Review of Animal Models to Study Urinary Bladder Function
Abstract
:Simple Summary
Abstract
1. Introduction
2. Bladder Function Study
3. Study Diseases
3.1. Overactive Bladder
3.1.1. Peripheral versus Central Model
3.1.2. Induced Hypersensitivity/Inflammation Models
3.1.3. BOO Model
3.1.4. Genetic Animal Model
3.1.5. Transgenic Model (Knock-In/Knockout)
3.2. Incontinence
3.3. Interstitial Cystitis/Painful Bladder Syndrome
3.4. BOO
3.5. Ketamine Cystitis
3.6. Limitations
4. Study Animals
4.1. Guinea Pigs
4.2. Rabbits
4.3. Cats
4.4. Rats
4.5. Mice
4.6. Canines
4.7. Pigs
4.8. Mini Pigs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, H.H.; Damaser, M.S. Animal models of stress urinary incontinence. Handb. Exp. Pharmacol. 2011, 202, 45–67. [Google Scholar] [CrossRef] [Green Version]
- National Environmental Health Research Center. Taiwan Alternatives to Animal Testing; National Environmental Health Research Center: Miaoli, Taiwan, 2019. Available online: http://nehrc.nhri.org.tw/taat/EN/index.php (accessed on 8 December 2021).
- Yoshimura, N.; de Groat, W.C. Neural control of the lower urinary tract. Int. J. Urol. 1997, 4, 111–125. [Google Scholar] [CrossRef] [PubMed]
- de Groat, W.C. Mechanisms underlying the recovery of lower urinary tract function following spinal cord injury. Paraplegia 1995, 33, 493–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Groat, W.C.; Araki, I.; Vizzard, M.A.; Yoshiyama, M.; Yoshimura, N.; Sugaya, K.; Tai, C.; Roppolo, J.R. Developmental and injury induced plasticity in the micturition reflex pathway. Behav. Brain Res. 1998, 92, 127–140. [Google Scholar] [CrossRef]
- Fowler, C.J.; Griffiths, D.; de Groat, W.C. The neural control of micturition. Nat. Rev. Neurosci. 2008, 9, 453–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seth, J.H.; Panicker, J.N.; Fowler, C.J. The neurological organization of micturition. Handb. Clin. Neurol. 2013, 117, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Leng, W.W.; Chancellor, M.B. How sacral nerve stimulation neuromodulation works. Urol. Clin. N. Am. 2005, 32, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Abrams, P.; Cardozo, L.; Fall, M.; Griffiths, D.; Rosier, P.; Ulmsten, U.; Van Kerrebroeck, P.; Victor, A.; Wein, A. Standardisation Sub-Committee of the International Continence Society The standardisation of terminology in lower urinary tract function: Report from the standardisation sub-committee of the International Continence Society. Urology 2003, 61, 37–49. [Google Scholar] [CrossRef]
- Kim, W.H.; Bae, W.J.; Park, J.W.; Choi, J.B.; Kim, S.J.; Cho, H.J.; Ha, U.S.; Hong, S.H.; Lee, J.Y.; Hwang, S.Y.; et al. Development of an improved animal model of overactive bladder: Transperineal ligation versus transperitoneal ligation in male rats. World J. Mens Health 2016, 34, 137–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, B.A.; Drake, M.J. Animal models in overactive bladder research. Handb. Exp. Pharmacol. 2011, 202, 15–43. [Google Scholar] [CrossRef]
- Shaker, H.; Mourad, M.S.; Elbialy, M.H.; Elhilali, M. Urinary bladder hyperreflexia: A rat animal model. Neurourol. Urodyn. 2003, 22, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Wróbel, A.; Rechberger, E.; Rechberger, T. The influence of duloxetine on detrusor overactivity in rats with depression induced by 13-cis-retinoic acid. Int. Urogynecol. J. 2018, 29, 987–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitta, T.; Ouchi, M.; Chiba, H.; Higuchi, M.; Togo, M.; Abe-Takahashi, Y.; Kusakabe, N.; Shinohara, N. Animal model for lower urinary tract dysfunction in Parkinson’s disease. Int. J. Mol. Sci. 2020, 21, 6520. [Google Scholar] [CrossRef] [PubMed]
