Biology of Lymphedema
Abstract
:Simple Summary
Abstract
1. Introduction
2. Overview of the Lymphatic System
2.1. Anatomy
2.2. Physiology
2.3. Methods for Assessing Lymphatic Flow
3. Overview of Lymphedema
3.1. Epidemiology and Etiology
3.1.1. Primary Lymphedema
- (a)
- congenital lymphedema: <1 year;
- (b)
- lymphedema praecox: 1–35 years (most common sub-group); and,
- (c)
- lymphedema tarda: <35 years.
3.1.2. Secondary Lymphedema
3.1.3. Lymphatic Malformations and Chylous Effusions
3.2. Clinical Assessment of Lymphedema
3.3. Therapeutic Options
3.3.1. Physical Therapy
3.3.2. Innovative Drugs / Compounds for the Treatment of Lymphedema
3.3.3. Surgical Approaches
4. Complete Decongestive Therapy
4.1. Underlying Principles
- Manual Lymphatic Drainage (MLD) is performed to enhance lymphatic outflow. Lymph therapists use specific hand movements (rhythmic, flowing or stirring) with a pressure of 30—40 mmHg in a frequency that mimics the intrinsic frequency of the lymphangion (10/min). MLD is started in the area of healthy tissue and then expanded into adjacent areas where the obstructed vessels are located [115,116].
- Physical exercise such as ergometry [118], aerobic exercise [119] and/or resistance exercise [120] as well as associated respiratory movements are believed to assist in increasing lymphatic flow, in reducing swelling and in improving muscle strength as well as quality of life in lymphedema patients [82].
- Skin care and skin restauration [121].
- Psychological support [38] as the disabling and debilitating characterizations from lymphedema are a huge psychological burden to the patient.
- Educational seminars on skin care or nutrition [122].
4.2. Research into the Effects of Physical Therapy
4.2.1. Studying Fluid Shifts Caused by Treatment
4.2.2. Studying Lymphedema Treatment Effects on Orthostatic Intolerance
The mechanisms of Falls: Role of Cardio-Postural Interactions and Medications
Alteration of Cardio-Postural Interactions during Lymphedema Treatment?
4.2.3. Vascular/Endothelial (dys-)function
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Breslin, J.W.; Yang, Y.; Scallan, J.P.; Sweat, R.S.; Adderley, S.P.; Murfee, W.L. Lymphatic Vessel Network Structure and Physiology. Compr. Physiol. 2018, 9, 207–299. [Google Scholar] [CrossRef]
- Schmid-Schonbein, G.W. Microlymphatics and lymph flow. Physiol. Rev. 1990, 70, 987–1028. [Google Scholar] [CrossRef]
- Moore, J.E., Jr.; Bertram, C.D. Lymphatic System Flows. Annu. Rev. Fluid Mech. 2018, 50, 459–482. [Google Scholar] [CrossRef]
- Breslin, J.W. Mechanical forces and lymphatic transport. Microvasc. Res. 2014, 96, 46–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telinius, N.; Hjortdal, V.E. Role of the lymphatic vasculature in cardiovascular medicine. Heart 2019, 105, 1777–1784. [Google Scholar] [CrossRef] [PubMed]
- Oliver, G.; Kipnis, J.; Randolph, G.J.; Harvey, N.L. The Lymphatic Vasculature in the 21st Century: Novel Functional Roles in Homeostasis and Disease. Cell 2020, 182, 270–296. [Google Scholar] [CrossRef] [PubMed]
- Hsu, M.C.; Itkin, M. Lymphatic Anatomy. Tech. Vasc. Interv. Radiol. 2016, 19, 247–254. [Google Scholar] [CrossRef]
- Levick, J.R.; Michel, C.C. Microvascular fluid exchange and the revised Starling principle. Cardiovasc. Res. 2010, 87, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Lynch, P.M.; Delano, F.A.; Schmid-Schönbein, G.W. The primary valves in the initial lymphatics during inflammation. Lymphat. Res. Biol. 2007, 5, 3–10. [Google Scholar] [CrossRef]
- Trzewik, J.; Mallipattu, S.K.; Artmann, G.M.; Delano, F.A.; Schmid-Schönbein, G.W. Evidence for a second valve system in lymphatics: Endothelial microvalves. FASEB J. 2001, 15, 1711–1717. [Google Scholar] [CrossRef] [Green Version]
- Scallan, J.P.; Zawieja, S.D.; Castorena-Gonzalez, J.A.; Davis, M.J. Lymphatic pumping: Mechanics, mechanisms and malfunction. J. Physiol. 2016, 594, 5749–5768. [Google Scholar] [CrossRef]
- Armenio, S.; Cetta, F.; Tanzini, G.; Guercia, C. Spontaneous contractility in the human lymph vessels. Lymphology 1981, 14, 173–178. [Google Scholar]
- Olszewski, W.L.; Engeset, A.; Sokolowski, J. Lymph flow and protein in the normal male leg during lying, getting up, and walking. Lymphology 1977, 10, 178–183. [Google Scholar]
- Gashev, A.A.; Davis, M.J.; Delp, M.D.; Zawieja, D.C. Regional variations of contractile activity in isolated rat lymphatics. Microcirculation 2004, 11, 477–492. [Google Scholar] [CrossRef]
- Gasheva, O.Y.; Zawieja, D.C.; Gashev, A.A. Contraction-initiated NO-dependent lymphatic relaxation: A self-regulatory mechanism in rat thoracic duct. J. Physiol. 2006, 575, 821–832. [Google Scholar] [CrossRef]
- Scallan, J.P.; Davis, M.J.; Huxley, V.H. Permeability and contractile responses of collecting lymphatic vessels elicited by atrial and brain natriuretic peptides. J. Physiol. 2013, 591, 5071–5081. [Google Scholar] [CrossRef] [PubMed]
- Adair, T.H.; Guyton, A.C. Modification of lymph by lymph nodes. III. Effect of increased lymph hydrostatic pressure. Am. J. Physiol. 1985, 249, H777–H782. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.C.; D’Alessandro, A.; Clement, C.C.; Santambrogio, L. Lymph formation, composition and circulation: A proteomics perspective. Int. Immunol. 2015, 27, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Renkin, E.M. Some consequences of capillary permeability to macromolecules: Starling’s hypothesis reconsidered. Am. J. Physiol. 1986, 250, H706–H710. [Google Scholar] [CrossRef]
