Influence of Light Conditions on Microalgae Growth and Content of Lipids, Carotenoids, and Fatty Acid Composition
Abstract
:Simple Summary
Abstract
1. Introduction
2. Light as an Environmental Factor of Microalgae Growth
3. Influence of Lighting Intensity
3.1. Optimal and Photoinhibiting Light Intensity
3.2. Effect of Light Intensity on Lipid Accumulation and Productivity
3.3. Changes in the Amount and Composition of Fatty Acids in Response to the Action of Light with Different Intensities
Investigated Light Intensity, μmol photons m−2 s−1 (lx) | Optimal Light Intensity for Lipid Synthesis, μmol photons m−2 s−1 | Species and Strain | Class | Lipid Content, % | Lipid Productivity, mg L−1 day−1 | References |
---|---|---|---|---|---|---|
130, 260, 390, 520 | 520 | Chlorella vulgaris | Trebouxiophyceae | 22.24 | 19 | [18] |
600 | Chlorella vulgaris NIES-2170 | Trebouxiophyceae | 290 | [98] | ||
600 | Chloroidium viscosum SAG 2338 (=Chlorella viscosa) | Trebouxiophyceae | 81 | [98] | ||
600 | Chlorella sorokiniana NIES-2169 | Trebouxiophyceae | 39 | [98] | ||
600 | Graesiella emersonii NIES-2151 (=Chlorella emersonii) | Trebouxiophyceae | 230 | [98] | ||
40, 200, 400 | 400 | Chlorella sp. | Trebouxiophyceae | 71.66 (NL) | 51.36 (NL) | [44] |
200 | Chlorella sp. 589 | Trebouxiophyceae | 30.2 | 102 | [96] | |
200 | Chloroidium saccharophilum 477 (=Chlorella saccharophila) | Trebouxiophyceae | 27.6 | 72,5 | [96] | |
200 | Chlorella sp. 800 | Trebouxiophyceae | 24.4 | 121 | [96] | |
600 | Parachlorella beijerinckii SAG 2046 | Trebouxiophyceae | 190 | [98] | ||
600 | Parachlorella kessleri NIES-2152 | Trebouxiophyceae | 330 | [98] | ||
600 | Parachlorella kessleri NIES-2159 | Trebouxiophyceae | 210 | [98] | ||
600 | Parachlorella kessleri CCALA 25 | Trebouxiophyceae | 200 | [98] | ||
50, 250, 400 | 400 | Scenedesmus sp. 11-1 | Trebouxiophyceae | 41.1 | [104] | |
10–1000 | 200 | Tetradesmus obliquus | Trebouxiophyceae | 45.31 | [53] | |
405 | Choricystis sp. LBB13-AL045 | Trebouxiophyceae | 46.13 | [105] | ||
200 | Botryococcus braunii KMITL 2 | Trebouxiophyceae | 54.69 | [106] | ||
84, 133, 182 | 182 | Tetraselmis sp. V2 | Chlorodendrophyceae | 49.0 | [89] | |
120 | Tetraselmis suecica | Chlorophyceae | 26.1 | 47.3 | [107] | |
100–500 | 300 | Chlamydomonas sp. JSC4 | Chlorophyceae | 43.1 | 312 | [108] |
200–800 | 500 | Ettlia sp. YC001 | Chlorophyceae | 420 | [49] | |
100, 200 | 200 | Dunaliella salina Y6 | Chlorophyceae | 14.5 | [79] | |
90–300 | 300 | Haematococcus lacustris (=Haematococcus pluvialis) | Chlorophyceae | 32.99 | [109] | |
40, 200, 400 | 400 | Monoraphidium dybowskii Y2 | Chlorophyceae | 60.65 (NL) | 49.71 (NL) | [44] |
50, 300, 600 | 600 | Isochrysis galbana | Coccolithophyceae | 31.71 | 21.67 | [99] |
50, 300, 600 | 600 | Phaeodactylum tricornutum | Bacillariophyceae | 39.53 (TAG) | 31.39 (TAG) | [99] |
60–750 | 60 | Phaeodactylum tricornutum | Bacillariophyceae | 112 (TAG) | [81] | |
170, 700 | 700 | Nannochloropsis sp. | Eustigmatophyceae | 47 (TAG) | 360 (TAG) | [47] |
50, 100, 200 | 100 | Nannochloropsis sp. | Eustigmatophyceae | 31.3 | [75] | |
(3000, 4000, 5000) | 5000 | Arthrospira platensis (=Spirulina platensis) | Cyanophyceae | 35.8 | [50] |
Investigated Light Intensity, μmol photons m−2 s−1 | Effective Light Intensity for Fatty Acid Synthesis, μmol photons m−2 s−1 | Species | TFA | SFA | MUFA | PUFA | References | |
---|---|---|---|---|---|---|---|---|
Total PUFA | Individual Fatty Acid | |||||||
20, 100, 340 | 20 | Diacronema lutheri (=Pavlova lutheri) | ↑ | ↑EPA | [110] | |||
37.5, 62.5, 100 | 37.5 | Chlorella vulgaris | ↑ | ↑ | [111] | |||
37.5, 62.5, 100 | 100 | Chlorella vulgaris | ↑ | [111] | ||||
150, 750 | 150 | Phaeodactylum tricornutum | ↑ | ↑EPA | [102] | |||
50, 125, 300 | 300 | Chlorella vulgaris, Tetradesmus obliquus | ↑18:1 | ↓18:3 | [86] | |||
50, 125, 325 | 325 | Isochrysis galbana | ↑16:0 | ↑18:0 | ↓ | ↓LA, ↓ALA, ↓SDA | [85] | |
20, 100, 340 | 340 | Diacronema lutheri | ↑ | ↑ | ↑DHA | [110] | ||
35, 200, 400 | 400 | Lobosphaera incisa | ↑ | ↑ | ↑ARA | [88] | ||
30, 100, 400 | 400 | Entomoneis paludosa, Nitzschia alexandrina, Staurosira sp. | ↓ | ↓ARA, ↓EPA | [95] | |||
200, 500 | 500 | Chlorella sp. | ↑ | [96] | ||||
80, 500 | 500 | Nostoc carneum (=Nostoc spongiaeforme), Phormidium corium | ↓ | [112] | ||||
60,195, 330, 465, 600 | 600 | Rhodomonas sp. | ↑ | ↑EPA, ↑DHA | [84] | |||
150, 750 | 750 | Phaeodactylum tricornutum | ↑ | ↓ | [102] | |||
5, 25, 50, 100, 250, 850 | 850 | Microchloropsis salina | ↑ | ↑ | ↓EPA | [43] | ||
250, 2000 | 2000 | Lobosphaera incisa | ↑ARA | [77] |
3.4. Production of Carotenoids When Changing Light Intensity
4. Influence of Spectral Composition of Light
5. Influence of Duration and Frequency of Lighting
6. Simultaneous Use of Light and Other Stresses
7. Conclusions
- -
- unification of approaches to studying the effect of lighting on the growth and productivity of microalgae;
- -
- finding out the optimal lighting conditions for the cultivation of biotechnologically valuable species and strains of microalgae;
- -
- establishing relationships between changes in lighting conditions, including light intensity, spectral composition of light, duration of lighting, etc. and an increase in the synthesis of compounds valuable from a biochemical point of view by microalgae;
- -
- determination of the stimulatory effects of a combination of light stress with other types of stress on the growth and productivity of microalgae, taking into account the synthesis of valuable bioproducts (lipids, fatty acids, carotenoids).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, Y.; Guo, J.; Zhu, H.; Muhammad, A.; Deng, H.; Hu, Z.; Wu, Q. Inhibition of glucose assimilation in Auxenochlorella protothecoides by light. Biotechnol. Biofuels 2020, 13, 146. [Google Scholar] [CrossRef]