- Loutochin, O.; Al Afraa, T.; Campeau, L.; Mahfouz, W.; Elzayat, E.; Corcos, J. Effect of the anticonvulsant medications pregabalin and lamotrigine on urodynamic parameters in an animal model of neurogenic detrusor overactivity. Neurourol. Urodyn. 2012, 31, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.U.; Phonsombat, S.; Bochinski, D.; Carrion, R.E.; Nunes, L.; Lue, T.F. An animal model to study lower urinary tract symptoms and erectile dysfunction: The hyperlipidaemic rat. BJU Int. 2007, 100, 658–663. [Google Scholar] [CrossRef]
- McMurray, G.; Casey, J.H.; Naylor, A.M. Animal models in urological disease and sexual dysfunction. Br. J. Pharmacol. 2006, 147 (Suppl. S2), S62–S79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, J.W.; Jeon, S.H.; Bae, W.J.; Kim, S.J.; Chung, M.S.; Yoon, B.I.; Choi, S.W.; Ha, U.S.; Hwang, S.Y.; Kim, S.W. Suppression of oxidative stress of modified Gongjin-Dan (WSY-1075) in detrusor underactivity rat model bladder outlet induced by obstruction. Chin. J. Integr. Med. 2018, 24, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Ko, I.G.; Hwang, L.; Jin, J.J.; Kim, S.H.; Han, J.H.; Jeon, J.W.; Cho, S.T. Add-on therapy with the alpha-blockers tamsulosin and naftopidil improves voiding function by enhancing neuronal activity in prostatic hyperplasia rats. Int. Neurourol. J. 2018, 22, 20–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnett, A.L.; Calvin, D.C.; Chamness, S.L.; Liu, J.X.; Nelson, R.J.; Klein, S.L.; Dawson, V.L.; Dawson, T.M.; Snyder, S.H. Urinary bladder-urethral sphincter dysfunction in mice with targeted disruption of neuronal nitric oxide synthase models idiopathic voiding disorders in humans. Nat. Med. 1997, 3, 571–574. [Google Scholar] [CrossRef]
- Matsui, M.; Motomura, D.; Fujikawa, T.; Jiang, J.; Takahashi, S.; Manabe, T.; Taketo, M.M. Mice lacking M2 and M3 muscarinic acetylcholine receptors are devoid of cholinergic smooth muscle contractions but still viable. J. Neurosci. 2002, 22, 10627–10632. [Google Scholar] [CrossRef] [Green Version]
- Lin, A.S.; Carrier, S.; Morgan, D.M.; Lue, T.F. Effect of simulated birth trauma on the urinary continence mechanism in the rat. Urology 1998, 52, 143–151. [Google Scholar] [CrossRef]
- Kerns, J.M.; Damaser, M.S.; Kane, J.M.; Sakamoto, K.; Benson, J.T.; Shott, S.; Brubaker, L. Effects of pudendal nerve injury in the female rat. Neurourol. Urodyn. 2000, 19, 53–69. [Google Scholar] [CrossRef]
- Rodríguez, L.V.; Chen, S.; Jack, G.S.; de Almeida, F.; Lee, K.W.; Zhang, R. New objective measures to quantify stress urinary incontinence in a novel durable animal model of intrinsic sphincter deficiency. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, R1332–R1338. [Google Scholar] [CrossRef] [Green Version]
- Petros, P.E.; Ulmsten, U.I. An integral theory of female urinary incontinence. Experimental and clinical considerations. Acta Obstet. Gynecol. Scand. Suppl. 1990, 153, 7–31. [Google Scholar] [CrossRef] [PubMed]
- Kefer, J.C.; Liu, G.; Daneshgari, F. Pubo-urethral ligament transection causes stress urinary incontinence in the female rat: A novel animal model of stress urinary incontinence. J. Urol. 2008, 179, 775–778. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Lin, G.; Lee, Y.C.; Reed-Maldonado, A.B.; Sanford, M.T.; Wang, G.; Li, H.; Banie, L.; Xin, Z.; Lue, T.F. Transgenic animal model for studying the mechanism of obesity-associated stress urinary incontinence. BJU Int. 2017, 119, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.Y.; Chen, C.J.; Chen, W.C.; Wang, S.J.; Chen, Y.H. A promising protein responsible for overactive bladder in ovariectomized mice. Taiwan. J. Obstet. Gynecol. 