- Gannon, B.J.; Carati, C.J. Endothelial distribution of the membrane water channel molecule aquaporin-1: Implications for tissue and lymph fluid physiology? Lymphat. Res. Biol. 2003, 1, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, L.A.; Gordon, K.; Kholova, I.; Meijer-Jo rna, L.B.; Telinius, N.; Gallagher, P.J.; van der Wal, A.C.; Baandrup, U. Lymph vessels: The forgotten second circulation in health and disease. Virchows Arch. 2016, 469, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Alitalo, K. The lymphatic vasculature in disease. Nat. Med. 2011, 17, 1371–1380. [Google Scholar] [CrossRef]
- Notohamiprodjo, M.; Weiss, M.; Baumeister, R.G.; Sommer, W.H.; Helck, A.; Crispin, A.; Reiser, M.F.; Herrmann, K.A. MR lymphangiography at 3.0 T: Correlation with lymphoscintigraphy. Radiology 2012, 264, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Mazzei, F.G.; Gentili, F.; Guerrini, S.; Cioffi Squitieri, N.; Guerrieri, D.; Gennaro, P.; Scialpi, M.; Volterrani, L.; Mazzei, M.A. MR Lymphangiography: A Practical Guide to Perform It and a Brief Review of the Literature from a Technical Point of View. BioMed Res. Int. 2017, 2017, 2598358. [Google Scholar] [CrossRef] [PubMed]
- Pieper, C.C.; Feisst, A.; Schild, H.H. Contrast-enhanced Interstitial Transpedal MR Lymphangiography for Thoracic Chylous Effusions. Radiology 2020, 295, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Chavhan, G.B.; Lam, C.Z.; Greer, M.C.; Temple, M.; Amaral, J.; Grosse-Wortmann, L. Magnetic Resonance Lymphangiography. Radiol. Clin. N. Am. 2020, 58, 693–706. [Google Scholar] [CrossRef] [PubMed]
- Giacalone, G.; Yamamoto, T.; Belva, F.; Hayashi, A. Bedside 3D Visualization of Lymphatic Vessels with a Handheld Multispectral Optoacoustic Tomography Device. J. Clin. Med. 2020, 9, 815. [Google Scholar] [CrossRef] [Green Version]
- Polomska, A.K.; Proulx, S.T. Imaging technology of the lymphatic system. Adv. Drug Deliv. Rev. 2020. [Google Scholar] [CrossRef]
- Rössler, A.; Fink, M.; Goswami, N.; Batzel, J.J. Modeling of hyaluronan clearance with application to estimation of lymph flow. Physiol. Meas. 2011, 32, 1213–1238. [Google Scholar] [CrossRef] [PubMed]
- Roh, K.; Cho, S.; Park, J.-h.; Yoo, B.C.; Kim, W.-K.; Kim, S.-k.; Park, K.; Kang, H.; Ku, J.-m.; Yeom, C.-H.; et al. Therapeutic effects of hyaluronidase on acquired lymphedema using a newly developed mouse limb model. Exp. Biol. Med. 2017, 242, 584–592. [Google Scholar] [CrossRef] [Green Version]
- Rossler, A.; Hinghofer-Szalkay, H. Hyaluronan fragments: An information-carrying system? Horm. Metab. Res. 2003, 35, 67–68. [Google Scholar] [CrossRef]
- Hinghofer-Szalkay, H.G.; Mekonen, W.; Rossler, A.; Schwaberger, G.; Lamprecht, M.; Hofmann, P. Post-exercise decrease of plasma hyaluronan: Increased clearance or diminished production? Physiol. Res. 2002, 51, 139–144. [Google Scholar] [PubMed]
- Rössler, A.; László, Z.; Kvas, E.; Hinghofer-Szalkay, H.G. Plasma hyaluronan concentration: No circadian rhythm but large effect of food intake in humans. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 78, 573–577. [Google Scholar] [CrossRef]
- Liu, N.-F.; Zhang, L. Changes of tissue fluid hyaluronan (hyaluronic acid) in peripheral lymphedema. Lymphology 1998, 31, 173–179. [Google Scholar]
- Brix, B.; Apich, G.; Rössler, A.; Walbrodt, S.; Goswami, N. Effects of physical therapy on hyaluronan clearance and volume regulating hormones in lower limb lymphedema patients: A pilot study. Sci. Prog. 2021, 104, 36850421998485. [Google Scholar] [CrossRef]
- Goswami, N.; Roessler, A.; Haditsch, B.; Hinghofer-Szalkay, H.; Schneditz, D. Paradoxical clearance of hyaluronan fragments during haemodialysis and haemodiafiltration. Nephrol. Dial. Transplant. 2012, 27, 4420–4422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, N.F.; Olszewski, W. The influence of local hyperthermia on lymphedema and lymphedematous skin of the human leg. Lymphology 1993, 26, 28–37. [Google Scholar] [PubMed]
- Rockson, S.G.; Rivera, K.K. Estimating the population burden of lymphedema. Ann. N. Y. Acad. Sci. 2008, 1131, 147–154. [Google Scholar] [CrossRef]
- Kayıran, O.; De La Cruz, C.; Tane, K.; Soran, A. Lymphedema: From diagnosis to treatment. Turk. J. Surg. 2017, 33, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maclellan, R.A.; Couto, R.A.; Sullivan, J.E.; Grant, F.D.; Slavin, S.A.; Greene, A.K. Management of Primary and Secondary Lymphedema: Analysis of 225 Referrals to a Center. Ann. Plast. Surg. 2015, 75, 197–200. [Google Scholar] [CrossRef]
- Gasparis, A.P.; Kim, P.S.; Dean, S.M.; Khilnani, N.M.; Labropoulos, N. Diagnostic approach to lower limb edema. Phlebology 2020, 35, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Grada, A.A.; Phillips, T.J. Lymphedema: Pathophysiology and clinical manifestations. J. Am. Acad. Dermatol. 2017, 77, 1009–1020. [Google Scholar] [CrossRef] [PubMed]
- Borman, P. Lymphedema diagnosis, treatment, and follow-up from the view point of physical medicine and rehabilitation specialists. Turk. J. Phys. Med. Rehabil. 2018, 64, 179–197. [Google Scholar] [CrossRef] [PubMed]
- Schaverien, M.V.; Coroneos, C.J. Surgical Treatment of Lymphedema. Plast. Reconstr. Surg. 2019, 144, 738–758. [Google Scholar] [CrossRef] [PubMed]