- Park, J.E.; Zhang, S.; Han, T.H.; Hwang, S.J. The contribution ratio of autotrophic and heterotrophic metabolism during a mixotrophic culture of Chlorella sorokiniana. Int. J. Environ. Res. Public Health 2021, 18, 1353. [Google Scholar] [CrossRef]
- Maltsev, Y.I.; Konovalenko, T.V.; Barantsova, I.A.; Maltseva, I.A.; Maltseva, K.I. Prospects of using algae in biofuel production. Regul. Mech. Biosyst. 2017, 8, 455–460. [Google Scholar] [CrossRef] [Green Version]
- Barkia, I.; Saari, N.; Manning, S.R. Microalgae for high-value products towards human health and nutrition. Mar. Drugs 2019, 17, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maltsev, Y.I.; Maltseva, I.A.; Kulikovskiy, M.S.; Maltseva, S.Y.; Sidorov, R.A. Analysis of a new strain of Pseudomuriella engadinensis (Sphaeropleales, Chlorophyta) for possible use in biotechnology. Russ. J. Plant Physiol. 2019, 66, 609–616. [Google Scholar] [CrossRef]
- Levasseur, W.; Perré, P.; Pozzobon, V. A review of high value-added molecules production by microalgae in light of the classification. Biotechnol. Adv. 2020, 41, 107545. [Google Scholar] [CrossRef]
- Maltsev, Y.; Gusev, E.; Maltseva, I.; Kulikovskiy, M.; Namsaraev, Z.; Petrushkina, M.; Filimonova, A.; Sorokin, B.; Golubeva, A.; Butaeva, G.; et al. Description of a new species of soil algae, Parietochloris grandis sp. nov., and study of its fatty acid profiles under different culturing conditions. Algal Res. 2018, 33, 358–368. [Google Scholar] [CrossRef]
- Maltsev, Y.; Maltseva, I.; Maltseva, S.; Kociolek, J.P.; Kulikovskiy, M. A new species of freshwater algae Nephrochlamys yushanlensis sp. nov. (Selenastraceae, Sphaeropleales) and its lipid accumulation during nitrogen and phosphorus starvation. J. Phycol. 2021, 57, 606–618. [Google Scholar] [CrossRef]
- Maltsev, Y.; Krivova, Z.; Maltseva, S.; Maltseva, K.; Gorshkova, E.; Kulikovskiy, M. Lipid accumulation by Coelastrella multistriata (Scenedesmaceae, Sphaeropleales) during nitrogen and phosphorus starvation. Sci. Rep. 2021, 11, 19818. [Google Scholar] [CrossRef]
- Sathasivam, R.; Radhakrishnan, R.; Hashem, A.; Abd_Allah, E.F. Microalgae metabolites: A rich source for food and medicine. Saudi J. Biol. Sci. 2019, 26, 709–722. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.C.; Ferreira, I.C.F.R.; Dias, M.M.; Barreiro, F.M. Microalgae-derived pigments: A 10-year bibliometric review and industry and market trend analysis. Molecules 2020, 25, 3406. [Google Scholar] [CrossRef] [PubMed]
- Maltsev, Y.; Maltseva, K. Fatty acids of microalgae: Diversity and applications. Rev. Environ. Sci. Biotechnol. 2021, 20, 515–547. [Google Scholar] [CrossRef]
- Wan, X.; Zhou, X.R.; Moncalian, G.; Su, L.; Chen, W.C.; Zhu, H.Z.; Chen, D.; Gong, Y.M.; Huang, F.H.; Deng, Q.C. Reprogramming microorganisms for the biosynthesis of astaxanthin via metabolic engineering. Prog. Lipid Res. 2021, 81, 101083. [Google Scholar] [CrossRef]
- Vecchi, V.; Barera, S.; Bassi, R.; Dall’osto, L. Potential and challenges of improving photosynthesis in algae. Plants 2020, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Erickson, E.; Wakao, S.; Niyogi, K.K. Light stress and photoprotection in Chlamydomonas reinhardtii. Plant J. 2015, 82, 449–465. [Google Scholar] [CrossRef] [PubMed]
- Cornejo-Corona, I.; Thapa, H.R.; Browne, D.R.; Devarenne, T.P.; Lozoya-Gloria, E. Stress responses of the oil-producing green microalga Botryococcus braunii Race B. PeerJ 2016, 4, e2748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swaminathan, D.; Sirisha, K.; Suganya, B.; Sivasubramanian, V.; Vishal, B.S.; Anand, C.B.; Meyyappan, N. Studies on the effect of pulsed magnetic field on the productivity of algae grown in dye industry effluent. J. Appl. Biotechnol. Bioeng. 2017, 3, 409–413. [Google Scholar] [CrossRef] [Green Version]
- Metsoviti, M.N.; Papapolymerou, G.; Karapanagiotidis, I.T.; Katsoulas, N. Effect of light intensity and quality on growth rate and composition of Chlorella vulgaris. Plants 2020, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Minhas, A.K.; Hodgson, P.; Barrow, C.J.; Adholeya, A. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front. Microbiol. 2016, 7, 546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novoveská, L.; Ross, M.E.; Stanley, M.S.; Pradelles, R.; Wasiolek, V.; Sassi, J.F. Microalgal carotenoids: A review of production, current markets, regulations, and future direction. Mar. Drugs 2019, 17, 640. [Google Scholar] [CrossRef] [Green Version]
- Shi, T.Q.; Wang, L.R.; Zhang, Z.X.; Sun, X.M.; Huang, H. Stresses as first-line tools for enhancing lipid and carotenoid production in microalgae. Front. Bioeng. Biotechnol. 2020, 8, 610. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, B.; Hu, Q.; Sommerfeld, M.; Li, Y.; Han, D. A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis. Biotechnol. Bioeng. 2016, 113, 2088–2099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erst, A.A.; Gorbunov, A.B.; Erst, A.S. Effect of concentration, method of auxin application and cultivation conditions on in vitro rooting of bog blueberry (Vaccinium uliginosum L.). J. Berry Res. 2018, 8, 41–53. [Google Scholar] [CrossRef]
- Abiusi, F.; Wijffels, R.H.; Janssen, M. Doubling of microalgae productivity by oxygen balanced mixotrophy. ACS Sustain. Chem. Eng. 2020, 8, 6065–6074. [Google Scholar] [CrossRef] [Green Version]
- Maltseva, I.A.; Maltsev, Y.I.; Solonenko, A.N. Soil algae of the oak groves of the steppe zone of Ukraine. Int. J. Algae 2017, 19, 215–226. [Google Scholar] [CrossRef]
