Global Invasion Risk Assessment of Prosopis juliflora at Biome Level: Does Soil Matter?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Global Distribution Data
2.2. Environmental and Human Variable Predictors
2.2.1. Bioclimatic Variables
2.2.2. Edaphic Variables
2.2.3. Human-Activity Variable
2.3. Multicollinearity, Model Construction, and Predictions
2.4. Model Performance and Evaluation
3. Results
3.1. Model Performance
3.2. Global Distribution and Potential Invasion Suitability of P. juliflora
3.3. P. juliflora Invasion Suitability and Environmental Variables
3.4. Potential Invasion Risk at Biom Level
4. Discussion
4.1. Potential Distribution of P. juliflora and Invasion Suitability Models
4.2. Environmental Drivers Best Explain the Invasion Suitability of P. juliflora
4.3. Potential Invasion Risk
4.3.1. At the National Level
4.3.2. At the Biome Level
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shackleton, R.T.; Le Maitre, D.C.; Pasiecznik, N.M.; Richardson, D.M. Prosopis: A global assessment of the biogeography, benefits, impacts and management of one of the world’s worst woody invasive plant taxa. AoB Plants 2014, 6, 1–18. [Google Scholar] [CrossRef]
- Liu, Y.; Oduor, A.M.O.; Zhang, Z.; Manea, A.; Tooth, I.M.; Leishman, M.R.; Xu, X.; Van Kleunen, M. Do invasive alien plants benefit more from global environmental change than native plants? Glob. Chang. Biol. 2017, 23, 3363–3370. [Google Scholar] [CrossRef] [Green Version]
- Moodley, D.; Geerts, S.; Richardson, D.M.; Wilson, J.R.U. Different traits determine introduction, naturalization and invasion success in woody plants: Proteaceae as a test case. PLoS ONE 2013, 8, e75078. [Google Scholar]
- Shackleton, R.T.; Shackleton, C.M.; Kull, C.A. The role of invasive alien species in shaping local livelihoods and human well-being: A review. J. Environ. Manag. 2019, 229, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Wardle, D.A. Experimental demonstration that plant diversity reduces invasibility–evidence of a biological mechanism or a consequence of sampling effect? Oikos 2001, 95, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Pyšek, P.; Jarošík, V.; Hulme, P.E.; Pergl, J.; Hejda, M.; Schaffner, U.; Vilà, M. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Chang. Biol. 2012, 18, 1725–1737. [Google Scholar] [CrossRef]
- Sintayehu, D.W.; Egeru, A.; Ng, W.; Cherenet, E. Regional dynamics in distribution of Prosopis juliflora under predicted climate change in Africa. Trop. Ecol. 2020, 61, 437–445. [Google Scholar] [CrossRef]
- Pasiecznik, N.M.; Felker, P.; Harris, P.J.C.; Harsh, L.; Cruz, G.; Tewari, J.C.; Cadoret, K.; Maldonado, L.J. The Prosopis juliflora-Prosopis pallida Complex: A Monograph; HDRA: Coventry, UK, 2001; Volume 172. [Google Scholar]
- EPPO. Pest Risk Analysis for Prosopis juliflora; EPPO: Paris, France, 2018. [Google Scholar]
- El-Keblawy, A.; Al-Rawai, A. Impacts of the invasive exotic Prosopis juliflora (Sw.) DC on the native flora and soils of the UAE. Plant Ecol. 2007, 190, 23–35. [Google Scholar] [CrossRef]
- Hussain, M.I.; Shackleton, R.T.; El-Keblawy, A.; Del Mar Trigo Pérez, M.; González, L. Invasive Mesquite (Prosopis juliflora), an allergy and health challenge. Plants 2020, 9, 141. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.I.; El-Keblawy, A. Surface canopy position determines the photosystem II photochemistry in invasive and native Prosopis Congeners at Sharjah Desert, UAE. Forests 2020, 11, 740. [Google Scholar] [CrossRef]
