Chairside CAD/CAM Materials: Current Trends of Clinical Uses
Abstract
:Simple Summary
Abstract
1. Introduction
- Impression with software associated with an over-the-counter scanner or intraoral camera;
- Digital data processing using a program to delimit dental preparation, occlusion, and restoration contacts;
- Restoration production is designed using subtractive manufacturing processes, which require milling the desired restoration starting from a block of material.
2. Materials and Methods
2.1. Adhesive Ceramics
2.2. Feldspathic and Leucite-Reinforced Ceramics
2.3. Lithium Disilicates and Zirconia-Reinforced Lithium Silicates
2.4. Resin Composite Materials
2.5. Hybrid Ceramics
2.6. Zirconia
2.7. Resins
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mörmann, W.H. The origin of the CEREC method: A personal review of the first 5 years. Int. J. Comput. Dent. 2004, 7, 11–24. [Google Scholar] [PubMed]
- Vichi, A.; Sedda, M.; Del Siena, F.; Louca, C.; Ferrari, M. Flexural resistance of Cerec CAD/CAM system ceramic blocks. Part 1: Chairside materials. Am. J. Dent. 2013, 26, 255–259. [Google Scholar] [PubMed]
- Zarone, F.; Di Mauro, M.I.; Ausiello, P.; Ruggiero, G.; Sorrentino, R. Current status on lithium disilicate and zirconia: A narrative review. BMC Oral Health 2019, 19, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Kuijper, M.C.F.M.; Gresnigt, M.; Kerdijk, W.; Cune, M. Shear bond strength of two composite resin cements to multiphase composite resin after different surface treatments and two glass-ceramics. Int. J. Esthet. Dent. 2019, 14, 40–50. [Google Scholar] [PubMed]
- Li, R.W.; Chow, T.W.; Matinlinna, J.P. Ceramic dental biomaterials and CAD/CAM technology: State of the art. J. Prosthodont. Res. 2014, 58, 208–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, L.H.; De Lima, R.; Miranda, R.B.; Favero, S.S.; Lohbauer, U.; Cesar, P.F. Dental ceramics: A review of new materials and processing methods. Braz. Oral Res. 2017, 31, e58. [Google Scholar] [CrossRef] [PubMed]
- Vichi, A.; Carrabba, M.; Paravina, R.; Ferrari, M. Translucency of ceramic materials for CEREC CAD/CAM system. J. Esthet. Restor. Dent. 2014, 26, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Conrad, H.J.; Seong, W.J.; Pesun, I.J. Current ceramic materials and systematic with clinical recommendations: A systematic review. J. Prosthet. Dent. 2007, 98, 389–404. [Google Scholar] [CrossRef]
- Lambert, H.; Durand Jacquot, B.; Fages, M. Dental biomaterials for chairside CAD/CAM: State of the art. J. Adv. Prosthodont. 2017, 9, 486–495. [Google Scholar] [CrossRef] [Green Version]
- Schulte, A.G.; Vöckler, A.; Reinhardt, R. Longevity of ceramic inlays and onlays luted with a solely light-curing composite resin. J. Dent. 2005, 33, 433–442. [Google Scholar] [CrossRef]
- Morimoto, S.; Rebello de Sampaio, F.B.W.; Braga, M.M.; Sesma, N.; Özcan, M. Survival rate of resin and ceramic inlays, onlays and overlays: A systematic review and meta-analysis. J. Dent. Res. 2016, 95, 985–994. [Google Scholar] [CrossRef]
- Reiss, B. Clinical results of Cerec inlays in a dental practice over a period of 18 years. Int. J. Comput. Dent. 2006, 9, 11–22. [Google Scholar]
- Chen, Y.M.; Smales, R.J.; Yip, K.H.; Sung, W.J. Translucency and biaxial flexural strength of four ceramic core materials. Dent. Mater. 2008, 24, 1506–1511. [Google Scholar] [CrossRef] [PubMed]
- Tysowsky, G.W. The science behind lithium disilicate: A metal-free alternative. Dent. Today 2009, 28, 112–113. [Google Scholar]
- Lien, W.; Roberts, H.W.; Platt, J.A.; Vandewalle, K.S.; Hill, T.J.; Chu, T.M. Microstructural evolution and physical behaviour of a lithium disilicate glass-ceramic. Dent. Mater. 2015, 31, 928–940. [Google Scholar] [CrossRef]