- Maltsev, Y.; Maltseva, I. The influence of forest-forming tree species on diversity and spatial distribution of algae in forest litter. Folia Oecologica 2018, 45, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Mayer, D.; Dubinsky, Z.; Iluz, D. Light as a limiting factor for epilithic algae in the supralittoral zone of littoral caves. Front. Mar. Sci. 2016, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Kulikovskiy, M.; Kapustin, D.; Glushchenko, A.; Sidelev, S.; Maltsev, Y.; Gusev, E.; Kezlya, E.; Shkurina, N.; Kuznetsova, I.; Kociolek, P. Morphological and molecular investigation of Gomphonema longissimum and related taxa from Malili lakes (Indonesia) with comments on diatom evolution in ancient lakes. Eur. J. Phycol. 2019, 55, 147–161. [Google Scholar] [CrossRef]
- Popović, S.; Krizmanić, J.; Vidaković, D.; Karadžić, V.; Milovanović, Ž.; Pećić, M.; Subakov Simić, G. Biofilms in caves: Easy method for the assessment of dominant phototrophic groups/taxa in situ. Environ. Monit. Assess. 2020, 192, 720. [Google Scholar] [CrossRef] [PubMed]
- Remias, D.; Lütz-Meindl, U.; Lütz, C. Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur. J. Phycol. 2005, 40, 259–268. [Google Scholar] [CrossRef]
- Treves, H.; Raanan, H.; Finkel, O.M.; Berkowicz, S.M.; Keren, N.; Shotland, Y.; Kaplan, A. A newly isolated Chlorella sp. from desert sand crusts exhibits a unique resistance to excess light intensity. FEMS Microbiol. Ecol. 2013, 86, 373–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davey, M.P.; Norman, L.; Sterk, P.; Huete-Ortega, M.; Bunbury, F.; Loh, B.K.W.; Stockton, S.; Peck, L.S.; Convey, P.; Newsham, K.K.; et al. Snow algae communities in Antarctica: Metabolic and taxonomic composition. N. Phytol. 2019, 222, 1242–1255. [Google Scholar] [CrossRef] [PubMed]
- Mendez, M.O.; Maier, R.M. Phytostabilization of mine tailings in arid and semiarid environments—An emerging remediation technology. Environ. Health Perspect. 2008, 116, 278–283. [Google Scholar] [CrossRef] [Green Version]
- Orlekowsky, T.; Venter, A.; Van Wyk, F.; Levanets, A. Cyanobacteria and algae of gold mine tailings in the Northwest Province of South Africa. Nov. Hedwig. 2013, 97, 281–294. [Google Scholar] [CrossRef]
- Solonenko, A.M.; Arabadzhy-Tipenko, L.I.; Kunakh, O.M.; Kovalenko, D.V. The role of ecological groups in the formation of cyanobacterial communities in the ecosystems of the North Azov region (Ukraine). Biosyst. Divers. 2020, 28, 216–223. [Google Scholar] [CrossRef]
- Maltseva, I.A.; Maltsev, Y.I. Diversity of cyanobacteria and algae in dependence to forest-forming tree species and properties rocks of dump. Int. J. Environ. Sci. Technol. 2021, 18, 545–560. [Google Scholar] [CrossRef]
- Liyanaarachchi, V.C.; Nishshanka, G.K.S.H.; Premaratne, R.G.M.M.; Ariyadasa, T.U.; Nimarshana, P.H.V.; Malik, A. Astaxanthin accumulation in the green microalga Haematococcus pluvialis: Effect of initial phosphate concentration and stepwise/continuous light stress. Biotechnol. Rep. 2020, 28, e0053. [Google Scholar] [CrossRef]
- Wong, Y.K.; Ho, Y.H.; Lai, Y.T.; Tsang, P.M.; Chow, K.P.; Yau, Y.H.; Choi, M.C.; Ho, R.S.C. Effects of light intensity, illumination cycles on microalgae Haematococcus pluvialis for production of astaxanthin. J. Mar. Biol. Aquacult. 2016, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Raqiba, H.; Sibi, G. Light emitting diode (LED) illumination for enhanced growth and cellular composition in three microalgae. Adv. Microb. Res. 2019, 3, 007. [Google Scholar] [CrossRef]
- Airs, R.L.; Temperton, B.; Sambles, C.; Farnham, G.; Skill, S.C.; Llewellyn, C.A. Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation. FEBS Lett. 2014, 588, 3770–3777. [Google Scholar] [CrossRef] [Green Version]
- Le, B.; Williams, P.J.; Laurens, L.M.L. Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energy Environ. Sci. 2010, 3, 554–590. [Google Scholar] [CrossRef]
- Scandalios, J.G. Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. 2005, 38, 995–1014. [Google Scholar] [CrossRef]
- Wagenen, J.V.; Miller, T.W.; Hobbs, S.; Hook, P.; Crowe, B.; Huesemann, M. Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies 2012, 5, 731–740. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Yang, H.; Wu, L.; Hu, C. Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresour. Technol. 2015, 191, 219–228. [Google Scholar] [CrossRef]
- Sforza, E.; Simionato, D.; Giacometti, G.M.; Bertucco, A.; Morosinotto, T. Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors. PLoS ONE 2012, 7, e38975. [Google Scholar] [CrossRef] [PubMed]
- Zarmi, Y.; Gordon, J.M.; Mahulkar, A.; Khopkar, A.R.; Patil, S.D.; Banerjee, A.; Reddy, B.G.; Griffin, T.P.; Sapre, A. Enhanced algal photosynthetic photon efficiency by pulsed light. iScience 2020, 23, 101115. [Google Scholar] [CrossRef] [PubMed]
- Pal, D.; Khozin-Goldberg, I.; Cohen, Z.; Boussiba, S. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl. Microbiol. Biotechnol. 2011, 90, 1429–1441. [Google Scholar] [CrossRef]
- Xu, Y.; Ibrahim, I.M.; Wosu, C.I.; Ben-Amotz, A.; Harvey, P.J. Potential of new isolates of Dunaliella salina for natural β-carotene production. Biology 2018, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Moon, M.; Kwak, M.; Lee, B.; Chang, Y.K. Statistical optimization of light intensity and CO2 concentration for lipid production derived from attached cultivation of green microalga Ettlia sp. Sci. Rep. 2018, 8, 15390. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, K.M.; Paramasivam, P.; Jayakumar, S.; Maniam, G.P.; Rahim, M.H.A.; Govindan, N. Economical cultivation system of microalgae Spirulina platensis for lipid production. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Pekan, Malaysia, 19 June 2020; Volume 641. [Google Scholar] [CrossRef]
- Hu, X.; Zhou, J.; Liu, B. Effect of algal species and light intensity on the performance of an air-lift-type microbial carbon capture cell with an algae-assisted cathode. RSC Adv. 2016, 6, 25094–25100. [Google Scholar] [CrossRef]
- Environmental Growth Chambers. Available online: http://www.egc.com/useful_info_lighting.php (accessed on 13 October 2021).