2017, 56, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Birder, L.; Andersson, K.E. Animal modelling of interstitial cystitis/bladder pain syndrome. Int. Neurourol. J. 2018, 22, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Vizzard, M.A.; Erdman, S.L.; de Groat, W.C. Increased expression of neuronal nitric oxide synthase in bladder afferent pathways following chronic bladder irritation. J. Comp. Neurol. 1996, 370, 191–202. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chen, W.C.; Tsai, K.S.; Liu, P.L.; Tsai, M.Y.; Lin, T.C.; Yu, S.C.; Chen, H.Y. Efficacy of frankincense and myrrha in treatment of acute interstitial cystitis/painful bladder syndrome. Chin. J. Integr. Med. 2020, 26, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Chen, C.J.; Wang, S.J.; Lin, Y.N.; Chen, W.C.; Tsai, M.Y.; Chen, H.Y. Downregulation of tight junction protein zonula occludens-2 and urothelium damage in a cyclophosphamide-induced mouse model of cystitis. Taiwan. J. Obstet. Gynecol. 2018, 57, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Juszczak, K.; Gil, K.; Wyczolkowski, M.; Thor, P.J. Functional, histological structure and mastocytes alterations in rat urinary bladders following acute and [corrected] chronic cyclophosphamide treatment. J. Physiol. Pharmacol. 2010, 61, 477–482. [Google Scholar]
- Malley, S.E.; Vizzard, M.A. Changes in urinary bladder cytokine mRNA and protein after cyclophosphamide-induced cystitis. Physiol. Genom. 2002, 9, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Boudes, M.; Uvin, P.; Kerselaers, S.; Vennekens, R.; Voets, T.; De Ridder, D. Functional characterization of a chronic cyclophosphamide-induced overactive bladder model in mice. Neurourol. Urodyn. 2011, 30, 1659–1665. [Google Scholar] [CrossRef]
- Lai, H.H.; Qiu, C.S.; Crock, L.W.; Morales, M.E.P.; Ness, T.J.; Gereau, R.W. Activation of spinal extracellular signal-regulated kinases (ERK) 1/2 is associated with the development of visceral hyperalgesia of the bladder. Pain 2011, 152, 2117–2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.H.; Man, K.M.; Chen, W.C.; Liu, P.L.; Tsai, K.S.; Tsai, M.Y.; Wu, Y.T.; Chen, H.Y. Platelet-rich plasma ameliorates cyclophosphamide-induced acute interstitial cystitis/painful bladder syndrome in a rat model. Diagnostics 2020, 10, 381. [Google Scholar] [CrossRef] [PubMed]
- Jasmin, L.; Janni, G.; Manz, H.J.; Rabkin, S.D. Activation of CNS circuits producing a neurogenic cystitis: Evidence for centrally induced peripheral inflammation. J. Neurosci. 1998, 18, 10016–10029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadler, K.E.; Stratton, J.M.; Kolber, B.J. Urinary bladder distention evoked visceromotor responses as a model for bladder pain in mice. J. Vis. Exp. 2014, 86, 51413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.H.; Liu, G.; Kavran, M.; Altuntas, C.Z.; Gasbarro, G.; Tuohy, V.K.; Daneshgari, F. Lower urinary tract phenotype of experimental autoimmune cystitis in mouse: A potential animal model for interstitial cystitis. BJU Int. 2008, 102, 1724–1730. [Google Scholar] [CrossRef]
- Matos, R.; Serrão, P.; Rodriguez, L.; Birder, L.A.; Cruz, F.; Charrua, A. The water avoidance stress induces bladder pain due to a prolonged alpha1A adrenoceptor stimulation. Naunyn-Schmiedebergs Arch. Pharmacol. 2017, 390, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Kitta, T.; Kanno, Y.; Chiba, H.; Higuchi, M.; Ouchi, M.; Togo, M.; Moriya, K.; Shinohara, N. Benefits and limitations of animal models in partial bladder outlet obstruction for translational research. Int. J. Urol. 2018, 25, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Buttyan, R.; Chen, M.W.; Levin, R.M. Animal models of bladder outlet obstruction and molecular insights into the basis for the development of bladder dysfunction. Eur. Urol. 1997, 32, 32–39. [Google Scholar]