- Hussain, M.I.; El-Keblawy, A.; Mitterand Tsombou, F. Leaf age, canopy position, and habitat affect the carbon isotope discrimination and water-use efficiency in three C3 Leguminous Prosopis species from a hyper-arid climate. Plants 2019, 8, 402. [Google Scholar] [CrossRef] [Green Version]
- Slate, M.L.; Tsombou, F.M.; El-Keblawy, A.A.; Callaway, R.M. Exotic Prosopis juliflora suppresses understory diversity and promotes agricultural weeds more than a native congener. Plant Ecol. 2020, 221, 659–669. [Google Scholar] [CrossRef]
- El-Keblawy, A.; Abdelfatah, M.A. Impacts of native and invasive exotic Prosopis congeners on soil properties and associated flora in the arid United Arab Emirates. J. Arid Environ. 2014, 100, 1–8. [Google Scholar] [CrossRef]
- Koech, O.K.; Kinuthia, R.N.; Wahome, R.G.; Choge, S.K. Effects of Prosopis juliflora seedpod meal supplement on weight gain of weaner Galla goats in Kenya. Res. J. Anim. Sci. 2010, 4, 58–62. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.H.; Sax, D.F. An essay on some topics concerning invasive species. Austral Ecol. 2004, 29, 530–536. [Google Scholar] [CrossRef]
- Luque, G.M.; Bellard, C.; Bertelsmeier, C.; Bonnaud, E.; Genovesi, P.; Simberloff, D.; Courchamp, F. The 100th of the world’s worst invasive alien species. Biol. Invasions 2014, 16, 981–985. [Google Scholar] [CrossRef]
- Pasiecznik, N.M.; Weerawardane, N.D.R. Invasion of the exotic tree species Prosopis juliflora Sw.(DC) in Puttalam District–its spread, new records, and the need for action. Sri Lankan For. 2011, 32, 43–50. [Google Scholar]
- CABI. Prosopis juliflora. In Invasive Species Compendium; CABI: Wallingford, UK, 2017. [Google Scholar]
- Jurand, B.S.; Abella, S.R. Soil seed banks of the exotic annual grass Bromus rubens on a burned desert landscape. Rangel. Ecol. Manag. 2013, 66, 157–163. [Google Scholar] [CrossRef]
- Shiferaw, H.; Teketay, D.; Nemomissa, S.; Assefa, F. Some biological characteristics that foster the invasion of Prosopis juliflora (Sw.) DC. at Middle Awash Rift Valley Area, north-eastern Ethiopia. J. Arid Environ. 2004, 58, 135–154. [Google Scholar] [CrossRef]
- Abdulahi, M.M.; Ute, J.A.; Regasa, T. Prosopis juliflora l: Distribution, impacts and available control methods in Ethiopia. Trop. Subtrop. Agroecosyst. 2017, 20, 75–89. [Google Scholar]
- Qiao, H.; Lin, C.; Jiang, Z.; Ji, L. Marble algorithm: A solution to estimating ecological niches from presence-only records. Sci. Rep. 2015, 5, 1–10. [Google Scholar] [CrossRef]
- Fitzpatrick, M.C.; Gove, A.D.; Sanders, N.J.; Dunn, R.R. Climate change, plant migration, and range collapse in a global biodiversity hotspot: The Banksia (Proteaceae) of Western Australia. Glob. Chang. Biol. 2008, 14, 1337–1352. [Google Scholar] [CrossRef]
- Wang, H.-H.; Wonkka, C.L.; Treglia, M.L.; Grant, W.E.; Smeins, F.E.; Rogers, W.E. Incorporating local-scale variables into distribution models enhances predictability for rare plant species with biological dependencies. Biodivers. Conserv. 2019, 28, 171–182. [Google Scholar] [CrossRef]
- Austin, M.P. Spatial prediction of species distribution: An interface between ecological theory and statistical modelling. Ecol. Modell. 2002, 157, 101–118. [Google Scholar] [CrossRef] [Green Version]