- Sforza, E.; Gris, B.; De Farias Silva, C.E.; Morosinotto, T.; Bertucco, A. Effects of light on cultivation of Scenedesmus obliquus in batch and continuous flat plate photobioreactor. Chem. Eng. Trans. 2014, 38, 211–216. [Google Scholar] [CrossRef]
- Yustinadiar, N.; Manurung, R.; Suantika, G. Enhanced biomass productivity of microalgae Nannochloropsis sp. in an airlift photobioreactor using low-frequency flashing light with blue LED. Bioresour. Bioprocess. 2020, 7, 43. [Google Scholar] [CrossRef]
- Gim, G.H.; Ryu, J.; Kim, M.J.; Kim, P.I.; Kim, S.W. Effects of carbon source and light intensity on the growth and total lipid production of three microalgae under different culture conditions. J. Ind. Microbiol. Biotechnol. 2016, 43, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Straka, L.; Rittmann, B.E. Effect of culture density on biomass production and light utilization efficiency of Synechocystis sp. PCC 6803. Biotechnol. Bioeng. 2018, 115, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Senge, M.O.; Ryan, A.A.; Letchford, K.A.; MacGowan, S.A.; Mielke, T. Chlorophylls, symmetry, chirality, and photosynthesis. Symmetry 2014, 6, 781–843. [Google Scholar] [CrossRef] [Green Version]
- Greenwold, M.J.; Cunningham, B.R.; Lachenmyer, E.M.; Pullman, J.M.; Richardson, T.L.; Dudycha, J.L. Diversification of light capture ability was accompanied by the evolution of phycobiliproteins in cryptophyte algae. Proc. R. Soc. B 2019, 286, 20190655. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, J.C.; Lombardi, A.T. Pigments from Microalgae Handbook. Chlorophylls in Microalgae: Occurrence, Distribution, and Biosynthesis; Springer: Cham, Switzerland, 2020; pp. 1–18. [Google Scholar] [CrossRef]
- Koh, H.G.; Kang, N.K.; Jeon, S.; Shin, S.E.; Jeong, B.R.; Chang, Y.K. Heterologous synthesis of chlorophyll b in Nannochloropsis salina enhances growth and lipid production by increasing photosynthetic efficiency. Biotechnol. Biofuels 2019, 12, 122. [Google Scholar] [CrossRef]
- Bachvaroff, T.R.; Sanchez Puerta, M.V.; Delwiche, C.F. Chlorophyll c-containing plastid relationships based on analyses of a multigene data set with all four chromalveolate lineages. Mol. Biol. Evol. 2005, 22, 1772–1782. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Schliep, M.; Willows, R.D.; Cai, Z.L.; Neilan, B.A.; Scheer, H. A red-shifted chlorophyll. Science 2010, 329, 1318–1319. [Google Scholar] [CrossRef] [PubMed]
- Takaichi, S.; Mochimaru, M.; Uchida, H.; Murakami, A.; Hirose, E.; Maoka, T.; Tsuchiya, T.; Mimuro, M. Opposite chilarity of α-carotene in unusual cyanobacteria with unique chlorophylls, acaryochloris and prochlorococcus. Plant Cell Physiol. 2012, 53, 1881–1888. [Google Scholar] [CrossRef] [Green Version]
- Kuczynska, P.; Jemiola-Rzeminska, M.; Strzalka, K. Photosynthetic pigments in diatoms. Mar. Drugs 2015, 13, 5847–5881. [Google Scholar] [CrossRef] [PubMed]
- Stadnichuk, I.N.; Krasil’nikov, P.M.; Zlenko, D.V. Cyanobacterial phycobilisomes and phycobiliproteins. Microbiology 2015, 84, 101–111. [Google Scholar] [CrossRef]
- Mulders, K.J.M.; Lamers, P.P.; Martens, D.E.; Wijffels, R.H. Phototrophic pigment production with microalgae: Biological constraints and opportunities. J. Phycol. 2014, 50, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Ladygin, V.G. Ways of biosynthesis, localization, metabolism and functions of carotenoids in chloroplasts of different types of algae. Issues Mod. Algol. 2014, 2. Available online: http://www.algology.ru/52 (accessed on 13 October 2021).
