Epigenetic Modulation of TLR4 Expression by Sulforaphane Increases Anti-Inflammatory Capacity in Porcine Monocyte-Derived Dendritic Cells
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Generation of moDCs
2.3. mRNA Quantification Using Quantitative Real-Time PCR
2.4. Cytokine and Chemokine Protein Production
2.5. Western Blotting
2.6. Apoptosis Assay
2.7. Methylation Analysis
2.8. Statistical Analysis
3. Results
3.1. SFN Induced Histone Acetylation and Inhibited HDAC Activity
3.2. Promoter Region Methylation of TLR4 Was Inhibited by SFN in LPS-Treated moDCs
3.3. SFN Pre-Treatment Followed by LPS Treatment Restored DNA Methylation in the Promoter Region of MHC-SLA1 Gene
3.4. SFN Pre-Treatment Inhibited LPS-Induced Cell Apoptosis
3.5. SFN Dynamically Regulated LPS-Induced Nrf2 and STAT3 Gene Expression
3.6. SFN Significantly Inhibited LPS-Induced Pro-Inflammatory Cytokine Secretion
3.7. SFN Dynamically Regulated LPS-Induced CXCL2 and CCL4 mRNA Expression Levels
3.8. Figures
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SFN | Sulforaphane |
HDAC | Histone deacetylase |
moDCs | Monocyte-derived dendritic cells |
DCs | Dendritic cells |
APCs | Antigen-presenting cells |
PAMPs | Pathogen-associated molecular patterns |
LPS | Lipopolysaccharide |
PRRs | Pattern-recognition receptors |
TLRs | Toll-like receptors |
MAPK | Mitogen-activated protein kinase |
NF-κB | Nuclear factor-κB |
IRF | Interferon-related factor |
FAC | Flow cytometry |
ELISA | Enzyme-linked immunosorbent assay |
HPRT1 | Hypoxanthine phosphoribosyltransferase 1 |
GAPDH | Glyceraldehyd-3-phosphat-dehydrogenase |
TNF-α | Tumor necrosis factor alpha |
IL-1β | Interleukin 1β |
HRP | Horseradish peroxidase |
SD | Standard deviation |
miRNA | MicroRNA |
MyD88 | Myeloid differentiation factor 88 |
DNMT1 | DNA methyltransferase 1 |
Nrf2 | Nuclear factor erythroid-related factor 2 |
STAT3 | Signal transducer and activator of transcription 3 |
CXCL2 | Chemokine (C-X-C motif) ligand 2 |
CCL4 | C-C motif chemokine ligand 4 |
TLR4 | Toll-like receptor 4 |
TBP | TATA-binding Protein |
MD2 | Myeloid differentiation protein 2 |
ROS | Reactive oxygen species |
NLRP3 | NOD-like receptor protein 3 |
TRAF6 | TNF receptor associated factor 6 |
HDAC6 | Histone deacetylase 6 |
TATA | TATAATAAT |
SALL4 | Sal-like protein 4 |
TSA | Trichostatin A |
SAHA | Suberoylanilide hydroxamic acid |
DPBS | Dulbecco’s phosphate-buffered saline |
RPMI | Roswell Park Memorial Institute |
cDNA | Complementary DNA |
References
- Fujii, S.-I.; Liu, K.; Smith, C.; Bonito, A.J.; Steinman, R.M. The Linkage of Innate to Adaptive Immunity via Maturing Dendritic Cells In Vivo Requires CD40 Ligation in Addition to Antigen Presentation and CD80/86 Costimulation. J. Exp. Med. 2004, 199, 1607–1618. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, O.; Akira, S. Pattern Recognition Receptors and Inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, A.; Cot, M.; Puzo, G.; Gilleron, M.; Nigou, J. Bacterial cell wall macroamphiphiles: Pathogen-/microbe-associated molecular patterns detected by mammalian innate immune system. Biochimie 2013, 95, 33–42. [Google Scholar] [CrossRef]