- Kitta, T.; Chiba, H.; Kanno, Y.; Hattori, T.; Higuchi, M.; Ouchi, M.; Togo, M.; Takahashi, Y.; Michishita, M.; Kitano, T.; et al. Bladder outlet obstruction disrupts circadian bladder function in mice. Sci. Rep. 2020, 10, 11578. [Google Scholar] [CrossRef]
- Wei, Y.B.; Yang, J.R.; Yin, Z.; Guo, Q.; Liang, B.L.; Zhou, K.Q. Genitourinary toxicity of ketamine. Hong Kong Med. J. 2013, 19, 341–348. [Google Scholar] [CrossRef]
- Tsai, Y.C.; Kuo, H.-C. Ketamine cystitis: Its urological impact and management. Urol. Sci. 2015, 26, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Rajandram, R.; Ong, T.A.; Razack, A.H.A.; MacIver, B.; Zeidel, M.; Yu, W. Intact urothelial barrier function in a mouse model of ketamine-induced voiding dysfunction. Am. J. Physiol. Ren. Physiol. 2016, 310, F885–F894. [Google Scholar] [CrossRef] [Green Version]
- Chu, P.S.; Ma, W.K.; Wong, S.C.; Chu, R.W.; Cheng, C.H.; Wong, S.; Tse, J.M.; Lau, F.L.; Yiu, M.K.; Man, C.W. The destruction of the lower urinary tract by ketamine abuse: A new syndrome? BJU Int. 2008, 102, 1616–1622. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.H.; Wang, S.T.; Wang, S.C.; Lin, S.M.; Lin, L.C.; Dai, Y.C.; Liu, Y.W. Ketamine-induced bladder dysfunction is associated with extracellular matrix accumulation and impairment of calcium signaling in a mouse model. Mol. Med. Rep. 2019, 19, 2716–2728. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.L.; Lin, K.L.; Chuang, S.M.; Lee, Y.C.; Lu, M.C.; Wu, B.N.; Wu, W.J.; Yuan, S.F.; Ho, W.T.; Juan, Y.S. Elucidating mechanisms of bladder repair after hyaluronan instillation in ketamine-induced ulcerative cystitis in animal model. Am. J. Pathol. 2017, 187, 1945–1959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yee, C.H.; Lai, P.T.; Lee, W.M.; Tam, Y.H.; Ng, C.F. Clinical outcome of a prospective case series of patients with ketamine cystitis who underwent standardized treatment protocol. Urology 2015, 86, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Jhang, J.F.; Hsu, Y.H.; Kuo, H.C. Possible pathophysiology of ketamine-related cystitis and associated treatment strategies. Int. J. Urol. 2015, 22, 816–825. [Google Scholar] [CrossRef] [PubMed]
- Castellani, D.; Pirola, G.M.; Gubbiotti, M.; Rubilotta, E.; Gudaru, K.; Gregori, A.; Dellabella, M. What urologists need to know about ketamine-induced uropathy: A systematic review. Neurourol. Urodyn. 2020, 39, 1049–1062. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.C.; Tain, Y.L.; Chuang, Y.C.; Tsai, C.N.; Yu, C.C.; Su, C.H. Ba-Wei-Die-Huang-Wan (Hachimi-jio-gan) can ameliorate ketamine-induced cystitis by modulating neuroreceptors, inflammatory mediators, and fibrogenesis in a rat model. Neurourol. Urodyn. 2019, 38, 2159–2169. [Google Scholar] [CrossRef] [PubMed]
- Christensen, M.M.; Keith, I.; Rhodes, P.R.; Graziano, F.M.; Madsen, P.O.; Bruskewitz, R.C.; Saban, R. A guinea pig model for study of bladder mast cell function: Histamine release and smooth muscle contraction. J. Urol. 1990, 144, 1293–1300. [Google Scholar] [CrossRef]
- Mostwin, J.L.; Karim, O.M.; Van Koeveringe, G.; Seki, N. Guinea pig as an animal model for the study of urinary bladder function in the normal and obstructed state. Neurourol. Urodyn. 1994, 13, 137–145. [Google Scholar] [CrossRef]
- Van Asselt, E.; Groen, J.; Van Mastrigt, R. A comparative study of voiding in rat and guinea pig: Simultaneous measurement of flow rate and pressure. Am. J. Physiol. 1995, 269, R98–R103. [Google Scholar] [CrossRef] [Green Version]
- Mostwin, J.L. The action potential of guinea pig bladder smooth muscle. J. Urol. 1986, 135, 1299–1303. [Google Scholar] [CrossRef]