- Solovchenko, A.E. Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell. Photosynth. Res. 2015, 125, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Pelah, D.; Sintov, A.; Cohen, E. The effect of salt stress on the production of canthaxanthin and astaxanthin by Chlorella zofingiensis grown under limited light intensity. World J. Microbiol. Biotechnol. 2004, 20, 483–486. [Google Scholar] [CrossRef]
- Fisher, N.L.; Campbell, D.A.; Hughes, D.J.; Kuzhiumparambil, U.; Halsey, K.H.; Ralph, P.J.; Suggett, D.J. Divergence of photosynthetic strategies amongst marine diatoms. PLoS ONE 2020, 15, e0244252. [Google Scholar] [CrossRef] [PubMed]
- Teo, C.L.; Atta, M.; Bukhari, A.; Taisir, M.; Yusuf, A.M.; Idris, A. Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths. Bioresour. Technol. 2014, 162, 38–44. [Google Scholar] [CrossRef]
- Sharma, N.; Fleurent, G.; Awwad, F.; Cheng, M.; Meddeb-Mouelhi, F.; Budge, S.M.; Germain, H.; Desgagné-Penix, I. Red light variation an effective alternative to regulate biomass and lipid profiles in Phaeodactylum tricornutum. Appl. Sci. 2020, 10, 2531. [Google Scholar] [CrossRef] [Green Version]
- Schulze, P.S.C.; Barreira, L.A.; Pereira, H.G.C.; Perales, J.A.; Varela, J.C.S. Light emitting diodes (LEDs) applied to microalgal production. Trends Biotechnol. 2014, 32, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Morgunov, D.N.; Vasiliev, S.I. Investigation of the spectral characteristics of electrical light sources. Bull. Don Agrar. Sci. 2017, 2. [Google Scholar]
- Atta, M.; Idris, A.; Bukhari, A.; Wahidin, S. Intensity of blue LED light: A potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresour. Technol. 2013, 148, 373–378. [Google Scholar] [CrossRef]
- Okumura, C.; Saffreena, N.; Rahman, M.A.; Hasegawa, H.; Miki, O.; Takimoto, A. Economic efficiency of different light wavelengths and intensities using LEDs for the cultivation of green microalga Botryococcus braunii (NIES-836) for biofuel production. Environ. Prog. Sustain. Energy 2015, 34, 269–275. [Google Scholar] [CrossRef]
- Cheng-Wu, Z.; Cohen, Z.; Khozin-Goldberg, I.; Richmond, A. Characterization of growth and arachidonic acid production of Parietochloris incisa comb. nov (Trebouxiophyceae, Chlorophyta). J. Appl. Phycol. 2002, 14, 453–460. [Google Scholar] [CrossRef]
- Ho, S.H.; Chan, M.C.; Liu, C.C.; Chen, C.Y.; Lee, W.L.; Lee, D.J.; Chang, J.S. Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresour. Technol. 2014, 152, 275–282. [Google Scholar] [CrossRef]
- Wu, M.; Zhu, R.; Lu, J.; Lei, A.; Zhu, H.; Hu, Z.; Wang, J. Effects of different abiotic stresses on carotenoid and fatty acid metabolism in the green microalga Dunaliella salina Y6. Ann. Microbiol. 2020, 70, 48. [Google Scholar] [CrossRef]
- Virtanen, O.; Khorobrykh, S.; Tyystjärvi, E. Acclimation of Chlamydomonas reinhardtii to extremely strong light. Photosynth. Res. 2021, 147, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Remmers, I.M.; Martens, D.E.; Wijffels, R.H.; Lamers, P.P. Dynamics of triacylglycerol and EPA production in Phaeodactylum tricornutum under nitrogen starvation at different light intensities. PLoS ONE 2017, 12, e0175630. [Google Scholar] [CrossRef]
- Gudvilovich, I.N.; Lelekov, A.S.; Maltsev, E.I.; Kulikovskii, M.S.; Borovkov, A.B. Growth of Porphyridium purpureum (Porphyridiales, Rhodophyta) and production of B-phycoerythrin under varying illumination. Russ. J. Plant Physiol. 2021, 68, 188–196. [Google Scholar] [CrossRef]
- Vu, M.T.T.; Douëtte, C.; Rayner, T.A.; Thoisen, C.; Nielsen, S.L.; Hansen, B.W. Optimization of photosynthesis, growth, and biochemical composition of the microalga Rhodomonas salina—An established diet for live feed copepods in aquaculture. J. Appl. Phycol. 2016, 28, 1485–1500. [Google Scholar] [CrossRef] [Green Version]
- Oostlander, P.C.; Van Houcke, J.; Wijffels, R.H.; Barbosa, M.J. Optimization of Rhodomonas sp. under continuous cultivation for industrial applications in aquaculture. Algal Res. 2020, 47, 101889. [Google Scholar] [CrossRef]
- Mishra, N.; Prasad, S.M.; Mishra, N. Influence of high light intensity and nitrate deprivation on growth and biochemical composition of the marine microalgae Isochrysis galbana. Braz. Arch. Biol. Technol. 2019, 62, e19180398. [Google Scholar] [CrossRef]
- Nzayisenga, J.C.; Farge, X.; Groll, S.L.; Sellstedt, A. Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnol. Biofuels 2020, 13, 4. [Google Scholar] [CrossRef] [PubMed]
- Rise, M.; Cohen, E.; Vishkautsan, M.; Cojocaru, M.; Gottlieb, H.E.; Arad, S.M. Accumulation of secondary carotenoids in Chlorella zofingiensis. J. Plant Physiol. 1994, 144, 287–292. [Google Scholar] [CrossRef]
- Solovchenko, A.E.; Khozin-Goldberg, I.; Didi-Cohen, S.; Cohen, Z.; Merzlyak, M.N. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J. Appl. Phycol. 2008, 20, 245–251. [Google Scholar] [CrossRef]
- Dammak, M.; Haase, S.M.; Miladi, R.; Ben Amor, F.; Barkallah, M.; Gosset, D.; Pichon, C.; Huchzermeyer, B.; Fendri, I.; Denis, M.; et al. Enhanced lipid and biomass production by a newly isolated and identified marine microalga. Lipids Health Dis. 2016, 15, 209. [Google Scholar] [CrossRef] [Green Version]
- Kebede, E.; Ahlgren, G. Optimum growth conditions and light utilization efficiency of Spirulina platensis (= Arthrospira fusiformis) (Cyanophyta) from Lake Chitu, Ethiopia. Hydrobiologia 1996, 332, 99–109. [Google Scholar] [CrossRef]
- Niangoran, U.; Tian, F.; Canale, L.; Haba, C.T.; Buso, D.; Zissis, G. Study of the LEDs spectrums influence on the Spirulina platensis growth in batch culture. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe, Palermo, Italy, 12–15 June 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Hotos, G.N. Culture growth of the vyanobacterium Phormidium sp. in various valinity and light regimes and their influence on its phycocyanin and other pigments content. J. Mar. Sci. Eng. 2021, 9, 798. [Google Scholar] [CrossRef]