- Brown, J.; Wang, H.; Hajishengallis, G.; Martin, M. TLR-signaling Networks. J. Dent. Res. 2010, 90, 417–427. [Google Scholar] [CrossRef]
- Corley, M.J.; Dye, C.; D’Antoni, M.L.; Byron, M.M.; Yo, K.L.-A.; Lum-Jones, A.; Nakamoto, B.; Valcour, V.; SahBandar, I.; Shikuma, C.M.; et al. Comparative DNA Methylation Profiling Reveals an Immunoepigenetic Signature of HIV-related Cognitive Impairment. Sci. Rep. 2016, 6, e33310. [Google Scholar] [CrossRef] [PubMed]
- Bayarsaihan, D. Epigenetic Mechanisms in Inflammation. J. Dent. Res. 2010, 90, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Roger, T.; Lugrin, J.; Le Roy, D.; Goy, G.; Mombelli, M.; Koessler, T.; Ding, X.C.; Chanson, A.-L.; Reymond, M.K.; Miconnet, I.; et al. Histone deacetylase inhibitors impair innate immune responses to Toll-like receptor agonists and to infection. Blood 2011, 117, 1205–1217. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Fatima, N.; Dufau, M.L. Coordinated Changes in DNA Methylation and Histone Modifications Regulate Silencing/Derepression of Luteinizing Hormone Receptor Gene Transcription. Mol. Cell. Biol. 2005, 25, 7929–7939. [Google Scholar] [CrossRef] [Green Version]
- Abbaoui, B.; Lucas, C.R.; Riedl, K.M.; Clinton, S.K.; Mortazavi, A. Cruciferous Vegetables, Isothiocyanates, and Bladder Cancer Prevention. Mol. Nutr. Food Res. 2018, 62, e1800079. [Google Scholar] [CrossRef]
- Liang, J.; Jahraus, B.; Balta, E.; Ziegler, J.D.; Hübner, K.; Blank, N.; Niesler, B.; Wabnitz, G.H.; Samstag, Y. Sulforaphane Inhibits Inflammatory Responses of Primary Human T-Cells by Increasing ROS and Depleting Glutathione. Front. Immunol. 2018, 9, 2584. [Google Scholar] [CrossRef] [PubMed]
- Eren, E.; Tufekci, K.U.; Isci, K.B.; Tastan, B.; Genc, K.; Genc, S. Sulforaphane Inhibits Lipopolysaccharide-Induced Inflammation, Cytotoxicity, Oxidative Stress, and miR-155 Expression and Switches to Mox Phenotype through Activating Extracellular Signal-Regulated Kinase 1/2–Nuclear Factor Erythroid 2-Related Factor 2/Antioxidant Response Element Pathway in Murine Microglial Cells. Front. Immunol. 2018, 9, 36. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Ahn, H.; Hong, E.-J.; An, B.-S.; Jeung, E.-B.; Lee, G.-S. Sulforaphane attenuates activation of NLRP3 and NLRC4 inflammasomes but not AIM2 inflammasome. Cell. Immunol. 2016, 306–307, 53–60. [Google Scholar] [CrossRef]
- Fahey, J.W.; Haristoy, X.; Dolan, P.M.; Kensler, T.W.; Scholtus, I.; Stephenson, K.K.; Talalay, P.; Lozniewski, A. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proc. Natl. Acad. Sci. USA 2002, 99, 7610–7615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dashwood, R.H.; Ho, E. Dietary agents as histone deacetylase inhibitors: Sulforaphane and structurally related isothiocyanates. Nutr. Rev. 2008, 66, S36–S38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, X.; Pröll, M.; Neuhoff, C.; Zhang, R.; Cinar, M.U.; Hossain, M.; Tesfaye, D.; Große-Brinkhaus, C.; Salilew-Wondim, D.; Tholen, E.; et al. Sulforaphane Epigenetically Regulates Innate Immune Responses of Porcine Monocyte-Derived Dendritic Cells Induced with Lipopolysaccharide. PLoS ONE 2015, 10, e0121574. [Google Scholar] [CrossRef] [PubMed]
