Harvest Season Significantly Influences the Fatty Acid Composition of Bee Pollen
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bee Pollen Sampling
2.2. Analyses of Lipids and FAs
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hrassnigg, N.; Crailsheim, K. The influence of brood on the pollen consumption of worker bees (Apis mellifera L.). J. Insect Physiol. 1998, 44, 393–404. [Google Scholar] [CrossRef]
- Human, H.; Nicolson, S.W. Nutritional content of fresh, bee collected and stored pollen of Aloe greatheadii var. davyana (Asphodelaceae). Phytochemistry 2006, 67, 1486–1492. [Google Scholar] [CrossRef] [Green Version]
- Mărgăoan, R.; Mărghitas, L.; Dezmirean, D.S.; Bobis, O.; Mihai, C.M. Physical-Chemical composition of fresh bee pollen from Transylvania. Bull. UASVM Anim. Sci. Biotechnol. 2012, 69, 351–355. [Google Scholar]
- Morgano, M.A.; Martins, M.C.; Rabonato, L.C.; Milani, R.F.; Yotsuyanagi, K.; Odriguez-Amaya, D.B. A comprehensive investigation of the mineral composition of Brazilian bee pollen, geographic and seasonal variations and contribution to human diet. J. Braz. Chem. Soc. 2012, 23, 727–736. [Google Scholar] [CrossRef] [Green Version]
- Taha, E.-K.A. Chemical composition and amounts of mineral elements in honeybee-collected pollen in relation to botanic origin. J. Apic. Sci. 2015, 59, 75–81. [Google Scholar]
- Crailsheim, K.; Schneider, L.H.; Hrassnigg, N.; Bühlmann, G.; Brosch, U.; Gmeinbauer, R.; Schöffmann, B. Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): Dependence on individual age and function. J. Insect Physiol. 1992, 38, 409–419. [Google Scholar] [CrossRef]
- Keller, I.; Fluri, P.; Imdorf, A. Pollen nutrition and colony development in honeybees, part 1. Bee World 2005, 86, 3–10. [Google Scholar] [CrossRef]
- Brodschneider, R.; Crailsheim, K. Nutrition and health in honeybees. Apidologie 2010, 41, 278–294. [Google Scholar] [CrossRef]
- Morais, M.; Moreira, L.; Feas, X.; Estevinho, L.M. Honeybee collected pollen from five Portuguese natural Parks, plynological origin, phenolic content, antioxidant properties and antimicrobial activity. Food Chem. Toxicol. 2011, 49, 1096–1101. [Google Scholar] [CrossRef] [Green Version]
- Fine, J.D.; Shpigler, H.Y.; Ray, A.M.; Beach, N.J.; Sankey, A.L.; Cash-Ahmed, A.; Huang, Z.Y.; Astrauskaite, I.; Chao, R.; Zhao, H.; et al. Quantifying the effects of pollen nutrition on honeybee queen egg laying with a new laboratory system. PLoS ONE 2018, 13, 1–16. [Google Scholar]
- Lamontagne-Drolet, M.; Samson-Robert, O.; Giovenazzo, P.; Fournier, V. The impacts of two protein supplements on commercial honeybee (Apis mellifera L.) colonies. J. Apic. Res. 2019, 58, 800–813. [Google Scholar] [CrossRef]
- Mortensen, A.; Jack, C.J.; Bustamante, T.; Schmehl, D.; Ellis, J.D. Effects of supplemental pollen feeding on honeybee (Hymenoptera, Apidae) colony strength and Nosema spp. infection. J. Econ. Entomol. 2019, 112, 60–66. [Google Scholar] [CrossRef]