- Moffatt, C.J.; Franks, P.J.; Doherty, D.C.; Williams, A.F.; Badger, C.; Jeffs, E.; Bosanquet, N.; Mortimer, P.S. Lymphoedema: An underestimated health problem. Qjm 2003, 96, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Neuhüttler, S.; Brenner, E. Beitrag zur Epidemiologie des Lymphödems. Phlebologie 2018, 35, 181–187. [Google Scholar] [CrossRef]
- Keeley, V.; Franks, P.; Quere, I.; Mercier, G.; Michelini, S.; Cestari, M.; Borman, P.; Hughes, A.; Clark, K.; Lisle, J.; et al. LIMPRINT in Specialist Lymphedema Services in United Kingdom, France, Italy, and Turkey. Lymphat. Res. Biol. 2019, 17, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, P.S.; Rockson, S.G. New developments in clinical aspects of lymphatic disease. J. Clin. Investig. 2014, 124, 915–921. [Google Scholar] [CrossRef]
- Maltese, P.E.; Michelini, S.; Ricci, M.; Maitz, S.; Fiorentino, A.; Serrani, R.; Lazzerotti, A.; Bruson, A.; Paolacci, S.; Benedetti, S.; et al. Increasing evidence of hereditary lymphedema caused by CELSR1 loss-of-function variants. Am. J. Med. Genet. A. 2019, 179, 1718–1724. [Google Scholar] [CrossRef]
- Aspelund, A.; Robciuc, M.R.; Karaman, S.; Makinen, T.; Alitalo, K. Lymphatic System in Cardiovascular Medicine. Circ. Res. 2016, 118, 515–530. [Google Scholar] [CrossRef]
- Brice, G.; Child, A.H.; Evans, A.; Bell, R.; Mansour, S.; Burnand, K.; Sarfarazi, M.; Jeffery, S.; Mortimer, P. Milroy disease and the VEGFR-3 mutation phenotype. J. Med. Genet. 2005, 42, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Mellor, R.H.; Tate, N.; Stanton, A.W.; Hubert, C.; Mäkinen, T.; Smith, A.; Burnand, K.G.; Jeffery, S.; Levick, J.R.; Mortimer, P.S. Mutations in FOXC2 in humans (lymphoedema distichiasis syndrome) cause lymphatic dysfunction on dependency. J. Vasc. Res. 2011, 48, 397–407. [Google Scholar] [CrossRef]
- Kerchner, K.; Fleischer, A.; Yosipovitch, G. Lower extremity lymphedema update: Pathophysiology, diagnosis, and treatment guidelines. J. Am. Acad. Dermatol. 2008, 59, 324–331. [Google Scholar] [CrossRef] [PubMed]
- WHO. Fact sheet. Lymphatic Filariasis. Available online: https://www.who.int/news-room/fact-sheets/detail/lymphatic-filariasis (accessed on 4 February 2021).
- Cormier, J.N.; Askew, R.L.; Mungovan, K.S.; Xing, Y.; Ross, M.I.; Armer, J.M. Lymphedema beyond breast cancer: A systematic review and meta-analysis of cancer-related secondary lymphedema. Cancer 2010, 116, 5138–5149. [Google Scholar] [CrossRef] [PubMed]
- Bar Ad, V.; Cheville, A.; Solin, L.J.; Dutta, P.; Both, S.; Harris, E.E. Time course of mild arm lymphedema after breast conservation treatment for early-stage breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Allam, O.; Park, K.E.; Chandler, L.; Mozaffari, M.A.; Ahmad, M.; Lu, X.; Alperovich, M. The impact of radiation on lymphedema: A review of the literature. Gland. Surg. 2020, 9, 596–602. [Google Scholar] [CrossRef]
- Tiwari, A. Differential Diagnosis, Investigation, and Current Treatment of Lower Limb Lymphedema. Arch. Surg. 2003, 138, 152. [Google Scholar] [CrossRef]
- Newman, B.; Lose, F.; Kedda, M.A.; Francois, M.; Ferguson, K.; Janda, M.; Yates, P.; Spurdle, A.B.; Hayes, S.C. Possible genetic predisposition to lymphedema after breast cancer. Lymphat. Res. Biol. 2012, 10, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Muambangu, J.P.; Lukenze Jacques, T. Genetic Risk Factors of Secondary Lymphedema in African Breast Cancer Population. J. Oncol. Res. Ther. 2018, 4, 147. [Google Scholar]
- Michelini, S.; Vettori, A.; Maltese, P.E.; Cardone, M.; Bruson, A.; Fiorentino, A.; Cappellino, F.; Sainato, V.; Guerri, G.; Marceddu, G.; et al. Genetic Screening in a Large Cohort of Italian Patients Affected by Primary Lymphedema Using a Next Generation Sequencing (NGS) Approach. Lymphology 2016, 49, 57–72. [Google Scholar]
- Müller-Wille, R.; Wildgruber, M.; Sadick, M.; Wohlgemuth, W.A. Vascular Anomalies (Part II): Interventional Therapy of Peripheral Vascular Malformations. RöFo 2018, 190, 927–937. [Google Scholar] [CrossRef] [Green Version]
- Sadick, M.; Müller-Wille, R.; Wildgruber, M.; Wohlgemuth, W.A. Vascular Anomalies (Part I): Classification and Diagnostics of Vascular Anomalies. RöFo 2018, 190, 825–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masthoff, M.; Helfen, A.; Claussen, J.; Karlas, A.; Markwardt, N.A.; Ntziachristos, V.; Eisenblätter, M.; Wildgruber, M. Use of Multispectral Optoacoustic Tomography to Diagnose Vascular Malformations. JAMA Dermatol. 2018, 154, 1457–1462. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Wang, Q.; Zhao, W.; Han, L.; Wang, Q.; Batchu, N.; Ulain, Q.; Zou, J.; Sun, C.; Du, J.; et al. A review of the postoperative lymphatic leakage. Oncotarget 2017, 8, 69062–69075. [Google Scholar] [CrossRef] [PubMed]
- Pieper, C.C.; Hur, S.; Sommer, C.M.; Nadolski, G.; Maleux, G.; Kim, J.; Itkin, M. Back to the Future: Lipiodol in Lymphography-From Diagnostics to Theranostics. Investig. Radiol. 2019, 54, 600–615. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.; Itkin, M. Thoracic duct embolization for chylous leaks. Semin. Interv. Radiol. 2011, 28, 63–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rockson, S.G. Diagnosis and Management of Lymphatic Vascular Disease. J. Am. Coll. Cardiol. 2008, 52, 799–806. [Google Scholar] [CrossRef] [Green Version]
- Wilting, J.; Bartkowski, R.; Baumeister, R.G.; Földi, E.; Stöhr, S.; Strubel, G.; Schrader, K.; Traber, J. S2k Leitlinie: Diagnostik und Therapie der Lymphödeme. Available online: https://www.awmf.org/uploads/tx_szleitlinien/058-001l_S2k_Diagnostik_und_Therapie_der_Lymphoedeme_2019-07.pdf (accessed on 1 October 2020).