- ZDS. Richtlinie Fuer die Stationspruefung auf Mastleistung, Schlachtkoerperwert und Fleischbeschaffenheit Beim Schwein; Zentralverband der Deutschen Schweineproduktion e.V., Ausschussfuer Leistungspruefung und Zuchtwertschaetzung: Bonn, Germany, 2003. [Google Scholar]
- Qu, X.; Cinar, M.U.; Fan, H.; Pröll, M.; Tesfaye, D.; Tholen, E.; Looft, C.; Hölker, M.; Schellander, K.; Uddin, M.J. Comparison of the innate immune responses of porcine monocyte-derived dendritic cells and splenic dendritic cells stimulated with LPS. Innate Immun. 2015, 21, 242–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozen, S.; Skaletsky, H. Primer3 on the WWW for General Users and for Biologist Programmers. Bioinform. Methods Protoc. 2000, 132, 365–386. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Li, L.-C.; Dahiya, R. MethPrimer: Designing primers for methylation PCRs. Bioinformatics 2002, 18, 1427–1431. [Google Scholar] [CrossRef] [Green Version]
- Marshall, O.J. PerlPrimer: Cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 2004, 20, 2471–2472. [Google Scholar] [CrossRef] [Green Version]
- Koo, J.E.; Park, Z.-Y.; Kim, N.D.; Lee, J.Y. Sulforaphane inhibits the engagement of LPS with TLR4/MD2 complex by preferential binding to Cys133 in MD2. Biochem. Biophys. Res. Commun. 2013, 434, 600–605. [Google Scholar] [CrossRef]
- Vargas-Hernández, O.; Ventura-Gallegos, J.L.; Ventura-Ayala, M.L.; Torres, M.; Zentella, A.; Pedraza-Sánchez, S. THP-1 cells increase TNF-α production upon LPS + soluble human IgG co-stimulation supporting evidence for TLR4 and Fcγ receptors crosstalk. Cell. Immunol. 2020, 355, 104146. [Google Scholar] [CrossRef] [PubMed]
- Olagnier, D.; Brandtoft, A.M.; Gunderstofte, C.; Villadsen, N.L.; Krapp, C.; Thielke, A.L.; Laustsen, A.; Peri, S.; Hansen, A.L.; Bonefeld, L.; et al. Nrf2 negatively regulates STING indicating a link between antiviral sensing and metabolic reprogramming. Nat. Commun. 2018, 9, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilahur, G.; Badimon, L. Ischemia/reperfusion activates myocardial innate immune response: The key role of the toll-like receptor. Front. Physiol. 2014, 5, 496. [Google Scholar] [CrossRef] [Green Version]
- Shan, Y.; Lin, N.; Yang, X.; Tan, J.; Zhao, R.; Dong, S.; Wang, S. Sulphoraphane inhibited the expressions of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 through MyD88-dependent toll-like receptor-4 pathway in cultured endothelial cells. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 215–222. [Google Scholar] [CrossRef]
- Folkard, D.L.; Melchini, A.; Traka, M.H.; Al-Bakheit, A.; Saha, S.; Mulholland, F.; Watson, A.; Mithen, R.F. Suppression of LPS -induced transcription and cytokine secretion by the dietary isothiocyanate sulforaphane. Mol. Nutr. Food Res. 2014, 58, 2286–2296. [Google Scholar] [CrossRef]
- Myzak, M.C.; Karplus, P.; Chung, F.-L.; Dashwood, R.H.; Bendle, G.M.; Holler, A.; Pang, L.-K.; Hsu, S.; Krampera, M.; Simpson, E.; et al. A Novel Mechanism of Chemoprotection by Sulforaphane. Cancer Res. 2004, 64, 5767–5774. [Google Scholar] [CrossRef] [Green Version]
- Menden, H.; Xia, S.; Mabry, S.M.; Noel-Macdonnell, J.; Rajasingh, J.; Ye, S.Q.; Sampath, V. Histone deacetylase 6 regulates endothelial MyD88-dependent canonical TLR signaling, lung inflammation, and alveolar remodeling in the developing lung. Am. J. Physiol. Cell. Mol. Physiol. 2019, 317, L332–L346. [Google Scholar] [CrossRef] [PubMed]