- Human, H.; Nicolson, S.W.; Strauss, K.; Pirk, C.W.; Dietemann, V. Influence of pollen quality on ovarian development in honeybees Apis mellifera scutellata. J. Insect Physiol. 2007, 53, 649–655. [Google Scholar] [CrossRef]
- Pirk, C.W.; Boodhoo, C.; Human, H.; Nicolson, S.W. The importance of protein type and protein to carbohydrate ratio for survival and ovarian activation of caged honeybees (Apis mellifera scutellata). Apidologie 2010, 41, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Frias, B.E.; Barbosa, C.D.; Lourenço, A.P. Pollen nutrition in honeybees (Apis mellifera): Impact on adult health. Apidologie 2007, 47, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Rogala, R.; Szymaś, B. Nutritional value for bees of pollen substitute enriched with synthetic amino acids. Part I. Chemical methods. J. Apic. Sci. 2004, 48, 19–27. [Google Scholar]
- Szczêsna, T. Long-chain fatty acids composition of honeybee collected pollen. J. Apic. Sci. 2006, 50, 65–79. [Google Scholar]
- Nicolson, S.W.; Human, H. Chemical composition of the ‘low quality’ pollen of sunflower (Helianthus annuus L., Asteraceae). Apidologie 2013, 44, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Mărgăoan, R.; Mărghitaş, L.A.; Dezmirean, D.S.; Dulf, F.V.; Bunea, A.; Socaci, S.A.; Bobis, O. Predominant and secondary pollen botanical origins influence the carotenoid and fatty acid profile in fresh honeybee-collected pollen. J. Agric. Food Chem. 2014, 62, 6306–6316. [Google Scholar] [CrossRef]
- Al-Kahtani, S.N. Fatty acids and B vitamins contents in honeybee collected pollen in relation to botanical origin. Sci. J. King Faisal Univ. Basic Appl. Sci. 2018, 18, 41–48. [Google Scholar]
- Spulber, R.; Doğaroğlu, M.; Băbeanu, N.; Popa, O. Physicochemical characteristics of fresh bee pollen from different botanical origins. Romanian Biotechnol. Lett. 2018, 23, 13357–13365. [Google Scholar]
- Mayda, N.; Özkök, A.; Bayram, N.; Gerçek, Y.; Sorkun, K. Bee bread and bee pollen of different plant sources, determination of phenolic content, antioxidant activity, fatty acid and element profiles. J. Food Meas. Charact. 2020, 14, 1795–1809. [Google Scholar] [CrossRef]
- Al-Kahtani, S.N.; Taha, E.-K.A. Seasonal variations in nutritional composition of honeybee pollen loads. J. Kansas Entomol. Soc. 2020, 93, 105–112. [Google Scholar]
- Saa-Otero, M.P.; Díaz-Losada, E.; Fernández-Gómez, E. Analysis of fatty acids, proteins and ethereal extract in honeybee pollen—Considerations of their floral origin. Grana 2000, 39, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Feás, X.; Vázquez-Tato, M.P.; Estevinho, L.; Seijas, J.A.; Iglesias, A. Organic bee pollen: Botanical origin, nutritional value, bioactive compounds, antioxidant activity and microbiological quality. Molecules 2012, 17, 8359–8377. [Google Scholar] [CrossRef]
- Yang, K.; Wu, D.; Ye, X.; Liu, D.; Chen, J.; Sun, P. Characterization of chemical composition of bee pollen in China. J. Agric. Food Chem. 2013, 61, 708–718. [Google Scholar] [CrossRef]
- Kostić, A.Ž.; Pešić, M.B.; Trbović, D.; Petronijević, R.; Dramićanin, A.M.; Milojković-Opsenica, D.M.; Tešić, Ž. The fatty acid profile of Serbian bee-collected pollen—A chemotaxonomic and nutritional approach. J. Apic. Res. 2017, 56, 533–542. [Google Scholar] [CrossRef]