- Kilgore, L.J.; Korentager, S.S.; Hangge, A.N.; Amin, A.L.; Balanoff, C.R.; Larson, K.E.; Mitchell, M.P.; Chen, J.G.; Burgen, E.; Khan, Q.J.; et al. Reducing Breast Cancer-Related Lymphedema (BCRL) Through Prospective Surveillance Monitoring Using Bioimpedance Spectroscopy (BIS) and Patient Directed Self-Interventions. Ann. Surg. Oncol. 2018, 25, 2948–2952. [Google Scholar] [CrossRef]
- Schook, C.C.; Mulliken, J.B.; Fishman, S.J.; Alomari, A.I.; Grant, F.D.; Greene, A.K. Differential diagnosis of lower extremity enlargement in pediatric patients referred with a diagnosis of lymphedema. Plast. Reconstr. Surg. 2011, 127, 1571–1581. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Kim, J.; Lee, M.-J.; Roche, L.; Yang, N.L.; Tsao, P.S.; Rockson, S.G. Prospective transcriptomic pathway analysis of human lymphatic vascular insufficiency: Identification and validation of a circulating biomarker panel. PLoS ONE 2012, 7, e52021. [Google Scholar] [CrossRef] [Green Version]
- Dixon, J.B.; Weiler, M.J. Bridging the divide between pathogenesis and detection in lymphedema. Semin. Cell Dev. Biol. 2015, 38, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Ure, C. Diagnosis of lymphedema. Wien. Med. Wochenschr. 2013, 163, 162–168. [Google Scholar] [CrossRef]
- Goss, J.A.; Greene, A.K. Sensitivity and Specificity of the Stemmer Sign for Lymphedema: A Clinical Lymphoscintigraphic Study. Plast. Reconstr. Surg. Glob. Open 2019, 7, e2295. [Google Scholar] [CrossRef] [PubMed]
- Hidding, J.T.; Viehoff, P.B.; Beurskens, C.H.; van Laarhoven, H.W.; Nijhuis-van der Sanden, M.W.; van der Wees, P.J. Measurement Properties of Instruments for Measuring of Lymphedema: Systematic Review. Phys. Ther. 2016, 96, 1965–1981. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, A.R.; King, S.W.; Kuo, R.Y.; Bickerton, S.B.; Ramsden, A.J.; Furniss, D. Measuring Limb Volume: Accuracy and Reliability of Tape Measurement Versus Perometer Measurement. Lymphat. Res. Biol. 2018, 16, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Ciudad, P.; Sabbagh, M.D.; Agko, M.; Huang, T.C.T.; Manrique, O.J.; L, C.R.; Reynaga, C.; Delgado, R.; Maruccia, M.; Chen, H.C. Surgical Management of Lower Extremity Lymphedema: A Comprehensive Review. Indian J. Plast. Surg. 2019, 52, 81–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, Y. Recent advances in medical treatment for lymphedema. Ann. Vasc. Dis. 2012, 5, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Apich, G. Konservative Therapie des Lymphoedems-Lymphologische Rehabilitationsbehandlung. Wien. Med. Wochenschr. 2013, 163, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Tzani, I.; Tsichlaki, M.; Zerva, E.; Papathanasiou, G.; Dimakakos, E. Physiotherapeutic rehabilitation of lymphedema: State-of-the-art. Lymphology 2018, 51, 1–12. [Google Scholar]
- Dayan, J.H.; Ly, C.L.; Kataru, R.P.; Mehrara, B.J. Lymphedema: Pathogenesis and Novel Therapies. Annu. Rev. Med. 2018, 69, 263–276. [Google Scholar] [CrossRef]
- Gott, F.H.; Ly, K.; Piller, N.; Mangio, A. Negative pressure therapy in the management of lymphoedema. J. Lymphoedema 2018, 13, 43–48. [Google Scholar]
- Gatt, M.; Willis, S.; Leuschner, S. A meta-analysis of the effectiveness and safety of kinesiology taping in the management of cancer-related lymphoedema. Eur. J. Cancer Care 2017, 26. [Google Scholar] [CrossRef]
- Davies, C.; Levenhagen, K.; Ryans, K.; Perdomo, M.; Gilchrist, L. Interventions for Breast Cancer-Related Lymphedema: Clinical Practice Guideline from the Academy of Oncologic Physical Therapy of APTA. Phys. Ther. 2020, 100, 1163–1179. [Google Scholar] [CrossRef] [PubMed]
- Stecco, A.; Stern, R.; Fantoni, I.; De Caro, R.; Stecco, C. Fascial Disorders: Implications for Treatment. PM&R 2016, 8, 161–168. [Google Scholar] [CrossRef]
- Roman, M.; Chaudhry, H.; Bukiet, B.; Stecco, A.; Findley, T.W. Mathematical analysis of the flow of hyaluronic acid around fascia during manual therapy motions. J. Am. Osteopath Assoc. 2013, 113, 600–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, C.; Mortimer, P.; Judd, P.A. A randomized controlled trial of weight reduction as a treatment for breast cancer-related lymphedema. Cancer 2007, 110, 1868–1874. [Google Scholar] [CrossRef] [PubMed]
- Nitti, M.D.; Hespe, G.E.; Kataru, R.P.; García Nores, G.D.; Savetsky, I.L.; Torrisi, J.S.; Gardenier, J.C.; Dannenberg, A.J.; Mehrara, B.J. Obesity-induced lymphatic dysfunction is reversible with weight loss. J. Physiol. 2016, 594, 7073–7087. [Google Scholar] [CrossRef]
- Kwan, M.L.; Cohn, J.C.; Armer, J.M.; Stewart, B.R.; Cormier, J.N. Exercise in patients with lymphedema: A systematic review of the contemporary literature. J. Cancer Surviv. 2011, 5, 320–336. [Google Scholar] [CrossRef]
- Mariana, V.F.; de Fatima, G.G.; Maria Pde, G. The effect of mechanical lymph drainage accompanied with heat on lymphedema. J. Res. Med. Sci. 2011, 16, 1448–1451. [Google Scholar] [PubMed]
- Bae, H.; Kim, H.J. Clinical outcomes of extracorporeal shock wave therapy in patients with secondary lymphedema: A pilot study. Ann. Rehabil. Med. 2013, 37, 229–234. [Google Scholar] [CrossRef]
- Li, K.; Zhang, Z.; Liu, N.F.; Feng, S.Q.; Tong, Y.; Zhang, J.F.; Constantinides, J.; Lazzeri, D.; Grassetti, L.; Nicoli, F.; et al. Efficacy and safety of far infrared radiation in lymphedema treatment: Clinical evaluation and laboratory analysis. Lasers Med. Sci. 2017, 32, 485–494. [Google Scholar] [CrossRef]
- Badger, C.; Preston, N.; Seers, K.; Mortimer, P. Benzo-pyrones for reducing and controlling lymphoedema of the limbs. Cochrane Database Syst. Rev. 2004, 2, Cd003140. [Google Scholar] [CrossRef] [Green Version]
- Rockson, S.G.; Tian, W.; Jiang, X.; Kuznetsova, T.; Haddad, F.; Zampell, J.; Mehrara, B.; Sampson, J.P.; Roche, L.; Kim, J.; et al. Pilot studies demonstrate the potential benefits of antiinflammatory therapy in human lymphedema. JCI Insight 2018, 3, e123775. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Radhakrishnan, K.; Wong, Y.M.; Rockson, S.G. Anti-inflammatory pharmacotherapy with ketoprofen ameliorates experimental lymphatic vascular insufficiency in mice. PLoS ONE 2009, 4, e8380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardenier, J.C.; Kataru, R.P.; Hespe, G.E.; Savetsky, I.L.; Torrisi, J.S.; Nores, G.D.; Jowhar, D.K.; Nitti, M.D.; Schofield, R.C.; Carlow, D.C.; et al. Topical tacrolimus for the treatment of secondary lymphedema. Nat. Commun. 2017, 8, 14345. [Google Scholar] [CrossRef]