- Wakie, T.T.; Evangelista, P.H.; Jarnevich, C.S.; Laituri, M. Mapping current and potential distribution of non-native Prosopis juliflora in the Afar region of Ethiopia. PLoS ONE 2014, 9, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Heshmati, I.; Khorasani, N.; Shams-Esfandabad, B.; Riazi, B. Forthcoming risk of Prosopis juliflora global invasion triggered by climate change: Implications for environmental monitoring and risk assessment. Environ. Monit. Assess. 2019, 191. [Google Scholar] [CrossRef]
- Regos, A.; Gagne, L.; Alcaraz-Segura, D.; Honrado, J.P.; Domínguez, J. Effects of species traits and environmental predictors on performance and transferability of ecological niche models. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Russo, S.E.; Davies, S.J.; King, D.A.; Tan, S. Soil-related performance variation and distributions of tree species in a Bornean rain forest. J. Ecol. 2005, 93, 879–889. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.-Z.; Wang, C.-J. Expansion risk of invasive plants in regions of high plant diversity: A global assessment using 36 species. Ecol. Inform. 2018, 46, 8–18. [Google Scholar] [CrossRef]
- de Souza Nascimento, C.E.; da Silva, C.A.D.; Leal, I.R.; de Souza Tavares, W.; Serrão, J.E.; Zanuncio, J.C.; Tabarelli, M. Seed germination and early seedling survival of the invasive species Prosopis juliflora (Fabaceae) depend on habitat and seed dispersal mode in the Caatinga dry forest. PeerJ 2020, 8, e9607. [Google Scholar] [CrossRef]
- Abbas, A.M.; Soliman, W.S.; Mansour, A.; Taher, E.; Hassan, I.N.; Mahmoud, M.; Abdelkareem, M. Predicting the spatial spread of invasive Prosopis juliflora (SW.) DC along environmental gradients in Gabel Elba National Park, Egypt. Int. J. Sci. Eng. Res 2016, 7, 596–599. [Google Scholar]
- Mod, H.K.; Scherrer, D.; Luoto, M.; Guisan, A. What we use is not what we know: Environmental predictors in plant distribution models. J. Veg. Sci. 2016, 27, 1308–1322. [Google Scholar] [CrossRef]
- ESRI (Environmental Systems Research Institute). 2014 ArcGIS® Desktop Help 10.3 Geostatistical Analyst. Available online: https://desktop.arcgis.com/en/arcmap/10.3 (accessed on 1 November 2020).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Trabucco, A.; Zomer, R.J. Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. CGIAR Consort. Spat. Inf. 2009, 89, 1–2. [Google Scholar]
- Hengl, T.; de Jesus, J.M.; MacMillan, R.A.; Batjes, N.H.; Heuvelink, G.B.M.; Ribeiro, E.; Samuel-Rosa, A.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G. SoilGrids1km—global soil information based on automated mapping. PLoS ONE 2014, 9, e105992. [Google Scholar] [CrossRef] [Green Version]
- IBM. IBM SPSS Statistics for Windows, Version 21.0; IBM Corp: Armonk, NY, USA, 2012. [Google Scholar]
- Guo, W.Y.; Lambertini, C.; Li, X.Z.; Meyerson, L.A.; Brix, H. Invasion of Old World P hragmites australis in the New World: Precipitation and temperature patterns combined with human influences redesign the invasive niche. Glob. Chang. Biol. 2013, 19, 3406–3422. [Google Scholar] [CrossRef] [PubMed]
- Mainali, K.P.; Warren, D.L.; Dhileepan, K.; Mcconnachie, A.; Strathie, L.; Hassan, G.; Karki, D.; Shrestha, B.B.; Parmesan, C. Projecting future expansion of invasive species: 663 comparing and improving methodologies for species distribution modeling. Glob. Chang. 2015, 664, 4464–4480. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. Maxent Software for Modeling Species Niches and Distributions (Version 3.4. 1). 2019. Available online: http//biodiversityinformatics.amnh.org/open_source/maxent (accessed on 1 November 2020).