- Gehrt, M.; Wolfart, S.; Rafai, N.; Reich, S.; Edelhoff, D. Clinical results of lithium disilicated crown after up to 9 years of service. Clin. Oral Investig. 2013, 17, 275–284. [Google Scholar] [CrossRef]
- Pieger, S.; Salman, A.; Bidra, A.S. Clinical outcomes of lithium disilicate single crowns and partial fixed dental prostheses: A systematic review. J. Prosthet. Dent. 2014, 112, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, G.; Zarone, F.; Dellificorelli, G.; Cannistraro, G.; De Lorenzi, M.; Mosca, A.; Sorrentino, R. Clinical evaluation of 860 anterior and posterior lithium disilicate restorations: Retrospective study with a mean follow-up of 3 years and a maximum observational period of 6 years. Int. J. Periodontics Restor. Dent. 2014, 34, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Sailer, I.; Makarov, N.A.; Thoma, D.S.; Zwahlen, M.; Pjetursson, B.E. All-ceramic of metal ceramic tooth supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs). Dent. Mater. 2015, 31, 603–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauch, A.; Reich, S.; Dalchau, L.; Schierz, O. Clinical survival of chair-side generated monolithic lithium disilicate crowns: 10-years results. Clin. Oral Investig. 2018, 22, 1763–1769. [Google Scholar] [CrossRef] [PubMed]
- Kern, M.; Sasse, M.; Wolfart, S. Ten-year outcome of three-unit fixed dental prostheses made form monolithic lithium disilicate ceramic. J. Am. Dent. Assoc. 2012, 143, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Cooper, L.F.; Stanford, C.; Feine, J.; McGuire, M. Prospective assessment of CAD/CAM zirconia abutment and lithium disilicate crown restorations: 2.4 year results. J. Prosth. Dent. 2016, 116, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Pitta, J.; Burkhardt, F.; Mekki, M.; Fehmer, V.; Mojon, P.; Sailer, I. Effect of airborne-particle abrasion of a titanium base abutment on the stability of the bonded interface and retention forces of crowns after artificial aging. J. Prosthet. Dent. 2020, 26, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Politano, G.; Van Meerbeek, B.; Peumans, M. Non-retentive bonded ceramic partial crowns: Concept and simplified protocol for long-lasting dental restorations. J. Adhes. Dent. 2018, 20, 495–510. [Google Scholar] [PubMed]
- Schlichting, L.H.; Maia, H.P.; Baratieri, L.N.; Magne, P. Novel-design ultra thin CAD/CAM composite resin and occlusal veneer for the treatment of severe dental erosion. J. Prosthet. Dent. 2011, 105, 217–226. [Google Scholar] [CrossRef]
- Angerame, D.; De Biasi, M.; Agostinetto, M.; Franzò, A.; Marchesi, G. Influence of preparation designs on marginal adaptation and failure load of full- coverage occlusal veneers after thermomechanical aging simulation. J. Esthet. Restor. Dent. 2019, 31, 1–10. [Google Scholar] [CrossRef]
- Elsaka, S.E.; Einaghy, A.M. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dent. Mater. 2016, 32, 908–914. [Google Scholar] [CrossRef]
- Lauvahutanon, S.; Takahashi, H.; Shiozawa, M.; Iwasaki, N.; Asakawa, Y.; Oki, M.; Finger, W.J.; Arksornnukit, M. Mechanical properties of composite resin blocks for CAD/CAM. Dent. Mater. 2014, 33, 705–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, N.; Us, Y.O. Mechanical and optical properties of monolithic CAD-CAM restorative materials. J. Prosthet. Dent. 2018, 119, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Rinke, S.; Pfitzenreuter, T.; Leha, A.; Roediger, M.; Ziebolz, D. Clinical evaluation of chairside-fabricated partial crowns composed of zirconia-reinforced lithium silicate ceramics: 3 year results of a prospective practice-based study. J. Esthet. Dent. 2020, 32, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Wada, A.; Nathanson, D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J. Prosthet. Dent. 2015, 114, 587–593. [Google Scholar]