- Tyagi, P.; Smith, P.P.; Kuchel, G.A.; de Groat, W.C.; Birder, L.A.; Chermansky, C.J.; Adam, R.M.; Tse, V.; Chancellor, M.B.; Yoshimura, N. Pathophysiology and animal modeling of underactive bladder. Int. Urol. Nephrol. 2014, 46, S11–S21. [Google Scholar] [CrossRef] [Green Version]
- Levin, R.M.; Monson, F.C.; Longhurst, P.A.; Wein, A.J. Rabbit as a model of urinary bladder function. Neurourol. Urodyn. 1994, 13, 119–135. [Google Scholar] [CrossRef]
- Tong, Y.C.; Monson, F.C.; Erika, B.; Levin, R.M. Effects of acute in vitro overdistension of the rabbit urinary bladder on DNA synthesis. J. Urol. 1992, 148, 1347–1350. [Google Scholar] [CrossRef]
- Levin, R.M.; Staskin, D.R.; Wein, A.J. The effects of acute overdistention of the rabbit urinary bladder. Neurourol. Urodyn. 1983, 2, 63–67. [Google Scholar] [CrossRef]
- Malkowicz, S.B.; Wein, A.J.; Elbadawi, A.; Van Arsdalen, K.; Ruggieri, M.R.; Levin, R.M. Acute biochemical and functional alterations in the partially obstructed rabbit urinary bladder. J. Urol. 1986, 136, 1324–1329. [Google Scholar] [CrossRef]
- Levin, R.M.; Brendler, K.; Wein, A.J. Comparative pharmacological response of an in vitro whole bladder preparation (rabbit) with response of isolated smooth muscle strips. J. Urol. 1983, 130, 377–381. [Google Scholar] [CrossRef]
- Chun, A.L.; Gill, H.S.; Wein, A.J.; Levin, R.M. Pharmacological comparison of the isolated whole urethra model to urethral strip methodology. Pharmacology 1989, 39, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Brown, S. Bladder Stones and Bladder Sludge in Rabbits; House Rabbit Society: Richmond, CA, USA, 2006. [Google Scholar]
- Gunn-Moore, D.A.; Cameron, M.E. A pilot study using synthetic feline facial pheromone for the management of feline idiopathic cystitis. J. Feline Med. Surg. 2004, 6, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Levin, R.M.; Hayes, L.; Eika, B.; McGuire, E.J.; Elbadawi, A.; Wein, A.J. Comparative autonomic responses of the cat and rabbit bladder and urethra. J. Urol. 1992, 148, 216–219. [Google Scholar] [CrossRef]
- Julia-Guilloteau, V.; Denys, P.; Bernabé, J.; Mevel, K.; Chartier-Kastler, E.; Alexandre, L.; Giuliano, F. Urethral closure mechanisms during sneezing-induced stress in anesthetized female cats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R1357–R1367. [Google Scholar] [CrossRef] [PubMed]
- Bernabé, J.; Julia-Guilloteau, V.; Denys, P.; Chartier-Kastler, E.; Alexandre, L.; Peeters, M.; Giuliano, F. Peripheral neural lesion-induced stress urinary incontinence in anaesthetized female cats. BJU Int. 2008, 102, 1162–1167. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.J.; Yousuf, Z.; Ouyang, Z.; Kennedy, E.; Lester, P.A.; Martin, T.; Bruns, T.M. Anesthetic agents affect urodynamic parameters and anesthetic depth at doses necessary to facilitate preclinical testing in felines. Sci. Rep. 2020, 10, 11401. [Google Scholar] [CrossRef] [PubMed]
- Yoo, P.B.; Woock, J.P.; Grill, W.M. Bladder activation by selective stimulation of pudendal nerve afferents in the cat. Exp. Neurol. 2008, 212, 218–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodbelt, D. Feline anesthetic deaths in veterinary practice. Top. Companion Anim. Med. 2010, 25, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Rempen, A.; Kraus, M. Measurement of head compression during labor: Preliminary results. J. Perinat. Med. 1991, 19, 115–120. [Google Scholar] [CrossRef]
- Sultan, A.H.; Monga, A.K.; Stanton, S.L. The pelvic floor sequelae of childbirth. Br. J. Hosp. Med. 1996, 55, 575–579. [Google Scholar]
- Huang, J.; Cheng, M.; Ding, Y.; Chen, L.; Hua, K. Modified vaginal dilation rat model for postpartum stress urinary incontinence. J. Obstet. Gynaecol. Res. 2013, 39, 256–263. [Google Scholar] [CrossRef]