- Dashwood, R.H.; Myzak, M.C.; Ho, E. Dietary HDAC inhibitors: Time to rethink weak ligands in cancer chemoprevention? Carcinogenesis 2005, 27, 344–349. [Google Scholar] [CrossRef]
- Youn, H.S.; Kim, Y.S.; Park, Z.Y.; Kim, S.Y.; Choi, N.Y.; Joung, S.M.; Seo, J.A.; Lim, K.-M.; Kwak, M.-K.; Hwang, D.H.; et al. Sulforaphane Suppresses Oligomerization of TLR4 in a Thiol-Dependent Manner. J. Immunol. 2009, 184, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Hsu, A.; Wong, C.P.; Yu, Z.; E Williams, D.; Dashwood, R.H.; Ho, E. Promoter de-methylation of cyclin D2 by sulforaphane in prostate cancer cells. Clin. Epigenetics 2011, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K.; Sugi, Y.; Hosono, A.; Kaminogawa, S. Epigenetic Regulation of TLR4 Gene Expression in Intestinal Epithelial Cells for the Maintenance of Intestinal Homeostasis. J. Immunol. 2009, 183, 6522–6529. [Google Scholar] [CrossRef] [PubMed]
- Kominsky, D.J.; Keely, S.; MacManus, C.F.; Glover, L.E.; Scully, M.; Collins, C.B.; Bowers, B.E.; Campbell, E.L.; Colgan, S.P. An Endogenously Anti-Inflammatory Role for Methylation in Mucosal Inflammation Identified through Metabolite Profiling. J. Immunol. 2011, 186, 6505–6514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallard, B.; Wilkie, B.; Kennedy, B. The influence of the swine major histocompatibility genes (SLA) on variation in serum immunoglobulin (Ig) concentration. Veter-Immunol. Immunopathol. 1989, 21, 139–151. [Google Scholar] [CrossRef]
- Lumsden, J.S.; Kennedy, B.W.; Mallard, B.A.; Wilkie, B.N. The influence of the swine major histocompatibility genes on antibody and cell-mediated immune responses to immunization with an aromatic-dependent mutant of Salmonella typhimurium. Can. J. Veter. Res. 1993, 57, 14–18. [Google Scholar]
- Fan, H.; Cui, Z.; Zhang, H.; Mani, S.K.K.; Diab, A.; Lefrancois, L.; Fares, N.; Merle, P.; Andrisani, O. DNA demethylation induces SALL4 gene re-expression in subgroups of hepatocellular carcinoma associated with Hepatitis B or C virus infection. Oncogene 2016, 36, 2435–2445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horion, J.; Gloire, G.; El Mjiyad, N.; Quivy, V.; Vermeulen, L.; Berghe, W.V.; Haegeman, G.; Van Lint, C.; Piette, J.; Habraken, Y. Histone Deacetylase Inhibitor Trichostatin A Sustains Sodium Pervanadate-induced NF-κB Activation by Delaying IκBα mRNA Resynthesis. J. Biol. Chem. 2007, 282, 15383–15393. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.S.; Lee, J.K. Histone deacetylase inhibitors decrease the antigen presenting activity of murine bone marrow derived dendritic cells. Cell. Immunol. 2010, 262, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.J.; Jung, J.I.; Cho, H.J.; Choi, M.-S.; Sung, M.-K.; Myung-Sook, C.; Kang, Y.-H.; Park, J.H.Y. Berteroin Present in Cruciferous Vegetables Exerts Potent Anti-Inflammatory Properties in Murine Macrophages and Mouse Skin. Int. J. Mol. Sci. 2014, 15, 20686–20705. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Liu, X.; Bao, H. Sulforaphane suppresses lipopolysaccharide- and Pam3CysSerLys4-mediated inflammation in chronic obstructive pulmonary disease via toll-like receptors. FEBS Open Bio 2021, 11, 1313–1321. [Google Scholar] [CrossRef]