- Włodarczyk, A.; Selão, T.T.; Norling, B.; Nixon, P.J. Newly discovered Synechococcus sp. PCC 11901 is a robust cyanobacterial strain for high biomass production. Commun. Biol. 2020, 3, 215. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Zheng, l. Acclimation to NaCl and light stress of heterotrophic Chlamydomonas reinhardtii for lipid accumulation. J. Biosci. Bioeng. 2017, 124, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Cointet, E.; Wielgosz-Collin, G.; Bougaran, G.; Rabesaotra, V.; Gonçalves, O.; Méléder, V. Effects of light and nitrogen availability on photosynthetic efficiency and fatty acid content of three original benthic diatom strains. PLoS ONE 2019, 14, e0224701. [Google Scholar] [CrossRef] [PubMed]
- Hempel, N.; Petrick, I.; Behrendt, F. Biomass productivity and productivity of fatty acids and amino acids of microalgae strains as key characteristics of suitability for biodiesel production. J. Appl. Phycol. 2012, 24, 1407–1418. [Google Scholar] [CrossRef] [Green Version]
- Ide, T.; Mochiji, S.; Ueki, N.; Yamaguchi, K.; Shigenobu, S.; Hirono, M.; Wakabayashi, K. Identification of the agg1 mutation responsible for negative phototaxis in a “wild-type” strain of Chlamydomonas reinhardtii. Biochem. Biophys. Rep. 2016, 7, 379–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeshita, T.; Ota, S.; Yamazaki, T.; Hirata, A.; Zachleder, V.; Kawano, S. Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresour. Technol. 2014, 158, 127–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogueira, K.D.P.; Silva, A.F.; Araújo, O.Q.F.; Chaloub, R.M. Impact of temperature and light intensity on triacylglycerol accumulation in marine microalgae. Biomass Bioenergy 2015, 72, 280–287. [Google Scholar] [CrossRef]
- Shi, K.; Gao, Z.; Shi, T.Q.; Song, P.; Ren, L.J.; Huang, H.; Ji, X.J. Reactive oxygen species-mediated cellular stress response and lipid accumulation in oleaginous microorganisms: The state of the art and future perspectives. Front. Microbiol. 2017, 8, 793. [Google Scholar] [CrossRef]
- Wacker, A.; Piepho, M.; Harwood, J.L.; Guschina, I.A.; Arts, M.T. Light-induced changes in fatty acid profiles of specific lipid classes in several freshwater phytoplankton species. Front. Plant Sci. 2016, 7, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conceição, D.; Lopes, R.G.; Derner, R.B.; Cella, H.; Do Carmo, A.P.B.; Montes D’Oca, M.G.; Petersen, R.; Passos, M.F.; Vargas, J.V.C.; Galli-Terasawa, L.V.; et al. The effect of light intensity on the production and accumulation of pigments and fatty acids in Phaeodactylum tricornutum. J. Appl. Phycol. 2020, 32, 1017–1025. [Google Scholar] [CrossRef]
- Jimbo, H.; Takagi, K.; Hirashima, T.; Nishiyama, Y.; Wada, H. Long-chain saturated fatty acids, palmitic and stearic acids, enhance the repair of photosystem II. Int. J. Mol. Sci. 2020, 21, 7509. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, C.; Hu, G.; Li, F. Effects of light intensity on the growth and lipid accumulation of microalga Scenedesmus sp. 11-1 under nitrogen limitation. Appl. Biochem. Biotechnol. 2012, 166, 2127–2137. [Google Scholar] [CrossRef]
- Praharyawan, S.; Yunita Rahman, D.; Susilaningsih, D. Influence of light intensity on lipid productivity and fatty acids profile of Choricystis sp. LBB13-AL045 for biodiesel production. Res. J. Life Sci. 2018, 5, 128–139. [Google Scholar] [CrossRef]
- Ruangsomboon, S. Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2. Bioresour. Technol. 2012, 109, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.J.; Wu, K.C.; Chan, S.C.Y.; Yau, Y.H.; Chan, K.K.; Lee, F.W.F. Investigation of growth, lipid productivity, and fatty acid profiles in marine bloom-forming dinoflagellates as potential feedstock for biodiesel. J. Mar. Sci. Eng. 2020, 8, 381. [Google Scholar] [CrossRef]
- Ho, S.H.; Nakanishi, A.; Ye, X.; Chang, J.S.; Chen, C.Y.; Hasunuma, T.; Kondo, A. Dynamic metabolic profiling of the marine microalga Chlamydomonas sp. JSC4 and enhancing its oil production by optimizing light intensity Luisa Gouveia. Biotechnol. Biofuels 2015, 8, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damiani, M.C.; Popovich, C.A.; Constenla, D.; Leonardi, P.I. Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresour. Technol. 2010, 101, 3801–3807. [Google Scholar] [CrossRef] [PubMed]
- Guihéneuf, F.; Mimouni, V.; Ulmann, L.; Tremblin, G. Combined effects of irradiance level and carbon source on fatty acid and lipid class composition in the microalga Pavlova lutheri commonly used in mariculture. J. Exp. Mar. Biol. Ecol. 2009, 369, 136–143. [Google Scholar] [CrossRef]
- Khoeyi, Z.A.; Seyfabadi, J.; Ramezanpour, Z. Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquac. Int. 2012, 20, 41–49. [Google Scholar] [CrossRef]
- Bhandari, R.; Sharma, P.K. High-light–induced changes on photosynthesis, pigments, sugars, lipids and antioxidant enzymes in freshwater (Nostoc spongiaeforme) and marine (Phormidium corium) cyanobacteria. Photochem. Photobiol. 2006, 82, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Gombos, Z.; Kanervo, E.; Tsvetkova, N.; Sakamoto, T.; Aro, E.M.; Murata, N. Genetic enhancement of the ability to tolerate photoinhibition by introduction of unsaturated bonds into membrane glycerolipids. Plant Physiol. 1997, 115, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Klyachko-Gurvich, G.L.; Pronina, N.A.; Ladygin, V.G.; Tsoglin, L.N.; Semenenko, V.E. Uncoupled functioning of separate photosystems: 1. Characteristics of fatty acid desaturation and its role. Russ. J. Plant Physiol. 2000, 47, 603–612. [Google Scholar]