- Schutte-Nutgen, K.; Tholking, G.; Suwelack, B.; Reuter, S. Tacrolimus—Pharmacokinetic Considerations for Clinicians. Curr. Drug Metab. 2018, 19, 342–350. [Google Scholar] [CrossRef]
- Schwartz, M.S. Use of hyaluronidase by iontophoresis in treatment of lymphedema. AMA Arch. Intern. Med. 1955, 95, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Borelli, S. Therapy of elephantiasis with hyaluronidase. Dermatol. Wochenschr. 1959, 139, 5–8. [Google Scholar] [PubMed]
- Hochstrasser, E.; Horvath, G. Hyaluronidase therapy of elephantiasis. Borgyogy. Venerol. Sz. 1960, 36, 201–203. [Google Scholar]
- Breslin, J.W.; Gaudreault, N.; Watson, K.D.; Reynoso, R.; Yuan, S.Y.; Wu, M.H. Vascular endothelial growth factor-C stimulates the lymphatic pump by a VEGF receptor-3-dependent mechanism. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H709–H718. [Google Scholar] [CrossRef] [Green Version]
- Baker, A.; Kim, H.; Semple, J.L.; Dumont, D.; Shoichet, M.; Tobbia, D.; Johnston, M. Experimental assessment of pro-lymphangiogenic growth factors in the treatment of post-surgical lymphedema following lymphadenectomy. Breast Cancer Res. 2010, 12, R70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.; Wang, M.; Hou, C.; Jin, X.; Wu, X. Exogenous VEGF-C augments the efficacy of therapeutic lymphangiogenesis induced by allogenic bone marrow stromal cells in a rabbit model of limb secondary lymphedema. Jpn. J. Clin. Oncol. 2011, 41, 841–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartiala, P.; Suominen, S.; Suominen, E.; Kaartinen, I.; Kiiski, J.; Viitanen, T.; Alitalo, K.; Saarikko, A.M. Phase 1 Lymfactin® Study: Short-term Safety of Combined Adenoviral VEGF-C and Lymph Node Transfer Treatment for Upper Extremity Lymphedema. J. Plast. Reconstr. Aesthet. Surg. 2020, 73, 1612–1621. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, G.E.; Perez, C.A.; Covarrubias, E.E.; Cabriales, S.A.; Leyva, L.A.; Perez, J.C.; Almaguer, D.G. Autologous stem cells for the treatment of post-mastectomy lymphedema: A pilot study. Cytotherapy 2011, 13, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Wu, X.; Jin, X. Autologous bone marrow stromal cells transplantation for the treatment of secondary arm lymphedema: A prospective controlled study in patients with breast cancer related lymphedema. Jpn. J. Clin. Oncol. 2008, 38, 670–674. [Google Scholar] [CrossRef]
- Conrad, C.; Niess, H.; Huss, R.; Huber, S.; von Luettichau, I.; Nelson, P.J.; Ott, H.C.; Jauch, K.W.; Bruns, C.J. Multipotent mesenchymal stem cells acquire a lymphendothelial phenotype and enhance lymphatic regeneration in vivo. Circulation 2009, 119, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Toyserkani, N.M.; Jensen, C.H.; Tabatabaeifar, S.; Jorgensen, M.G.; Hvidsten, S.; Simonsen, J.A.; Andersen, D.C.; Sheikh, S.P.; Sorensen, J.A. Adipose-derived regenerative cells and fat grafting for treating breast cancer-related lymphedema: Lymphoscintigraphic evaluation with 1 year of follow-up. J. Plast. Reconstr. Aesthet. Surg. 2019, 72, 71–77. [Google Scholar] [CrossRef]
- Hu, L.R.; Pan, J. Adipose-derived stem cell therapy shows promising results for secondary lymphedema. World J. Stem Cells 2020, 12, 612–620. [Google Scholar] [CrossRef]
- Rockson, S.G. Lymphedema. Vasc. Med. 2016, 21, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Schaverien, M.V.; Badash, I.; Patel, K.M.; Selber, J.C.; Cheng, M.H. Vascularized Lymph Node Transfer for Lymphedema. Semin. Plast. Surg. 2018, 32, 28–35. [Google Scholar] [CrossRef]
- Kataru, R.P.; Park, H.J.; Baik, J.E.; Li, C.; Shin, J.; Mehrara, B.J. Regulation of Lymphatic Function in Obesity. Front. Physiol. 2020, 11, 459. [Google Scholar] [CrossRef] [PubMed]
- Lasinski, B.B.; McKillip Thrift, K.; Squire, D.; Austin, M.K.; Smith, K.M.; Wanchai, A.; Green, J.M.; Stewart, B.R.; Cormier, J.N.; Armer, J.M. A systematic review of the evidence for complete decongestive therapy in the treatment of lymphedema from 2004 to 2011. PM&R 2012, 4, 580–601. [Google Scholar] [CrossRef]
- Weiss, J.M.; Spray, B.J. The effect of complete decongestive therapy on the quality of life of patients with peripheral lymphedema. Lymphology 2002, 35, 46–58. [Google Scholar] [PubMed]
- Döller, W. Lymphologie. Wien. Med. Wochenschr. 2013, 163, 153–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohlin, K.; Svensson, B.; Brorson, H. Controlled Compression Therapy and Compression Garments. In Lymphedema: Presentation, Diagnosis, and Treatment; Greene, A.K., Slavin, S.A., Brorson, H., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 213–225. [Google Scholar] [CrossRef]
- Fukushima, T.; Tsuji, T.; Sano, Y.; Miyata, C.; Kamisako, M.; Hohri, H.; Yoshimura, C.; Asakura, M.; Okitsu, T.; Muraoka, K.; et al. Immediate effects of active exercise with compression therapy on lower-limb lymphedema. Support. Care Cancer 2017, 25, 2603–2610. [Google Scholar] [CrossRef] [Green Version]
- Soriano-Maldonado, A.; Carrera-Ruiz, Á.; Díez-Fernández, D.M.; Esteban-Simón, A.; Maldonado-Quesada, M.; Moreno-Poza, N.; García-Martínez, M.D.M.; Alcaraz-García, C.; Vázquez-Sousa, R.; Moreno-Martos, H.; et al. Effects of a 12-week resistance and aerobic exercise program on muscular strength and quality of life in breast cancer survivors: Study protocol for the EFICAN randomized controlled trial. Medicine 2019, 98, e17625. [Google Scholar] [CrossRef] [Green Version]
- Baumann, F.T.; Reike, A.; Reimer, V.; Schumann, M.; Hallek, M.; Taaffe, D.R.; Newton, R.U.; Galvao, D.A. Effects of physical exercise on breast cancer-related secondary lymphedema: A systematic review. Breast Cancer Res. Treat. 2018, 170, 1–13. [Google Scholar] [CrossRef]
- The diagnosis and treatment of peripheral lymphedema: 2013 Consensus Document of the International Society of Lymphology. Lymphology 2013, 46, 1–11.