- Bode, K.A.; Schroder, K.; Hume, D.A.; Ravasi, T.; Heeg, K.; Sweet, M.; Dalpke, A.H. Histone deacetylase inhibitors decrease Toll-like receptor-mediated activation of proinflammatory gene expression by impairing transcription factor recruitment. Immunology 2007, 122, 596–606. [Google Scholar] [CrossRef]
- Zimmerman, N.P.; Vongsa, R.A.; Wendt, M.K.; Dwinell, M.B. Chemokines and chemokine receptors in mucosal homeostasis at the intestinal epithelial barrier in inflammatory bowel disease. Inflamm. Bowel Dis. 2008, 14, 1000–1011. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Nagata, N.; Ota, T. Impact of Glucoraphanin-Mediated Activation of Nrf2 on Non-Alcoholic Fatty Liver Disease with a Focus on Mitochondrial Dysfunction. Int. J. Mol. Sci. 2019, 20, 5920. [Google Scholar] [CrossRef] [Green Version]
- Kaufman-Szymczyk, A.; Majewski, G.; Lubecka-Pietruszewska, K.; Fabianowska-Majewska, K. The Role of Sulforaphane in Epigenetic Mechanisms, Including Interdependence between Histone Modification and DNA Methylation. Int. J. Mol. Sci. 2015, 16, 29732–29743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J. Pre-Clinical Neuroprotective Evidences and Plausible Mechanisms of Sulforaphane in Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 2929. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, M.; Sun, N.; Qing, Y.; Yin, T.; Li, C.; Wu, D. Sulforaphane-induced epigenetic regulation of Nrf2 expression by DNA methyltransferase in human Caco-2 cells. Oncol. Lett. 2019, 18, 2639–2647. [Google Scholar] [CrossRef] [Green Version]
- Miao, Z.; Yu, F.; Ren, Y.; Yang, J. d,l-Sulforaphane Induces ROS-Dependent Apoptosis in Human Gliomablastoma Cells by Inactivating STAT3 Signaling Pathway. Int. J. Mol. Sci. 2017, 18, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellezza, I.; Scarpelli, P.; Pizzo, S.V.; Grottelli, S.; Costanzi, E.; Minelli, A. ROS-independent Nrf2 activation in prostate cancer. Oncotarget 2017, 8, 67506–67518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.-W.; Chen, Y.-S.; Tsay, Y.-G.; Han, C.-L.; Yang, C.-C.; Hung, K.-F.; Lin, C.-H.; Huang, T.-Y.; Kao, S.-Y.; Lee, T.-C.; et al. ROS-independent ER stress-mediated NRF2 activation promotes warburg effect to maintain stemness-associated properties of cancer-initiating cells. Cell Death Dis. 2018, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Beutler, B.; Cerami, A. Tumor Necrosis, Cachexia, Shock, and Inflammation: A Common Mediator. Annu. Rev. Biochem. 1988, 57, 505–518. [Google Scholar] [CrossRef]
- Bekker, L.-G.; Moreira, A.L.; Bergtold, A.; Freeman, S.; Ryffel, B.; Kaplan, G. Immunopathologic Effects of Tumor Necrosis Factor Alpha in Murine Mycobacterial Infection Are Dose Dependent. Infect. Immun. 2000, 68, 6954–6961. [Google Scholar] [CrossRef] [Green Version]
- Imre, G.; Gekeler, V.; Leja, A.; Beckers, T.; Boehm, M. Histone Deacetylase Inhibitors Suppress the Inducibility of Nuclear Factor-κB by Tumor Necrosis Factor-α Receptor-1 Down-regulation. Cancer Res. 2006, 66, 5409–5418. [Google Scholar] [CrossRef] [Green Version]
