Reference |
---|---|---|---|---|---|---|
Human periodontal-ligament stem cells (hPDLSCs) | Collagen/Polyethylenimine (PEI) | Male Wistar rat | Healing of frontoparietal region (1 cm) treated with hPDLSCs grown on Collagen membrane+PEI EV | 6 weeks | Increase of BMP2 and BMP4 | Diomede F et al., 2018 [48] |
Human gingival stem cell (hGMSC) | Polylactide (PLA)/ Polyethylenimine (PEI) | Male Wistar rat | Healing of frontoparietal region treated with hGMSC grown on collagen membrane+PEI EV | 6 weeks | Increase bone regeneration and angiogenesis | Diomede F et al., 2018 [51] |
Osteogenic induced Human dental pulp stem cell (hDPSC) | Poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) | 8–10 week old C57BL/6 mice | Subcutaneous implantation -Healing of critical-size calvarial defect | 8 weeks | Increase bone formation | Benton Swanson W et al., 2020 [47] |
Human umbilical cord mesenchymal stem cells (hucMSC) | Hydroxyapatite/tricalcium phosphate (HA/TCP) | Male nude mice | Subcutaneous implantation | 8 weeks | Increase of osteoid matrix and osteocalcin | Wang K-X et al., 2015 [52] |
Human umbilical cord mesenchymal stem cells (hucMSC) | 2% Hyaluronic acid hydrogel | Male Sprague Dawley rats | Healing of critical-size calvarial defect | 8 weeks | Increase bone regeneration | Wang K-X et al., 2015 [52] |
Human induced pluripotent stem cells (hiPSCs) | Porous β-Tricalcium phosphate (TCP) | Sprague Dawley rats | Healing of critical-size calvarial defect | 8 weeks | EV dose dependent increase in bone formation; area osteocalcin positive | Zhang J et al., 2016 [56] |
Osteogenic induced Human (hMSC) | 3D-printed titanium alloy | Male 5–6 weeks old Sprague Dawley rats | Healing of radial bone defect | 12 weeks | Increase bone regeneration | Zhai M et al., 2020 [57] |
Human dental pulp stem cell (hDPSC) | Hydrogel PuraMatrix® | Male Wistar rat | Healing of mandibular defect | 6 weeks | Increase bone regeneration via MAPK pathway | Jin Q et al., 2020 [58] |
Human umbilical cord mesenchymal stem cells (hucMSC) | Coralline hydroxyapatite (CHA)/silk fibroin (SF)/glycol chitosan (GCS)/ difunctionalized polyethylene glycol (DF-PEG) | Sprague-Dawley rat | Healing of femoral condyle defect | 30, 60, and 90 days | Increase of bone volume, mineral contents, bone morphogenic protein 2 (BMP2), and angiogenesis | Wang L et al., 2020 [59] |
Human induced pluripotent stem cells (hiPSCs) | Porous β-Tricalcium phosphate (TCP) | Mature female Sprague Dawley rats | Healing of critical-size calvarial defect in osteopenic animal model | 8 weeks | Increase of osteogenesis and angiogenesis | Qi X et al., 2016 [60] |
Human periodontal-ligament stem cells (hPDLSCs) | Collagen/ Polyethylenimine (PEI) | Male Wistar rat | Healing of frontoparietal region (1 cm) treated with hPDLSCs grown on Collagen membrane+PEI EV | 6 weeks | High integration and bone regeneration Overexpression of angiogenic genes (VEGFA and VEGFR2) | Pizzicanella J et al., 2019 [49] |
Rat mesenchymal stem cells (MSC) | Alginate-polycaprolactone (PCL) | 4 week old male nude mice | Subcutaneous implantation | 1 and 2 months | Increase of bone formation and enhancement of vessel formation | Xie H et al., 2016 [53] |
Osteogenic induced Rat mesenchymal stem cell (MSC) | Decalcified bone matrix | 4 week old male nude mice | Subcutaneous implantation | 1 and 2 months | Increase bone formation and vascularization | Xie H et al., 2017 [54] |
Rat bone marrow mesenchyme stem cells carry mutant HIF-1α (BMSC- HIF-1α) | Porous β-Tricalcium phosphate (TCP) | 12 weeks mature Sprague Dawley rats | Healing of critical-size calvarial defect | 12 weeks | Increase bone regeneration and neovascularization | Ying C et al., 2020 [61] |
Human umbilical cord mesenchymal stem cells (hucMSC) | Hyaluronan based HyStem-HP hydrogel | 12 weeks-old male Wistar rat | Healing of fracture femur | 7, 14, 21, and 31 days | Increase bone regeneration and angiogenesis | Zhang Y et al., 2019 [62] |
Dental pulp stem cells (DPSC) | Chitosan hydrogel | Male C57BL/6J | Healing of alveolar bone | 4 weeks | Suppression of periodontal inflammation and modulation of immune response | Shen Z et al., 2020 [55] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Re, F.; Gabusi, E.; Manferdini, C.; Russo, D.; Lisignoli, G. Bone Regeneration Improves with Mesenchymal Stem Cell Derived Extracellular Vesicles (EVs) Combined with Scaffolds: A Systematic Review. Biology 2021, 10, 579. https://doi.org/10.3390/biology10070579
Re F, Gabusi E, Manferdini C, Russo D, Lisignoli G. Bone Regeneration Improves with Mesenchymal Stem Cell Derived Extracellular Vesicles (EVs) Combined with Scaffolds: A Systematic Review. Biology. 2021; 10(7):579. https://doi.org/10.3390/biology10070579
Chicago/Turabian StyleRe, Federica, Elena Gabusi, Cristina Manferdini, Domenico Russo, and Gina Lisignoli. 2021. "Bone Regeneration Improves with Mesenchymal Stem Cell Derived Extracellular Vesicles (EVs) Combined with Scaffolds: A Systematic Review" Biology 10, no. 7: 579. https://doi.org/10.3390/biology10070579
APA StyleRe, F., Gabusi, E., Manferdini, C., Russo, D., & Lisignoli, G. (2021). Bone Regeneration Improves with Mesenchymal Stem Cell Derived Extracellular Vesicles (EVs) Combined with Scaffolds: A Systematic Review. Biology, 10(7), 579. https://doi.org/10.3390/biology10070579