- Giossi, C.; Cartaxana, P.; Cruz, S. Photoprotective role of neoxanthin in plants and algae. Molecules 2020, 25, 4617. [Google Scholar] [CrossRef] [PubMed]
- Lacour, T.; Babin, M.; Lavaud, J. Diversity in xanthophyll cycle pigments content and related nonphotochemical quenching (NPQ) among microalgae: Implications for growth strategy and ecology. J. Phycol. 2020, 56, 245–263. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhang, H.; Lin, S. Enhancement of non-photochemical quenching as an adaptive strategy under phosphorus deprivation in the dinoflagellate Karlodinium veneficum. Front. Microbiol. 2017, 8, 404. [Google Scholar] [CrossRef] [PubMed]
- Lohr, M.; Wilhelm, C. Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc. Natl. Acad. Sci. USA 1999, 96, 8784–8789. [Google Scholar] [CrossRef] [Green Version]
- Jahns, P.; Holzwarth, A.R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta Bioenerg. 2012, 1817, 182–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.; He, X.; Ma, Q.; Lu, Y.; Bai, F.; Dai, J.; Wu, Q. Photosynthetic accumulation of lutein in Auxenochlorella protothecoides after heterotrophic growth. Mar. Drugs 2018, 16, 283. [Google Scholar] [CrossRef] [Green Version]
- Galarza, J.I.; Arredondo Vega, B.O.; Villón, J.; Henríquez, V. Deesterification of astaxanthin and intermediate esters from Haematococcus pluvialis subjected to stress. Biotechnol. Rep. 2019, 23, e00351. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhang, Y.; Sun, L.P.; Liu, J. Light elicits astaxanthin biosynthesis and accumulation in the fermented ultrahigh-density Chlorella zofinginesis. J. Agric. Food Chem. 2019, 67, 5579–5586. [Google Scholar] [CrossRef]
- Zapata, L.M.; Jiménez-Veuthey, M.; Zampedri, P.A.; Flores, A.B.; Zampedri, C.A.; Chabrillón, G. Effect of light stress and concentrations of nitrogen and carbon in the production of phytonutrients in the microalga Scenedesmus obliquus (Chlorophyceae, Chlorococcales). J. Algal Biomass Utln. 2020, 11, 9–22. [Google Scholar]
- Khajepour, F.; Hosseini, S.A.; Ghorbani Nasrabadi, R.; Markou, G. Effect of light intensity and photoperiod on growth and biochemical composition of a local isolate of Nostoc calcicola. Appl. Biochem. Biotechnol. 2015, 176, 2279–2289. [Google Scholar] [CrossRef] [PubMed]
- Orosa, M.; Valero, J.F.; Herrero, C.; Abalde, J. Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions. Biotechnol. Lett. 2001, 23, 1079–1085. [Google Scholar] [CrossRef] [Green Version]
- Del Campo, J.A.; Rodríguez, H.; Moreno, J.; Vargas, M.Á.; Rivas, J.; Guerrero, M.G. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl. Microbiol. Biotechnol. 2004, 64, 848–854. [Google Scholar] [CrossRef]
- Schüler, L.M.; Santos, T.; Pereira, H.; Duarte, P.; Katkam, N.G.; Florindo, C.; Schulze, P.S.C.; Barreira, L.; Varela, J.C.S. Improved production of lutein and β-carotene by thermal and light intensity upshifts in the marine microalga Tetraselmis sp. CTP4. Algal Res. 2020, 45, 101732. [Google Scholar] [CrossRef]
- Cordero, B.F.; Obraztsova, I.; Couso, I.; Leon, R.; Vargas, M.A.; Rodriguez, H. Enhancement of lutein production in Chlorella sorokiniana (chorophyta) by improvement of culture conditions and random mutagenesis. Mar. Drugs 2011, 9, 1607–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemoine, Y.; Schoefs, B. Secondary ketocarotenoid astaxanthin biosynthesis in algae: A multifunctional response to stress. Photosynth. Res. 2010, 106, 155–177. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zarka, A.; Trebst, A.; Boussiba, S. Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J. Phycol. 2003, 39, 1116–1124. [Google Scholar] [CrossRef]
- Butler, T.O.; Mcdougall, G.J.; Campbell, R.; Stanley, M.S.; Day, J.G. Media screening for obtaining Haematococcus pluvialis red motile macrozooids rich in astaxanthin and fatty acids. Biology 2017, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Huang, J.; Sandmann, G.; Chen, F. High-light and sodium chloride stress differentially regulate the biosynthesis of astaxanthin in Chlorella zofingiensis (chlorophyceae). J. Phycol. 2009, 45, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sun, Z.; Gerken, H.; Liu, Z.; Jiang, Y.; Chen, F. Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: Biology and industrial potential. Mar. Drugs 2014, 12, 3487–3515. [Google Scholar] [CrossRef] [Green Version]
- Řezanka, T.; Nedbalová, L.; Sigler, K.; Cepák, V. Identification of astaxanthin diglucoside diesters from snow alga Chlamydomonas nivalis by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Phytochemistry 2008, 69, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Gao, B.; Wu, M.; Huang, L.; Zhang, C. A novel strategy for the hyper-production of astaxanthin from the newly isolated microalga Haematococcus pluvialis JNU35. Algal Res. 2019, 39, 101466. [Google Scholar] [CrossRef]
- Jungandreas, A.; Costa, B.S.; Jakob, T.; Von Bergen, M.; Baumann, S.; Wilhelm, C. The acclimation of Phaeodactylum tricornutum to blue and red light does not influence the photosynthetic light reaction but strongly disturbs the carbon allocation pattern. PLoS ONE 2014, 9, e99727. [Google Scholar] [CrossRef] [Green Version]
- Mao, R.; Guo, S. Performance of the mixed LED light quality on the growth and energy efficiency of Arthrospira platensis. Appl. Microbiol. Biotechnol. 2018, 102, 5245–5254. [Google Scholar] [CrossRef] [PubMed]
- Acuapan-Hernandez, J.; Cañizares-Villanueva, R.O.; Cristiani-Urbina, E. Red light and nitrogen depletion stimulate the synthesis of lipids and n-alkadienes susceptible to be used as biofuels in Botryococcus braunii UTEX 2441 (Race A). Biotechnol. Indian J. 2017, 13, 155. [Google Scholar]