- Magne, P.; Schlichting, L.H.; Maia, H.P.; Baratieri, L.N. In vitro fatigue resistance of CAD/CAM composite resin and ceramic posterior occlusal veneers. J. Prosthet. Dent. 2010, 104, 149–157. [Google Scholar] [CrossRef]
- He, L.H.; Swain, M.A. A novel polymer infiltrated ceramic dental material. Dent. Mater. 2011, 27, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Fasbinder, D.J.; Neiva, G.F.; Dennison, J.B.; Heys, D.R. Clinical performance of CAD/CAM-generated composite inlays after 10 years: Comparing the longitudinal performance of composite and porcelain. J. Cosmet. Dent. 2013, 28, 134–145. [Google Scholar]
- Manjot, A. Recent advances in composite CAD/CAM blocks. Int. J. Esthet. Dent. 2016, 11, 275–280. [Google Scholar]
- Coldea, A.; Swain, M.V.; Thiel, N. Mechanical properties of polymer-infiltrated ceramic-network materials. Dent. Mater. 2013, 29, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Fasbinder, D.J. Chairside CAD/CAM: An overview of restorative material option. Compend. Contin. Educ. Dent. 2012, 33, 50–58. [Google Scholar] [PubMed]
- Tree, A.; Pascual, A.; Camps, I.; Grau-Benitez, M. Comparative characterization of a novel CAD/CAM polymer-infiltrated-ceramic network. J. Clin. Expo. Dent. 2015, 7, e495–e500. [Google Scholar]
- Fasbinder, D.J.; Neiva, G.F.; Heys, D.; Heys, R. Clinical evaluation of chairside computer assisted design/computer assisted machining nano-ceramic restorations: Five-year status. J. Esthet. Restor. Dent. 2020, 32, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Coşkun, E.; Aslan, Y.U.; Özkan, Y.K. Evaluation of two different CAD-CAM inlays-onlays in a split mouth study: 2-year clinical follow-up. J. Esthet. Restor. Dent. 2020, 32, 244–250. [Google Scholar] [CrossRef]
- Chirumamilla, G.; Goldstein, C.E.; Lawson, N.C. A 2 year retrospective clinical study of Enamic crowns performed in a private practice setting. J. Esthet. Restor. Dent. 2016, 28, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Spitznagel, F.A.; Scholz, K.J.; Strub, J.R.; Vach, K.; Gierthmuehlen, P.C. Polymer-infiltrated ceramic CAD/CAM inlays and partial coverage restorations: 3 year results of a prospective clinical study over 5 years. Clin. Oral Investig. 2018, 22, 1973–1983. [Google Scholar] [CrossRef]
- Zarone, F.; Russo, S.; Sorrentino, R. From porcelain-fused to metal to zirconia: Clinical and experimental considerations. Dent. Mater. 2011, 87, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Denry, I.; Kelly, J.R. State of the art of zirconia for dental applications. Dent. Mater. 2008, 24, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, J.; Taira, Y.; Sawase, T. In vitro wear of four ceramic materials and human enamel on enamel antagonist. Eur. J. Oral Sci. 2016, 124, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Lughi, V.; Sergio, V. Low degraded temperatures -aging-of zirconia: A critical review of the relevant aspects in dentistry. Dent. Mater. 2010, 26, 807–820. [Google Scholar] [CrossRef]
- Shahmiri, R.; Standard, O.C.; Hart, J.N.; Sisters, C.C. Optical properties of zirconia ceramics for esthetic dental restorations: A systematic review. J. Prosthet. Dent. 2018, 119, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Vichi, A.; Sedda, D.; Fabian Fonzar, R.; Carrabba, M.; Ferrari, M. Comparison of contrast ratio, translucency parameter, and flexural strength of traditional and “augmented translucency” zirconia for CEREC CAD/CAM system. J. Esthet. Dent. Restor. Dent. 2016, 28, s32–s39. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M.; Vichi, A.; Zarone, F. Zirconia abutments and restorations: From laboratory to clinical investigations. Dent. Mater. 2015, 31, e63–e76. [Google Scholar] [CrossRef] [PubMed]
- Sorrentino, R.; Triulzio, C.; Tricarico, M.G.; Bonadeo, G.; Gherlone, E.F.; Ferrari, M. In vitro analysis of the fracture resistance of CAD-CAM monolithic zirconia molar crowns with different occlusal thickness. J. Mech. Behave. Biomed. Mater. 2016, 199, 36–46. [Google Scholar] [CrossRef]