- Douglass, J.; Graves, P.; Gordon, S. Self-Care for Management of Secondary Lymphedema: A Systematic Review. PLoS Negl. Trop. Dis. 2016, 10, e0004740. [Google Scholar] [CrossRef]
- Bozkurt, M.; Palmer, L.J.; Guo, Y. Effectiveness of Decongestive Lymphatic Therapy in Patients with Lymphedema Resulting from Breast Cancer Treatment Regardless of Previous Lymphedema Treatment. Breast J. 2017, 23, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Pereira de Godoy, J.M.; Godoy, H.; Pereira de Godoy, A.C.; Marqui, T.; Guerreiro Godoy, M.d.F. Lymphedema and the mobilization of intracellular and extracellular fluids with intensive treatment. Acta Phlebol. 2019, 20, 57–60. [Google Scholar] [CrossRef]
- Ancukiewicz, M.; Russell, T.A.; Otoole, J.; Specht, M.; Singer, M.; Kelada, A.; Murphy, C.D.; Pogachar, J.; Gioioso, V.; Patel, M.; et al. Standardized method for quantification of developing lymphedema in patients treated for breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 1436–1443. [Google Scholar] [CrossRef] [Green Version]
- Koehler, L.A.; Mayrovitz, H.N. Tissue Dielectric Constant Measures in Women with and without Clinical Trunk Lymphedema Following Breast Cancer Surgery: A 78-Week Longitudinal Study. Phys. Ther. 2020, 100, 1384–1392. [Google Scholar] [CrossRef]
- Sagen, A.; Kåresen, R.; Skaane, P.; Risberg, M.A. Validity for the simplified water displacement instrument to measure arm lymphedema as a result of breast cancer surgery. Arch. Phys. Med. Rehabil. 2009, 90, 803–809. [Google Scholar] [CrossRef]
- Reza, C.; Nørregaard, S.; Moffatt, C.; Karlsmark, T. Inter-observer and Intra-observer Variability in Volume Measurements of the Lower Extremity Using Perometer. Lymphat. Res. Biol. 2020, 18, 416–421. [Google Scholar] [CrossRef]
- Tidhar, D.; Armer, J.M.; Deutscher, D.; Shyu, C.R.; Azuri, J.; Madsen, R. Measurement Issues in Anthropometric Measures of Limb Volume Change in Persons at Risk for and Living with Lymphedema: A Reliability Study. J. Pers. Med. 2015, 5, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Pereira De Godoy, J.M.; Gonçalves, I.P.; Barufi, S.; Godoy, M.F.G. Large reduction in volume with the intensive treatment of lymphedema: Reduction of fluids? Int. J. Angiol. 2012, 21, 171–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Godoy, J.M.P.; de Godoy, A.C.P.; Maria, F.G.G. Evolution of Godoy & Godoy manual lymph drainage. Technique with linear Movements. Clin. Pract. 2017, 7, 1006. [Google Scholar] [CrossRef] [Green Version]
- Bertsch, T. Evaluation of a novel night-time compression garment: A prospective observational study. Br. J. Community Nurs. 2018, 23, 535–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, L.C. Assessment of lymphedema by bioelectrical impedance spectroscopy. Jpn. J. Nurs. Sci. 2011, 8, 108. [Google Scholar] [CrossRef] [PubMed]
- Pereira De Godoy, J.M.; Franco Brigidio, P.A.; Salles Cunha, S.X.; Batigália, F.; De Fatima Guerreiro Godoy, M. Mobilization of fluids in large volumetric reductions during intensive treatment of leg lymphedema. Int. Angiol. 2013, 32, 479–482. [Google Scholar] [PubMed]
- Hinghofer-Szalkay, H.G.; Sauseng-Fellegger, G.; Greenleaf, J.E. Plasma volume with alternative tilting: Effect of fluid ingestion. J. Appl. Physiol. 1995, 78, 1369–1373. [Google Scholar] [CrossRef] [PubMed]
- Van Beaumont, W. Evaluation of hemoconcentration from hematocrit measurements. J. Appl. Physiol. 1972, 32, 712–713. [Google Scholar] [CrossRef] [PubMed]
- Dill, D.B.; Costill, D.L. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J. Appl. Physiol. 1974, 37, 247–248. [Google Scholar] [CrossRef] [Green Version]
- Nadler, S.B.; Hidalgo, J.H.; Bloch, T. Prediction of blood volume in normal human adults. Surgery 1962, 51, 224–232. [Google Scholar]
- Brix, B.; Apich, G.; Roessler, A.; Ure, C.; Schmid-Zalaudek, K.; Hinghofer-Szalkay, H.; Goswami, N. Fluid Shifts Induced by Physical Therapy in Lower Limb Lymphedema Patients. J. Clin. Med. 2020, 9, 3678. [Google Scholar] [CrossRef]
- Titze, J. Water-free Na+ retention: Interaction with hypertension and tissue hydration. Blood Purif. 2008, 26, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Wiig, H.; Luft, F.C.; Titze, J.M. The interstitium conducts extrarenal storage of sodium and represents a third compartment essential for extracellular volume and blood pressure homeostasis. Acta Physiol. 2018, 222. [Google Scholar] [CrossRef] [Green Version]
- Titze, J.; Lang, R.; Ilies, C.; Schwind, K.H.; Kirsch, K.A.; Dietsch, P.; Luft, F.C.; Hilgers, K.F. Osmotically inactive skin Na+ storage in rats. Am. J. Physiol. Ren. Physiol. 2003, 285, F1108–F1117. [Google Scholar] [CrossRef]
- Pimenta, E.; Gaddam, K.K.; Oparil, S.; Aban, I.; Husain, S.; Dell’Italia, L.J.; Calhoun, D.A. Effects of dietary sodium reduction on blood pressure in subjects with resistant hypertension: Results from a randomized trial. Hypertension 2009, 54, 475–481. [Google Scholar] [CrossRef]