- Gallardo, B.; Aldridge, D.C. The ‘dirty dozen’: Socio-economic factors amplify the invasion potential of 12 high-risk aquatic invasive species in Great Britain and Ireland. J. Appl. Ecol. 2013, 50, 757–766. [Google Scholar] [CrossRef]
- Jarnevich, C.S.; Young, N. Using the MAXENT program for species distribution modelling to assess invasion risk. In Pest Risk Modelling and Mapping for Invasive Alien Species; CAB International: Wallingford, UK, 2015; pp. 65–81. [Google Scholar] [CrossRef]
- Norberg, A.; Abrego, N.; Blanchet, F.G.; Adler, F.R.; Anderson, B.J.; Anttila, J.; Araújo, M.B.; Dallas, T.; Dunson, D.; Elith, J. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol. Monogr. 2019, 89, e01370. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Jiménez-Valverde, A.; Peterson, A.T.; Soberón, J.; Overton, J.M.; Aragón, P.; Lobo, J.M. Use of niche models in invasive species risk assessments. Biol. Invasions 2011, 13, 2785–2797. [Google Scholar] [CrossRef]
- Thapa, S.; Chitale, V.; Rijal, S.J.; Bisht, N.; Shrestha, B.B. Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya. PLoS ONE 2018, 13, e0195752. [Google Scholar] [CrossRef]
- WWF. Terrestrial Ecoregions: Temperate Coniferous Forest. 2018. Available online: https://www.worldwildlife.org/biomes/temperateconiferous-forest (accessed on 7 March 2018).
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction; Cambridge University Press: Cambridge, UK, 2010; ISBN 1139485296. [Google Scholar]
- Lawson, C.R.; Hodgson, J.A.; Wilson, R.J.; Richards, S.A. Prevalence, thresholds and the performance of presence–absence models. Methods Ecol. Evol. 2014, 5, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Riordan, E.C.; Montalvo, A.M.; Beyers, J.L. Using Species Distribution Models with Climate Change Scenarios to Aid Ecological Restoration Decisionmaking for Southern California Shrublands; Res. Rep. PSW-RP-270; U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2018; 130p. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapired, R. Maxent Software for Species Distribution Modeling. AT&T Labs-Research, Princeton University; Center for Biodiversity and Conservation, American Museum of Natural History: New York, NY, USA, 2011; Available online: http//www.cs.princeton.edu/~schapire/maxent/ (accessed on 18 February 2011).
- Gillham, J.H.; Hild, A.L.; Johnson, J.H.; Hunt, E.R.; Whitson, T.D. Weed Invasion Susceptibility Prediction (WISP) model for use with geographic information systems. Arid L. Res. Manag. 2004, 18, 1–12. [Google Scholar] [CrossRef]
- Srinivasu, V.; Toky, O.P. Effect of alkalinities on seed germination and seedling growth of important arid trees. Indian J. For. 1996, 19, 227–233. [Google Scholar]
- Theoharides, K.A.; Dukes, J.S. Plant invasion across space and time: Factors affecting nonindigenous species success during four stages of invasion. New Phytol. 2007, 176, 256–273. [Google Scholar] [CrossRef] [PubMed]
- Geesing, D.; Al-Khawlani, A.; Abba, M.L. Management of introduced Prosopis species: Can economic exploitation control an invasive species? Unasylva 217 2004, 55, 289–299. [Google Scholar]