- Manning, R. Fatty acids in pollen, a review of their importance for honeybees. Bee World 2001, 82, 60–75. [Google Scholar] [CrossRef]
- Robinson, F.A.; Nation, J.L. Long-chain fatty acids in honeybees in relation to sex, caste, and food during development. J. Apic. Res. 1970, 9, 121–127. [Google Scholar] [CrossRef]
- Ander, B.P.; Dupasquier, C.M.; Prociuk, M.A.; Pierce, G.N. Polyunsaturated fatty acids and their effects on cardiovascular disease. Exp. Clin. Cardiol. 2003, 8, 164–172. [Google Scholar]
- Salem, N., Jr. Introduction to polyunsaturated fatty acids. Backgrounder 1999, 3, 1–8. [Google Scholar]
- Serra-Bonvehí, J.S.; Escolà Jordà, R.E. Nutrient composition and microbiological quality of honeybee-collected pollen. J. Agric. Food Chem. 1997, 45, 725–732. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Essential fatty acids in health and chronic disease. Am. J. Clin. Nutr. 1999, 70, 560S–569S. [Google Scholar] [CrossRef] [Green Version]
- Taha, E.-K.A. Effect of Transferring the Apiaries on Activity of Honeybee Colonies. Master’s Thesis, Faculty of Agriculture, Tanta University, Tanta, Egypt, 2000. [Google Scholar]
- Taha, E.-K.A. Studies on Honeybee (Apis mellifera L.). Ph.D. Thesis, Faculty of Agriculture, Tanta University, Tanta, Egypt, 2005. [Google Scholar]
- Taha, E.-K.A. A study on nectar and pollen sources for honeybee Apis mellifera L. in Al-Ahsa, Saudi Arabia. J. Entomol. Zool. Stud. 2015, 3, 272–277. [Google Scholar]
- Negrão, A.F.; Orsi, R.O. Harvesting season and botanical origin interferes in production and nutritional composition of bee pollen. An. Acad. Bras. Ciências 2018, 90, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Shawer, D.M.B.; Rakha, O.M.; Taha, E.-K.A.; AL-Kahtani, S.N.; Elnabawy, S.M. The impact of caging the queens during the flow season on some biological activities of honeybee colonies. Saudi J. Biol. Sci. 2021, 28, 2975–2979. [Google Scholar] [CrossRef]
- Taha, E.-K.A.; Rakha, O.M.; Elnabawy, S.M.; Hassan, M.M.; Shawer, D.M.B. Comb age significantly influences the productivity of the honeybee (Apis mellifera) colony. J. King Saud Univ. Sci. 2021, 33, 101436. [Google Scholar] [CrossRef]
- Taha, E.-K.A.; Al-Kahtani, S.N. Comparison of the activity and productivity of Carniolan (Apis mellifera carnica Pollmann) and Yemeni (Apis mellifera jemenitica Ruttner) subspecies under environmental conditions of the Al-Ahsa oasis of eastern Saudi Arabia. Saudi J. Biol. Sci. 2019, 26, 681–687. [Google Scholar] [CrossRef]
- Taha, E.-K.A.; Taha, R.; Al-Kahtani, S.N. Nectar and pollen resources for honeybees in Kafrelsheikh, Northern Egypt. Saudi J. Biol. Sci. 2019, 2, 890–896. [Google Scholar] [CrossRef]
- Taha, E.-K.A.; Al-Kahtani, S.N.; Taha, R. Protein content and amino acids composition of bee-pollens from major floral sources in Al-Ahsa, eastern Saudi Arabia. Saudi J. Biol. Sci. 2019, 26, 232–237. [Google Scholar] [CrossRef]