- Goswami, N.; Blaber, A.P.; Hinghofer-Szalkay, H.; Montani, J.P. Orthostatic intolerance in older persons: Etiology and countermeasures. Front. Physiol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Goswami, N. Falls and fall-prevention in older persons: Geriatrics meets spaceflight! Front. Physiol. 2017, 8, 603. [Google Scholar] [CrossRef] [Green Version]
- Harrison, M.H.; Kravik, S.E.; Geelen, G.; Keil, L.; Greenleaf, J.E. Blood pressure and plasma renin activity as predictors of orthostatic intolerance. Aviat. Space Environ. Med. 1985, 56, 1059–1064. [Google Scholar] [PubMed]
- Hinghofer-Szalkay, H. Gravity, the hydrostatic indifference concept and the cardiovascular system. Eur. J. Appl. Physiol. 2011, 111, 1673–1674. [Google Scholar] [CrossRef] [PubMed]
- Blaber, A.P.; Goswami, N.; Bondar, R.L.; Kassam, M.S. Impairment of cerebral blood flow regulation in astronauts with post flight orthostatic intolerance. Stroke 2011, 42, 1844–1850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putz, Z.; Németh, N.; Istenes, I.; Martos, T.; Gandhi, R.A.; Körei, A.E.; Hermányi, Z.; Szathmári, M.; Jermendy, G.; Tesfaye, S.; et al. Autonomic dysfunction and circadian blood pressure variations in people with impaired glucose tolerance. Diabet. Med. 2013, 30, 358–362. [Google Scholar] [CrossRef]
- Goswami, N.; Roessler, A.; Hinghofer-Szalkay, H.; Montani, J.P.; Steptoe, A. Delaying orthostatic syncope with mental challenge: A pilot study. Physiol. Behav. 2012, 106, 569–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapp, K.; Becker, C.; Cameron, I.D.; König, H.H.; Büchele, G. Epidemiology of falls in residential aged care: Analysis of more than 70,000 falls from residents of bavarian nursing homes. J. Am. Med. Dir. Assoc. 2012, 13, 187–e181. [Google Scholar] [CrossRef]
- Blaber, A.; Hinghofer-Szalkay, H.; Goswami, N. Blood volume redistribution during hypovolemia. Aviat. Space Environ. Med. 2013, 84, 59–64. [Google Scholar] [CrossRef]
- Gangavati, A.; Hajjar, I.; Quach, L.; Jones, R.N.; Kiely, D.K.; Gagnon, P.; Lipsitz, L.A. Hypertension, orthostatic hypotension, and the risk of falls in a community-dwelling elderly population: The maintenance of balance, independent living, intellect, and zest in the elderly of Boston study. J. Am. Geriatr. Soc. 2011, 59, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Blaszczyk, J.W.; Lowe, D.L.; Hansen, P.D. Ranges of postural stability and their changes in the elderly. Gait Posture 1994, 2, 11–17. [Google Scholar] [CrossRef]
- Tinetti, M.E.; Baker, D.I.; McAvay, G.; Claus, E.B.; Garrett, P.; Gottschalk, M.; Koch, M.L.; Trainor, K.; Horwitz, R.I. A multifactorial intervention to reduce the risk of falling among elderly people living in the community. N. Engl. J. Med. 1994, 331, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Mackey, D.C.; Robinovitch, S.N. Mechanisms underlying age-related differences in ability to recover balance with the ankle strategy. Gait Posture 2006, 23, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Hsiao-Wecksler, E.T.; Robinovitch, S.N. The effect of step length on young and elderly women’s ability to recover balance. Clin. Biomech. 2007, 22, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Esmer, M.; Keser, I.; Erer, D.; Kupeli, B. Acute Cardiovascular Responses to the Application of Manual Lymphatic Drainage in Different Body Regions. Lymphat. Res. Biol. 2019, 17, 362–367. [Google Scholar] [CrossRef]
- Sachse, C.; Trozic, I.; Brix, B.; Roessler, A.; Goswami, N. Sex differences in cardiovascular responses to orthostatic challenge in healthy older persons: A pilot study. Physiol. Int. 2019, 106, 236–249. [Google Scholar] [CrossRef] [PubMed]
- Trozic, I.; Platzer, D.; Fazekas, F.; Bondarenko, A.I.; Brix, B.; Rossler, A.; Goswami, N. Postural hemodynamic parameters in older persons have a seasonal dependency: A pilot study. Z. Gerontol. Geriatr. 2020, 53, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Blaber, A.P.; Landrock, C.K.; Souvestre, P.A. Cardio-postural deconditioning: A model for post-flight orthostatic intolerance. Respir. Physiol. Neurobiol. 2009, 169, S21–S25. [Google Scholar] [CrossRef]
- Small, D.M.; Bond, M.G.; Waugh, D.; Prack, M.; Sawyer, J.K. Physicochemical and histological changes in the arterial wall of nonhuman primates during progression and regression of atherosclerosis. J. Clin. Investig. 1984, 73, 1590–1605. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Rader, D.J. Molecular regulation of macrophage reverse cholesterol transport. Curr. Opin. Cardiol. 2007, 22, 368–372. [Google Scholar] [CrossRef]
- Lim, H.Y.; Thiam, C.H.; Yeo, K.P.; Bisoendial, R.; Hii, C.S.; McGrath, K.C.; Tan, K.W.; Heather, A.; Alexander, J.S.; Angeli, V. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL. Cell Metab. 2013, 17, 671–684. [Google Scholar] [CrossRef] [Green Version]
- Randolph, G.J.; Miller, N.E. Lymphatic transport of high-density lipoproteins and chylomicrons. J. Clin. Investig. 2014, 124, 929–935. [Google Scholar] [CrossRef] [Green Version]