- Leoni, F.; Zaliani, A.; Bertolini, G.; Porro, G.; Pagani, P.; Pozzi, P.; Donà, G.; Fossati, G.; Sozzani, S.; Azam, T.; et al. The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc. Natl. Acad. Sci. USA 2002, 99, 2995–3000. [Google Scholar] [CrossRef] [Green Version]
- Qu, X. Innate Immune Responses of LPS Treated Porcinemonocyte-Derived Dendritic Cells after Exposure to the Histone Deacetylase Inhibitor Sulpforaphane. Ph.D. Thesis, University of Bonn Bonn (NRW), Bonn, Germany, 2015. [Google Scholar]
Gene | Primer Set | Anneal Temperature (°C) | Amplicon Size (bp) | GenBank Accession Number |
---|---|---|---|---|
TLR4 | F:ATCATCCAGGAAGGTTTCCAC R:TGTCCTCCCACTCCAGGTAG | 58 | 235 | NM_001097444.1 |
MyD88 | F:CCAGTTTGTGCAGGAGATGA R:TCACATTCCTTGCTTTCGAG | 60 | 185 | NM_001099923.1 |
MHC-SLA1 | F:AGAAGGAGGGGCAGGACTAT R:TCGTAGGCGTCCTGTCTGTA | 60 | 199 | NM_001097431.1 |
Nrf2 | F:GTGCCTATAAGTCCCGGTCA R:ATGCAGAGCTTTTGCCCTTA | 60 | 108 | XM_003483682.1 |
STAT3 | F:ATGCTGGAGGAGAGAATCGT R:AGGGAATTTGACCAGCAATC | 60 | 159 | XM_005668829.1 |
TNF-α | F:CCACCAACGTTTTCCTCACT R:CCAAAATAGACCTGCCCAGA | 60 | 247 | NM_214022.1 |
IL-1ß | F:GTACATGGTTGCTGCCTGAA R:CTAGTGTGCCATGGTTTCCA | 59 | 137 | NM_001005149.1 |
IL-6 | F:GGCAGAAAACAACCTGAACC R:GTGGTGGCTTTGTCTGGATT | 58 | 125 | NM_214399.1 |
IL-8 | F:TAGGACCAGAGCCAGGAAGA R:CAGTGGGGTCCACTCTCAAT | 60 | 174 | NM_213997.1 |
CXCL2 | F:ATCCAGGACCTGAAGGTGAC R:ATCAGTTGGCACTGCTCTTG | 60 | 152 | NM_001001861.2 |
CCL4 | F:CTCTCCTCCAGCAAGACCAT R:CAGAGGCTGCTGGTCTCATA | 60 | 191 | NM_213779.1 |
HPRT1 | F:AACCTTGCTTTCCTTGGTCA R:TCAAGGGCATAGCCTACCAC | 60 | 150 | NM_001032376.2 |
GAPDH | F:ACCCAGAAGACTGTGGATGG R:ACGCCTGCTTCACCACCTTC | 60 | 247 | AF017079 |
TLR4-met-nest | F:GTATATGGAGGTTTTTAGGTTAGGG R:TCCCTACCCTTACTCAATAAATTAAC | 55 | 153 | AY753179 |
MHC-SLA1-met-nest | F:GTTTGGGGAGAAGTTGAGTAGAGT R:AAAAAACAAAAACAAAACAAAATCC | 58 | 293 | AJ251829.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, X.; Neuhoff, C.; Cinar, M.U.; Pröll, M.; Tholen, E.; Tesfaye, D.; Hölker, M.; Schellander, K.; Uddin, M.J. Epigenetic Modulation of TLR4 Expression by Sulforaphane Increases Anti-Inflammatory Capacity in Porcine Monocyte-Derived Dendritic Cells. Biology 2021, 10, 490. https://doi.org/10.3390/biology10060490
Qu X, Neuhoff C, Cinar MU, Pröll M, Tholen E, Tesfaye D, Hölker M, Schellander K, Uddin MJ. Epigenetic Modulation of TLR4 Expression by Sulforaphane Increases Anti-Inflammatory Capacity in Porcine Monocyte-Derived Dendritic Cells. Biology. 2021; 10(6):490. https://doi.org/10.3390/biology10060490
Chicago/Turabian StyleQu, Xueqi, Christiane Neuhoff, Mehmet Ulas Cinar, Maren Pröll, Ernst Tholen, Dawit Tesfaye, Michael Hölker, Karl Schellander, and Muhammad Jasim Uddin. 2021. "Epigenetic Modulation of TLR4 Expression by Sulforaphane Increases Anti-Inflammatory Capacity in Porcine Monocyte-Derived Dendritic Cells" Biology 10, no. 6: 490. https://doi.org/10.3390/biology10060490
APA StyleQu, X., Neuhoff, C., Cinar, M. U., Pröll, M., Tholen, E., Tesfaye, D., Hölker, M., Schellander, K., & Uddin, M. J. (2021). Epigenetic Modulation of TLR4 Expression by Sulforaphane Increases Anti-Inflammatory Capacity in Porcine Monocyte-Derived Dendritic Cells. Biology, 10(6), 490. https://doi.org/10.3390/biology10060490