- Szczêsna, T.; Rybak-Chmielewska, H.; Chmielewski, W. Sugar composition of pollen loads harvested at different periods of the beekeeping season. J. Apic. Sci. 2002, 46, 107–115. [Google Scholar]
- Al-Kahtani, S.N.; Taha, E.-K.A.; Khan, K.A.; Ansari, M.J.; Farag, S.A.; Shawer, D.M.B.; Elnabawy, S.M. Effect of harvest season on the nutritional value of bee pollen protein. PLoS ONE 2020, 15, e0241393. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Genet, T.; Labuschagne, M.T.; Hugo, A. Capillary gas chromatography analysis of Ethiopian mustard to determine variability of fatty acid composition. J. Sci. Food Agric. 2004, 84, 1663–1670. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT User’s Guide; release 9.1; SAS Institute Inc.: Cary, NC, USA, 2003. [Google Scholar]
- Duncan, B.D. Multiple Range and Multiple F Test. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Taha, E.-K.A.; Al-Kahtani, S.N. Macro- and trace elements content in honeybee pollen loads in relation to the harvest season. Saudi J. Biol. Sci. 2020, 27, 1797–1800. [Google Scholar] [CrossRef]
- Singh, S.; Saini, K.; Jain, K.L. Quantitative comparison of lipids in some pollens and their phagostimulatory effects in honeybees. J. Apic. Res. 1999, 38, 87–92. [Google Scholar] [CrossRef]
- Almeida-Muradian, L.B.; Pamplona, L.C.; Coimbra, S.; Barth, O.M. Chemical composition and botanical evaluation of dried bee pollen pellets. J. Food Compos. Anal. 2005, 18, 105–111. [Google Scholar] [CrossRef]
- Carpes, S.T.; De Alencar, S.M.; Masson, M.L. Chemical composition and free radical scavenging activity of Apis mellifera bee pollen from Southern Brazil. Braz. J. Food Technol. 2009, 12, 220–229. [Google Scholar] [CrossRef]
- Martins, M.C.; Morgano, M.A.; Vicente, E.; Baggio, S.R.; Rodriguez-Amaya, D.B. Physicochemical composition of bee pollen from eleven Brazilian states. J. Apic. Sci. 2011, 55, 107–116. [Google Scholar]
- Bastos, M.D.H.; Barth, O.M.; Rocha, C.I.; Silva Cunha, I.B.; Oliveira Carvahlo, P.; Silva Torres, E.; Michelan, M. Fatty acid composition and palynological analysis of bee (Apis) loads in the state of Sao Paulo and Minas Gerais, Brazil. J. Apic. Res. 2004, 43, 35–39. [Google Scholar] [CrossRef]
- Hassan, H.M. Chemical composition and nutritional value of palm pollen grains. Glob. J. Biotechnol. Biochem. 2011, 6, 1–7. [Google Scholar]
- Dong, J.; Yang, Y.; Wang, X.; Zhang, H. Fatty acid profiles of 20 species of monofloral bee pollen from China. J. Apic. Res. 2015, 54, 503–511. [Google Scholar] [CrossRef]
- Youdim, K.A.; Martin, A.; Joseph, J.A. Essential fatty acids and the brain, Possible health implications. Int. J. Dev. Neurosci. 2000, 18, 383–399. [Google Scholar] [CrossRef] [Green Version]
Botanical Origins | Flowering Period | |
---|---|---|
Common Name | Scientific Name | |
Rapeseed | Brassica napus L. | January–March |
Summer squash | Cucurbita pepo Thunb | January–December |
Date palm | Phoenix dactylifera L. | February & March |
Sunflower | Helianthus annuus L. | February–October |
Alfalfa | Medicago sativa L. | May & June |
Fatty Acids | Seasons | Average | |||