- Anderson, L.W.J. California’s reaction to Caulerpa taxifolia: A model for invasive species rapid response. Biol. Invasions 2005, 7, 1003–1016. [Google Scholar] [CrossRef]
- Martin, Y.; Van Dyck, H.; Dendoncker, N.; Titeux, N. Testing instead of assuming the importance of land use change scenarios to model species distributions under climate change. Glob. Ecol. Biogeogr. 2013, 22, 1204–1216. [Google Scholar] [CrossRef]
- Rohli, R.V.; Andrew Joyner, T.; Reynolds, S.J.; Shaw, C.; Vázquez, J.R. Globally extended Köppen–Geiger climate classification and temporal shifts in terrestrial climatic types. Phys. Geogr. 2015, 36, 142–157. [Google Scholar] [CrossRef]
- Pasiecznik, N.M.; Harris, P.J.C.; Smith, S.J. Identifying Tropical Prosopis Species: A Field Guide; HDRA Publishing: Coventry, UK, 2004. [Google Scholar]
- Yue, Y.; Li, M. Is the impact of climate change on desertification predictable? In Proceedings of the EGU General Assembly Conference Abstracts, Online, 4–8 May 2020; p. 6141. [Google Scholar]
- Walter, K. Prosopis, an Alien among the Sacred Trees of South India. Ph.D. Dissertation, Department of Forest Sciences, University of Helsinki, Faculty of Agriculture and Forestry, Helsinki, Finland, 2011. [Google Scholar]
- El-Keblawy, A.; Al-Rawai, A. Effects of seed maturation time and dry storage on light and temperature requirements during germination in invasive Prosopis juliflora. Flora-Morphol. Distrib. Funct. Ecol. Plants 2006, 201, 135–143. [Google Scholar] [CrossRef]
- Shaltout, S. Ecological Study on the Alien Species in the Egyptian Flora. Master’s Thesis, Faculty of Science, Tanta University, Tanta, Egypt, 2014. [Google Scholar]
- El-Keblawy, A.; Al-Rawai, A. Effects of salinity, temperature and light on germination of invasive Prosopis juliflora (Sw.) DC. J. Arid Environ. 2005, 61, 555–565. [Google Scholar] [CrossRef]
- Shaltout, K.H.; El-Hennawy, M.; Nafeaa, A.; Afefe, A.A.; Abo-Bakr, S.; Ghazaly, O.; Eid, E.M.; Fouda, M. National Progress Towards Targets of the Global Strategy for Plant Conservation. Egyptian Environmental Affairs Agency; Nature Conservation Section (NCS): Cairo, Egypt, 2009. [Google Scholar]
- Zhou, Z.; Yu, M.; Ding, G.; Gao, G.; He, Y. Diversity and structural differences of bacterial microbial communities in rhizocompartments of desert leguminous plants. PLoS ONE. 2020, 15, e0241057. [Google Scholar] [CrossRef]
- Abbas, A.M.; Mancilla-Leytón, J.M.; Castillo, J.M.; Mancilla-Leytón, J.M.; Castillo, J.M. Can camels disperse seeds of the invasive tree Prosopis juliflora? Weed Res. 2018, 58, 221–228. [Google Scholar] [CrossRef]
- Abbas, A.M.; Mahfouz, L.; Ahmed, M.K.; Al-Kahtani, M.A.; Ruxton, G.D.; Lambert, A.M. Effects of seed passage by sheep on germination of the invasive Prosopis juliflora tree. Small Rumin. Res. 2020, 188, 106098. [Google Scholar] [CrossRef]
- Catford, J.A. Hydrological impacts of biological invasions. In Impact of Biological Invasions on Ecosystem Services; Springer: Cham, Switzerland, 2017; pp. 63–80. [Google Scholar]
- Choge, S.; Clement, N.; Gitonga, M.; Okuye, J. Status Report on Commercialization of Prosopis Tree Resources in Kenya; KEFRI: Nairobi, Kenya, 2012. [Google Scholar]