- Kwon, J.; Suzuki, T.; Takaoka, E.I.; Shimizu, N.; Shimizu, T.; Takai, S.; Yoshikawa, S.; de Groat, W.C.; Yoshimura, N. Analysis of continence reflexes by dynamic urethral pressure recordings in a rat stress urinary incontinence model induced by multiple simulated birth traumas. Am. J. Physiol. Ren. Physiol. 2019, 317, F781–F788. [Google Scholar] [CrossRef] [PubMed]
- Hilton, P.; Stanton, S.L. Urethral pressure measurement by microtransducer: The results in symptom-free women and in those with genuine stress incontinence. Br. J. Obstet. Gynaecol. 1983, 90, 919–933. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Lin, Y.N.; Chen, Y.H.; Chen, W.C. Stress urinary incontinence following vaginal trauma involves remodeling of urethral connective tissue in female mice. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 163, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Chen, C.J.; Lin, Y.N.; Wu, Y.C.; Hsieh, W.T.; Wu, B.T.; Ma, W.L.; Chen, W.C.; Tsai, K.S.; Wu, S.Y.; et al. Proteomic analysis of urethral protein expression in an estrogen receptor α-deficient murine model of stress urinary incontinence. World J. Urol. 2015, 33, 1635–1643. [Google Scholar] [CrossRef]
- Chen, H.Y.; Chen, W.C.; Lin, Y.N.; Chen, Y.H. Synergistic effect of vaginal trauma and ovariectomy in a murine model of stress urinary incontinence: Upregulation of urethral nitric oxide synthases and estrogen receptors. Mediat. Inflamm. 2014, 2014, 314846. [Google Scholar] [CrossRef] [PubMed]
- Sidler, M.; Aitken, K.J.; Forward, S.; Vitkin, A.; Bagli, D.J. Non-invasive voiding assessment in conscious mice. Bladder 2018, 5, e33. [Google Scholar] [CrossRef] [PubMed]
- Nickel, R.F. Studies on the function of the urethra and bladder in continent and incontinent female dogs. Vet. Q. 1998, 20 (Suppl. S1), S102–S103. [Google Scholar] [CrossRef] [PubMed]
- Noël, S.; Massart, L.; Hamaide, A. Urodynamic investigation by telemetry in Beagle dogs: Validation and effects of oral administration of current urological drugs: A pilot study. BMC Vet. Res. 2013, 9, 197. [Google Scholar] [CrossRef] [Green Version]
- Parsons, B.A.; Drake, M.J.; Gammie, A.; Fry, C.H.; Vahabi, B. The validation of a functional, isolated bladder model from a large animal. Front. Pharmacol. 2012, 3, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anele, U.A.; Ratz, P.H.; Colhoun, A.F.; Roberts, S.; Musselman, R.; Vince, R.A.; Speich, J.E.; Klausner, A.P. Potential vascular mechanisms in an ex vivo functional pig bladder model. Neurourol. Urodyn. 2018, 37, 2425–2433. [Google Scholar] [CrossRef] [PubMed]
- Vince, R.; Tracey, A.; Deebel, N.A.; Barbee, R.W.; Speich, J.E.; Klausner, A.P.; Ratz, P.H. Effects of vesical and perfusion pressure on perfusate flow, and flow on vesical pressure, in the isolated perfused working pig bladder reveal a potential mechanism for the regulation of detrusor compliance. Neurourol. Urodyn. 2018, 37, 642–649. [Google Scholar] [CrossRef]
- Lentle, R.G.; Reynolds, G.W.; Janssen, P.W.; Hulls, C.M.; King, Q.M.; Chambers, J.P. Characterisation of the contractile dynamics of the resting ex vivo urinary bladder of the pig. BJU Int. 2015, 116, 973–983. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.Y.; Man, K.M.; Shen, J.L.; Chen, H.Y.; Chang, C.H.; Tsai, F.J.; Hsieh, W.T.; Winardi, D.; Lee, Y.J.; Tsai, K.S.; et al. Effect of Flos carthami extract and α 1-adrenergic antagonists on the porcine proximal ureteral peristalsis. Evid.-Based Complement. Altern. Med. 2014, 2014, 437803. [Google Scholar] [CrossRef] [PubMed]