- Martel, C.; Li, W.; Fulp, B.; Platt, A.M.; Gautier, E.L.; Westerterp, M.; Bittman, R.; Tall, A.R.; Chen, S.-H.; Thomas, M.J.; et al. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J. Clin. Investing. 2013, 123, 1571–1579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuorio, T.; Nurmi, H.; Moulton, K.; Kurkipuro, J.; Robciuc, M.R.; Ohman, M.; Heinonen, S.E.; Samaranayake, H.; Heikura, T.; Alitalo, K.; et al. Lymphatic vessel insufficiency in hypercholesterolemic mice alters lipoprotein levels and promotes atherogenesis. Arter. Thromb. Vasc. Biol. 2014, 34, 1162–1170. [Google Scholar] [CrossRef] [Green Version]
- Münzel, T.; Sinning, C.; Post, F.; Warnholtz, A.; Schulz, E. Pathophysiology, diagnosis and prognostic implications of endothelial dysfunction. Ann. Med. 2008, 40, 180–196. [Google Scholar] [CrossRef]
- Levick, J.R. An Introduction to Cardiovascular Physiology, 5th ed.; Hodder Education: London, UK, 2012. [Google Scholar]
- Fleming, I. Molecular mechanisms underlying the activation of eNOS. Pflüg. Arch. Eur. J. Physiol. 2010, 459, 793–806. [Google Scholar] [CrossRef]
- Konukoglu, D.; Uzun, H. Endothelial Dysfunction and Hypertension. Adv. Exp. Med. Biol. 2017, 956, 511–540. [Google Scholar] [CrossRef]
- Vita, J.A. Endothelial function. Circulation 2011, 124, e906–e912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brix, B.; Apich, G.; Ure, C.; Roessler, A.; Goswami, N. Physical therapy affects endothelial function in lymphedema patients. Lymphology 2020, 53, 109–117. [Google Scholar] [PubMed]
- Thijssen, D.H.; Black, M.A.; Pyke, K.E.; Padilla, J.; Atkinson, G.; Harris, R.A.; Parker, B.; Widlansky, M.E.; Tschakovsky, M.E.; Green, D.J. Assessment of flow-mediated dilation in humans: A methodological and physiological guideline. American journal of physiology. Heart Circ. Physiol. 2011, 300, H2–H12. [Google Scholar] [CrossRef] [Green Version]
- Thijssen, D.H.J.; Bruno, R.M.; van Mil, A.; Holder, S.M.; Faita, F.; Greyling, A.; Zock, P.L.; Taddei, S.; Deanfield, J.E.; Luscher, T.; et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. Eur. Heart J. 2019, 40, 2534–2547. [Google Scholar] [CrossRef]
- Yamashina, A.; Tomiyama, H.; Arai, T.; Hirose, K.; Koji, Y.; Hirayama, Y.; Yamamoto, Y.; Hori, S. Brachial-ankle pulse wave velocity as a marker of atherosclerotic vascular damage and cardiovascular risk. Hypertens. Res. 2003, 26, 615–622. [Google Scholar] [CrossRef] [Green Version]
- Everson, F.; De Boever, P.; Nawrot, T.S.; Goswami, N.; Mthethwa, M.; Webster, I.; Martens, D.S.; Mashele, N.; Charania, S.; Kamau, F.; et al. Personal NO(2) and Volatile Organic Compounds Exposure Levels are Associated with Markers of Cardiovascular Risk in Women in the Cape Town Region of South Africa. Int. J. Environ. Res. Public Health 2019, 16, 2284. [Google Scholar] [CrossRef] [Green Version]
- Louwies, T.; Int Panis, L.; Alders, T.; Bonne, K.; Goswami, N.; Nawrot, T.S.; Dendale, P.; De Boever, P. Microvascular reactivity in rehabilitating cardiac patients based on measurements of retinal blood vessel diameters. Microvasc. Res. 2019, 124, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Matušková, V.; Zeman, T.; Ewerlingová, L.; Hlinomazová, Z.; Souček, J.; Vlková, E.; Goswami, N.; Balcar, V.J.; Šerý, O. An association of neovascular age-related macular degeneration with polymorphisms of CFH, ARMS2, HTRA1 and C3 genes in Czech population. Acta Ophthalmol. 2020, 98, e691–e699. [Google Scholar] [CrossRef] [PubMed]
- Vaes, A.W.; Spruit, M.A.; Theunis, J.; Goswami, N.; Vanfleteren, L.E.; Franssen, F.M.E.; Wouters, E.F.M.; De Boever, P. Looking into the eye of patients with chronic obstructive pulmonary disease: An opportunity for better microvascular profiling of these complex patients. Acta Ophthalmol. 2018, 96, 539–549. [Google Scholar] [CrossRef] [PubMed]
Physiological Procedures | Excisional Procedures |
---|---|
Lymphvenous Anastomosis (LVA) | Suction Assisted Lipectomy (SAL) |
Vascularized Lymph Node Transfer (VLNT) | The Charles procedure |
Radical reduction with preservation of perforators |
Lymphedema | Complete Decongestive Therapy (CDT) | |
---|---|---|
| Current knowledge | CDT mobilizes fluid from the lymphedematous tissue |
| Knowledge gaps |
|
| How to address these knowledge gaps |
|
| Why addressing the knowledge gaps is important. |
|
| Long-term impacts |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brix, B.; Sery, O.; Onorato, A.; Ure, C.; Roessler, A.; Goswami, N. Biology of Lymphedema. Biology 2021, 10, 261. https://doi.org/10.3390/biology10040261
Brix B, Sery O, Onorato A, Ure C, Roessler A, Goswami N. Biology of Lymphedema. Biology. 2021; 10(4):261. https://doi.org/10.3390/biology10040261
Chicago/Turabian StyleBrix, Bianca, Omar Sery, Alberto Onorato, Christian Ure, Andreas Roessler, and Nandu Goswami. 2021. "Biology of Lymphedema" Biology 10, no. 4: 261. https://doi.org/10.3390/biology10040261
APA StyleBrix, B., Sery, O., Onorato, A., Ure, C., Roessler, A., & Goswami, N. (2021). Biology of Lymphedema. Biology, 10(4), 261. https://doi.org/10.3390/biology10040261