- Shackleton, R.T.; Le Maitre, D.C.; van Wilgen, B.W.; Richardson, D.M. Identifying barriers to effective management of widespread invasive alien trees: Prosopis species (mesquite) in South Africa as a case study. Glob. Environ. Chang. 2016, 38, 183–194. [Google Scholar] [CrossRef]
- Wise, R.M.; Van Wilgen, B.W.; Le Maitre, D.C. Costs, benefits and management options for an invasive alien tree species: The case of mesquite in the Northern Cape, South Africa. J. Arid Environ. 2012, 84, 80–90. [Google Scholar] [CrossRef]
- Haji, J.; Mohammed, A. Economic impact of Prosopis juliflora on agropastoral households of Dire Dawa Administration, Ethiopia. African J. Agric. Res. 2013, 8, 768–779. [Google Scholar]
- Wakie, T.T.; Hoag, D.; Evangelista, P.H.; Luizza, M.; Laituri, M. Is control through utilization a cost effective Prosopis juliflora management strategy? J. Environ. Manag. 2016, 168, 74–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, R.; Gonzales, W.L.; Llambi, L.D.; Soriano, P.J.; Callaway, R.M.; Rout, M.E.; Gallaher, T.J. Community impacts of Prosopis juliflora invasion: Biogeographic and congeneric comparisons. PLoS ONE 2012, 7, e44966. [Google Scholar] [CrossRef]
- Burkart, A. A monograph of the genus Prosopis (Leguminosae subfam. Mimosoideae). J. Arnold Arbor. 1976, 57, 450–525. [Google Scholar]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef] [Green Version]
- Forzieri, G.; Feyen, L.; Rojas, R.; Flörke, M.; Wimmer, F.; Bianchi, A. Ensemble projections of future streamflow droughts in Europe. Hydrol. Earth Syst. Sci. 2014, 18, 85–108. [Google Scholar] [CrossRef] [Green Version]
- El-Keblawy, A. Greening Gulf landscapes: Economic opportunities, social trade-offs, and sustainability challenges. In Environmental Politics in the Middle East; Oxford University Press: Oxford, UK, 2018; pp. 99–120. [Google Scholar]
- Al-Rawahy, S.H.; Al-Dhafri, K.S.; Al-Bahlany, S.S. Germination, Growth and Drought Resistance of Native and Alien Plant. Asian J. Plant Sci. 2003, 2, 1020–1023. [Google Scholar]
- Warrag, M.O.A. Autotoxicity of mesquite (Prosopis juliflora) pericarps on seed germination and seedling growth. J. Arid Environ. 1994, 27, 79–84. [Google Scholar] [CrossRef]
- Dzikiti, S.; Schachtschneider, K.; Naiken, V.; Gush, M.; Moses, G.; Le Maitre, D.C. Water relations and the effects of clearing invasive Prosopis trees on groundwater in an arid environment in the Northern Cape, South Africa. J. Arid Environ. 2013, 90, 103–113. [Google Scholar] [CrossRef]
- Schachtschneider, K.; February, E.C. Impact of Prosopis invasion on a keystone tree species in the Kalahari Desert. Plant Ecol. 2013, 214, 597–605. [Google Scholar] [CrossRef]
- Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Code | Description | Original Resolution | Source |
---|---|---|---|---|
(1) Climate | Bio_4 | Temperature seasonality [Coefficient of Variation (C of V)] | 2.5 arc-min | www.worldclim.org |
PET | potential evapotranspiration (mm) | 30 arc-sec | CGIAR-CSI Global database | |
Solar_rad | solar radiation (kJ m−2 day−1) | 2.5 arc-min | www.worldclim.org | |
AI | aridity index | 30 arc-sec | CGIAR-CSI Global database | |