Categories | Description | Commercial Name | Manufacturer |
---|---|---|---|
Adhesive ceramic | Feldspathic ceramic | Vitablocs Mark II CEREC Blocs Vitablocs Triluxe Vitablocs RealLife | Vita Zahnfabrik Dentsply Sirona Vita Zahnfabrik Vita Zahnfabrik |
Leucite-reinforced ceramic | IPS Empress CAD Initial LRF Block | Ivoclar Vivadent GC | |
Lithium disilicate | IPS e.max CAD Amber Mill Tessera | Ivoclar Vivadent HASS Dentsply Sirona | |
Lithium silicate zirconia reinforced | Celtra Duo | Dentsply Sirona | |
Composite resin | Bis-GMA composite | Paradigm MZ100 Brilliant Crios Grandio Blocks LuxaCam composite Tetric CAD | 3M Coltene/Whaledent Voco DMG Fabrik Ivoclar Vivadent |
Hybrid ceramic | Nanoceramic | Lava Ultimate Cerasmart Shofu Block HC Cerasmart Mazic Duro Avencia Block | 3M GC Shofu GC America Vericom co. Kuraray Noritake Dental |
PICN | Enamic | Vita Zahnfabrik | |
Zirconia | Tetragonal zirconia | CEREC Zirconia e.max ZirCAD Katana Zirconia Block Mazic Zir LuxaCam Zircon HT Plus | Dentsply Sirona Ivoclar Vivadent Kuraray Noritake Dental Vericom co. DMG Fabrik |
Resin | PMMA | TelioCAD Cad Temp Mazic Pro LuxaCam PMMA ArtBlock Temp | Ivoclar Vivadent Vita Zahnfabrick Vericom co. DMG Fabrik MERZ |
Material/Characteristics | Feldspathic and Leucite-Reinforced Ceramic | Lithium Disilicate and Zirconia-Reinforced Lithium Silicates | Resin Composite | Hybrid Ceramic | Zirconia | Resin |
---|---|---|---|---|---|---|
Microstructure | Glassy matrix + Crystalline loads | Glassy matrix + Crystalline loads | Inorganic fillers in resin matrix | Ceramic nanoparticles in resin matrix Ceramic Network infiltrate of polymer | Polycrystalline | Resin polymers |
Optic properties | Excellent | Good | Medium | Good | Good | Weak |
Bonding aptitude | Excellent | Excellent | Excellent | Excellent | Medium/weak | Excellent |
Advantages | Clinical experience, Esthetics, Wide range shade, Translucidity | Clinical experience (e.max), Esthetic, Mechanical strength, Wide range shade, Translucidity | Rapid milling, Direct composite reparation, Mechanical properties | Rapid milling, Direct composite reparation, Mechanical properties | Mechanical strength | Rapid milling, Direct composite reparation, Mechanical properties |
Disadvantages | Relative fragility | Less than conventional ceramic | Optical properties | Optical properties | Translucidity | Esthetic |
Indications for the use | Veneer, inlay, onlay, overlay, crown, bridge anterior | Veneer, inlay, onlay, overlay, crown, bridge anterior and posterior, abutment | Veneer, inlay, onlay, overlay, crown, bridge of small extent | Veneer, inlay, onlay, overlay, crown (except Lava Ultimate) | Crown, bridge, abutment | Temporary restorations: Veneer, inlay, onlay, overlay, crown, bridge of small extent |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchesi, G.; Camurri Piloni, A.; Nicolin, V.; Turco, G.; Di Lenarda, R. Chairside CAD/CAM Materials: Current Trends of Clinical Uses. Biology 2021, 10, 1170. https://doi.org/10.3390/biology10111170
Marchesi G, Camurri Piloni A, Nicolin V, Turco G, Di Lenarda R. Chairside CAD/CAM Materials: Current Trends of Clinical Uses. Biology. 2021; 10(11):1170. https://doi.org/10.3390/biology10111170
Chicago/Turabian StyleMarchesi, Giulio, Alvise Camurri Piloni, Vanessa Nicolin, Gianluca Turco, and Roberto Di Lenarda. 2021. "Chairside CAD/CAM Materials: Current Trends of Clinical Uses" Biology 10, no. 11: 1170. https://doi.org/10.3390/biology10111170
APA StyleMarchesi, G., Camurri Piloni, A., Nicolin, V., Turco, G., & Di Lenarda, R. (2021). Chairside CAD/CAM Materials: Current Trends of Clinical Uses. Biology, 10(11), 1170. https://doi.org/10.3390/biology10111170