- Mitsui, R.; Lee, K.; Uchiyama, A.; Hayakawa, S.; Kinoshita, F.; Kajioka, S.; Eto, M.; Hashitani, H. Contractile elements and their sympathetic regulations in the pig urinary bladder: A species and regional comparative study. Cell Tissue Res. 2020, 379, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.S.; Patton, A.J.; Noronha-Blob, L. Mini-pig urinary bladder function: Comparisons of in vitro anticholinergic responses and in vivo cystometry with drugs indicated for urinary incontinence. J. Auton. Pharmacol. 1990, 10, 65–73. [Google Scholar] [CrossRef]
- Leonhäuser, D.; Stollenwerk, K.; Seifarth, V.; Zraik, I.M.; Vogt, M.; Srinivasan, P.K.; Tolba, R.H.; Grosse, J.O. Two differentially structured collagen scaffolds for potential urinary bladder augmentation: Proof of concept study in a Göttingen minipig model. J. Transl. Med. 2017, 15, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disease | Model | Animal | Advantage | Disadvantage |
---|---|---|---|---|
OAB | Peripheral/central damage model | Rat, mouse | Easy to produce OAB symptoms | Requires the surgical damage of CNS, disease status might not reflect OAB |
Hypersensitivity/inflammatory model | Rat, mouse | Most commonly used | ||
Bladder outlet obstruction model | Dog, rat, mouse, rabbit, nonhuman primate | Mimics human pathophysiology | Requires surgical techniques | |
Spontaneous hypertensive model | Rat | Mimics human hypertension | Unclear cause of bladder dysfunction | |
Transgenic animal model | Mouse | Advanced approach | High cost of establishing transgenic animal models | |
Incontinence | Vaginal distension model | Rat, mouse | Low-cost and easy to handle | The pelvic anatomy of four-legged animals is not the same as that of humans and most models require surgical techniques |
Pudendal nerve injury model | Rat | Mimics human postoperative urinary dysfunction | ||
Urethrolysis model | Rat | Mimics human urethral hypermobility-related stress urinary incontinence | ||
Pubo-urethral ligament transection model | Rat, mouse | Mimics human urethral hypermobility-related stress urinary incontinence | ||
Transgenic animal model | Rat | Mimics human obesity | High cost of establishing transgenic animal models | |
Ovariectomy model | Mouse | Mimics menopausal model | Requires surgical techniques | |
IC/PBS | Bladder-centric model | Rat, mouse | Low-cost, easy to handle | Rat is atypical |
Pseudorabies virus tail injection model | Mouse | Reliable and reproducible model of nociception visceromotor response | Lack of muscularis mucosa in rodents | |
Autoimmune cystitis model | Mouse | Mimics human IC voiding pattern | Requires long-term instillation | |
Water-avoidance stress model | Cat, rat | Mimics psychological stress | ||
BOO | Ligated proximal urethral model | Pig, mouse, guinea pig, rat, dog, rabbit | Mimics human pathophysiology | Requires surgical techniques |
Post-orchiectomy injection of testosterone model | Rat | |||
Ketamine cystitis | IP model | Rat, mouse | Low-cost and easy to handle | Lack of muscularis mucosa in rodents |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, J.-D.; Chen, S.-J.; Chen, H.-Y.; Chiu, K.-Y.; Chen, Y.-H.; Chen, W.-C. Review of Animal Models to Study Urinary Bladder Function. Biology 2021, 10, 1316. https://doi.org/10.3390/biology10121316
Shen J-D, Chen S-J, Chen H-Y, Chiu K-Y, Chen Y-H, Chen W-C. Review of Animal Models to Study Urinary Bladder Function. Biology. 2021; 10(12):1316. https://doi.org/10.3390/biology10121316
Chicago/Turabian StyleShen, Jing-Dung, Szu-Ju Chen, Huey-Yi Chen, Kun-Yuan Chiu, Yung-Hsiang Chen, and Wen-Chi Chen. 2021. "Review of Animal Models to Study Urinary Bladder Function" Biology 10, no. 12: 1316. https://doi.org/10.3390/biology10121316
APA StyleShen, J. -D., Chen, S. -J., Chen, H. -Y., Chiu, K. -Y., Chen, Y. -H., & Chen, W. -C. (2021). Review of Animal Models to Study Urinary Bladder Function. Biology, 10(12), 1316. https://doi.org/10.3390/biology10121316