Wind_spd | wind speed (m s−1) | 2.5 arc-min | www.worldclim.org | |
Bio_8 | mean temperatures of the wettest quarter * (°C) | 2.5 arc-min | www.worldclim.org | |
Bio_9 | Mean temperature of the driest quarter (°C) | 2.5 arc-min | www.worldclim.org | |
Bio_15 | precipitation seasonality (C of V) | 2.5 arc-min | www.worldclim.org | |
Bio_16 | precipitation of wettest quarter (mm) | 2.5 arc-min | www.worldclim.org | |
(2) Soil | PHIHOX | soil pH × 10 in H2O | 30 arc-sec | ISRIC-World Soil Database |
CEC | cation exchange capacity in cmolc/kg | 30 arc-sec | ISRIC-World Soil Database | |
CLYPPT | soil texture fraction clay in percent | 30 arc-sec | ISRIC-World Soil Database | |
ORCDRC | soil organic carbon content in g per kg | 30 arc-sec | ISRIC-World Soil Database | |
CRFVOL | coarse fragments volumetric in percent | 30 arc-sec | ISRIC-World Soil Database | |
AWCh | Available soil water capacity | 30 arc-sec | ISRIC-World Soil Database | |
(3) Human Influence | HII | human influence index | 30 arc-sec | NASA Socioeconomic Data and Applications Center (SEDAC) |
Variable * | Model | |||||
---|---|---|---|---|---|---|
Climate | Climate + Soil | Climate + Soil + Human | ||||
Percent Contribution | Permutation Importance | Percent Contribution | Permutation Importance | Percent Contribution | Permutation Importance | |
Bio4 | 49.6 | 37.2 | 43.1 | 42 | 36.5 | 47.7 |
PET | 15 | 4.6 | 10.7 | 0.4 | 15.2 | 0.3 |
Solar_rad | 14.7 | 17.8 | 3.8 | 2.2 | 2.4 | 2.7 |
AI | 13 | 19.5 | 0.3 | 1.3 | 0.9 | 1 |
Wind_spd | 4.2 | 1.7 | 0.6 | 0.7 | 2 | 1 |
Bio8 | 0.9 | 3.7 | 0.6 | 5.3 | 2.2 | 5.4 |
Bio9 | 1.5 | 14.2 | 1.8 | 21.1 | 1.4 | 15.9 |
Bio15 | 0.3 | 0.7 | 0 | 0 | 1.4 | 0 |
Bio16 | 0.8 | 0.5 | 0.3 | 0.4 | 0.5 | 1 |
PHIHOX | - | - | 25.6 | 17.5 | 23.4 | 18.9 |
CEC | - | - | 0.8 | 0.9 | 3.1 | 1.4 |
CLYPPT | - | - | 9.3 | 5.9 | 7.7 | 3.5 |
ORCDRC | - | - | 0.6 | 0.3 | 0.6 | 0.5 |
CRFVOL | - | - | 0.3 | 0.3 | 0.4 | 0.3 |
AWCh | - | - | 2.2 | 1.5 | 2.3 | 0.3 |
HII | - | - | - | - | 0.1 | 0.1 |
AUC | 0.947 | 0.958 | 0.958 | |||
Sensitivity | 1 | 1 | 0.998 | |||
TSS | 0.589 | 0.559 | 0.585 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dakhil, M.A.; El-Keblawy, A.; El-Sheikh, M.A.; Halmy, M.W.A.; Ksiksi, T.; Hassan, W.A. Global Invasion Risk Assessment of Prosopis juliflora at Biome Level: Does Soil Matter? Biology 2021, 10, 203. https://doi.org/10.3390/biology10030203
Dakhil MA, El-Keblawy A, El-Sheikh MA, Halmy MWA, Ksiksi T, Hassan WA. Global Invasion Risk Assessment of Prosopis juliflora at Biome Level: Does Soil Matter? Biology. 2021; 10(3):203. https://doi.org/10.3390/biology10030203
Chicago/Turabian StyleDakhil, Mohammed A., Ali El-Keblawy, Mohamed A. El-Sheikh, Marwa Waseem A. Halmy, Taoufik Ksiksi, and Walaa A. Hassan. 2021. "Global Invasion Risk Assessment of Prosopis juliflora at Biome Level: Does Soil Matter?" Biology 10, no. 3: 203. https://doi.org/10.3390/biology10030203
APA StyleDakhil, M. A., El-Keblawy, A., El-Sheikh, M. A., Halmy, M. W. A., Ksiksi, T., & Hassan, W. A. (2021). Global Invasion Risk Assessment of Prosopis juliflora at Biome Level: Does Soil Matter? Biology, 10(3), 203. https://doi.org/10.3390/biology10030203