---|---|---|---|---|---|
Spring (Mar.–May) | Summer (June–Aug.) | Autumn (Sep.–Nov.) | Winter (Dec.–Feb.) | ||
Lipids (%) | 5.05 ± 0.07 b | 4.62 ± 0.06 c | 5.45 ± 0.07 a | 4.77 ± 0.05 c | 4.97 |
Saturated fatty acids | |||||
Palmitic (C16:0) | 19.72 ± 0.22 b | 25.91 ± 0.03 a | 19.32 ± 0.03 c | 15.81 ± 0.04 d | 20.19 |
Stearic (C18:0) | 12.20 ± 0.13 b | 10.03 ± 0.08 c | 20.06 ± 0.05 a | 12.17 ± 0.02 b | 13.62 |
Arachidic (C20:0) | 5.54 ± 0.15 b | 2.18 ± 0.01 d | 6.59 ± 0.08 a | 4.92 ± 0.07 c | 4.82 |
Behenic (C22:0) | 2.80 ± 0.08 b | 0.35 ± 0.01 d | 1.39 ± 0.03 c | 11.18 ± 0.03 a | 3.93 |
Lignoceric (C24:0) | 1.17 ± 0.02 b | ND | ND | 3.74 ± 0.04 a | 1.23 |
Unsaturated fatty acids | |||||
Oleic (C18:1) | 33.24 ± 0.17 b | 36.63 ± 0.05 a | 17.96 ± 0.04 d | 29.89 ± 0.08 c | 29.43 |
* Linoleic (C18:2) | 8.75 ± 0.20 c | 12.41 ± 0.05 b | 13.85 ± 0.04 a | 7.78 ± 0.04 d | 10.76 |
* Linolenic (C18:3) | 16.48 ± 0.16 b | 12.47 ± 0.05 d | 20.81 ± 0.08 a | 13.56 ± 0.07 c | 15.76 |
Sum of C18:0, C18:1, C18:2, C18:3 | 70.67 ± 0.07 b | 71.54 ± 0.06 b | 72.68 ± 0.08 a | 63.40 ± 0.34 c | 69.81 |
Seasons | SFAs (%) | UFAs (%) | UFAs/SAFs Ratio | EFAs (%) |
---|---|---|---|---|
Spring (Mar.–May) | 41.43 ± 0.87 b | 58.47 ± 0.79 b | 1.41 ± 0.01 b | 25.23 ± 0.23 b |
Summer (June–Aug.) | 38.47 ± 0.18 c | 61.51 ± 0.38 a | 1.60 ± 0.02 a | 24.88 ± 0.22 c |
Autumn (Sep.–Nov.) | 47.36 ± 0.31 a | 52.62 ± 0.30 c | 1.11 ± 0.01 c | 34.66 ± 0.29 a |
Winter (Dec.–Feb.) | 47.82 ± 0.23 a | 51.23 ± 0.15 d | 1.07 ± 0.01 d | 21.34 ± 0.14 d |
Average | 43.77 | 55.96 | 1.30 | 26.53 |
Palmitic | Stearic | Oleic | Linoleic | Linolenic | Arachidic | Behenic | |
---|---|---|---|---|---|---|---|
Palmitic | |||||||
Stearic | −0.38 | ||||||
Oleic | 0.48 * | −0.98 ** | |||||
Linoleic | 0.57 ** | 0.50 * | −0.43 | ||||
Linolenic | −0.38 | 0.94 ** | −0.88 ** | 0.38 | |||
Arachidic | −0.75 ** | 0.79 ** | −0.79 ** | −0.08 | 0.88 ** | ||
Behenic | −0.77 ** | −0.17 | 0.01 | −0.75 ** | −0.26 | 0.17 | |
Lignoceric | −0.74 ** | −0.30 | 0.17 | −0.88 ** | −0.33 | 0.14 | 0.97 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Kahtani, S.N.; Taha, E.-K.A.; Farag, S.A.; Taha, R.A.; Abdou, E.A.; Mahfouz, H.M. Harvest Season Significantly Influences the Fatty Acid Composition of Bee Pollen. Biology 2021, 10, 495. https://doi.org/10.3390/biology10060495
Al-Kahtani SN, Taha E-KA, Farag SA, Taha RA, Abdou EA, Mahfouz HM. Harvest Season Significantly Influences the Fatty Acid Composition of Bee Pollen. Biology. 2021; 10(6):495. https://doi.org/10.3390/biology10060495
Chicago/Turabian StyleAl-Kahtani, Saad N., El-Kazafy A. Taha, Soha A. Farag, Reda A. Taha, Ekram A. Abdou, and Hatem M Mahfouz. 2021. "Harvest Season Significantly Influences the Fatty Acid Composition of Bee Pollen" Biology 10, no. 6: 495. https://doi.org/10.3390/biology10060495
APA StyleAl-Kahtani, S. N., Taha, E. -K. A., Farag, S. A., Taha, R. A., Abdou, E. A., & Mahfouz, H. M. (2021). Harvest Season Significantly Influences the Fatty Acid Composition of Bee Pollen. Biology, 10(6), 495. https://doi.org/10.3390/biology10060495