- Kim, S.H.; Sunwoo, I.Y.; Hong, H.J.; Awah, C.C.; Jeong, G.T.; Kim, S.K. Lipid and unsaturated fatty acid productions from three microalgae using nitrate and light-emitting diodes with complementary LED wavelength in a two-phase culture system. Bioprocess Biosyst. Eng. 2019, 42, 1517–1526. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Jin, P.; Cheng, J.J. A comprehensive comparable study of the physiological properties of four microalgal species under different light wavelength conditions. Planta 2018, 248, 489–498. [Google Scholar] [CrossRef]
- Yoshioka, M.; Yago, T.; Yoshie-Stark, Y.; Arakawa, H.; Morinaga, T. Effect of high frequency of intermittent light on the growth and fatty acid profile of Isochrysis galbana. Aquaculture 2012, 338–341, 111–117. [Google Scholar] [CrossRef]
- Kim, T.H.; Lee, Y.; Han, S.H.; Hwang, S.J. The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresour. Technol. 2013, 130, 75–80. [Google Scholar] [CrossRef]
- Shin, W.S.; Jung, S.M.; Cho, C.H.; Woo, D.W.; Kim, W.; Kwon, J.H. Use of tar color additives as a light filter to enhance growth and lipid production by the microalga Nannochloropsis gaditana. Environ. Eng. Res. 2018, 23, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Wagner, I.; Steinweg, C.; Posten, C. Mono- and dichromatic LED illumination leads to enhanced growth and energy conversion for high-efficiency cultivation of microalgae for application in space. Biotechnol. J. 2016, 11, 1060–1071. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Fang, Z. Effect of light quality on the cultivation of Chlorella pyrenoidosa. In Proceedings of the 2nd International Symposium on Architecture Research Frontiers and Ecological Environment (ARFEE 2019), Guilin, China, 20–22 December 2019; Volume 143, p. 02033. [Google Scholar] [CrossRef]
- Wang, C.Y.; Fu, C.C.; Liu, Y.C. Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochem. Eng. J. 2007, 37, 21–25. [Google Scholar] [CrossRef]
- Da Fontoura Prates, D.; Radmann, E.M.; Duarte, J.H.; De Morais, M.G.; Costa, J.A.V. Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production. Bioresour. Technol. 2018, 256, 38–43. [Google Scholar] [CrossRef]
- Koc, C.; Anderson, G.A.; Kommareddy, A. Use of red and blue light-emitting diodes (LED) and fluorescent lamps to grow microalgae in a photobioreactor. Isr. J. Aquac. Bamidgeh 2013, 65. [Google Scholar] [CrossRef]
- Das, P.; Lei, W.; Aziz, S.S.; Obbard, J.P. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresour. Technol. 2011, 102, 3883–3887. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dong, F.; Jin, P. Effects of light-emitting diodes (LEDs) on the accumulation of lipid content in microalgae. In Proceedings of the 2nd International Conference on Sustainable Energy and Environment Protection (ICSEEP 2017), Changsha, Chine, 23–25 June 2017; pp. 184–189. [Google Scholar] [CrossRef] [Green Version]
- Latsos, C.; Van Houcke, J.; Blommaert, L.; Verbeeke, G.P.; Kromkamp, J.; Timmermans, K.R. Effect of light quality and quantity on productivity and phycoerythrin concentration in the cryptophyte Rhodomonas sp. J. Appl. Phycol. 2021, 33, 729–741. [Google Scholar] [CrossRef]
- Vonshak, A.; Kancharaksa, N.; Bunnag, B.; Tanticharoen, M. Role of light and photosynthesis on the acclimation process of the cyanobacterium Spirulina platensis to salinity stress. J. Appl. Phycol. 1996, 8, 119–124. [Google Scholar] [CrossRef]
- Kou, Y.; Liu, M.; Sun, P.; Dong, Z.; Liu, J. High light boosts salinity stress-induced biosynthesis of astaxanthin and lipids in the green alga Chromochloris zofingiensis. Algal. Res. 2020, 50, 101976. [Google Scholar] [CrossRef]
- Edwards, K.F.; Thomas, M.K.; Klausmeier, C.A.; Litchman, E. Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level. Limnol. Oceanogr. 2016, 61, 1232–1244. [Google Scholar] [CrossRef] [Green Version]
Pigments | Absorption Maxima in Organic Solvents *, nm | Representatives | References |
---|---|---|---|
chlorophyll a | 420, 660 | All algae | [57,59] |
chlorophyll b | 435, 643 | Green algae | [59,60] |
chlorophyll c | 445, 625 | Heterokontophyta, Haptophyta, Dinophyta, Cryptophyta | [59,61] |
chlorophyll d | 450, 690 | Rhodophyta, some Cyanobacteria | [40,59] |
chlorophyll f | 707 | Some Cyanobacteria | [40,59,62] |
β-carotene | 425, 450, 480 | Most algae | [57,59] |
α-carotene | 420, 440, 470 | Some algae (Cryptophyta, Haptophyta, Dinophyta, Chrysophyceae), some Cyanobacteria | [58,63] |
fucoxanthin | 425, 450, 475 | Heterokontophyta (Bacillariophyceae Phaeophyceae, Chrysophyceae), Haptophyta | [64] |
phycoerythrin | 490, 546, 576 | Rhodophyta, Cryptophyta, Cyanobacteria | [58,65] |
phycocyanin | 618 | Rhodophyta, Cryptophyta, Cyanobacteria | [58,65] |
allophycocyanin | 650 | Rhodophyta, Cryptophyta, Cyanobacteria | [65] |
Investigated Light Intensity, μmol photons m−2 s−1 | Optimal Light Intensity for Maximum Growth, μmol photons m−2 s−1 | Maximum Growth Rate (d−1) | Species and Strain | Class | References |
---|---|---|---|---|---|
5, 25, 50, 100, 250, 850 | 26–55 | 1.3 | Microchloropsis salina (=Nannochloropsis salina) | Eustigmatophyceae | [43] |
60, 100, 250, 500, 750 | 60–112 | * | Phaeodactylum tricornutum | Bacillariophyceae | [81] |
70, 140, 210 | 70 | * | Porphyridium purpureum | Porphyridiophyceae | [82] |
10, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 300 | 60–100 | 0.6–0.7 | Rhodomonas salina | Cryptophyceae | [83] |
60,195,330, 465, 600 | 110–220 | >1.0 | Rhodomonas sp. | Cryptophyceae | [84] |
50, 125, 325 | 325 | 1.1 | Isochrysis galbana | Coccolithophyceae | [85] |
10, 50, 150, 200, 350, 1000 | 150 | 0.8 | Tetradesmus obliquus (=Scenedesmus obliquus) | Trebouxiophyceae | [53] |
50, 150, 300 | 150 | * | Scenedesmus obliquus | Trebouxiophyceae | [86] |
50, 150, 300 | 150 | * | Chlorella vulgaris | Trebouxiophyceae | [86] |
150, 300 | 150 | 0.77 | Chromochloris zofingiensis (=Chlorella zofingiensis) | Trebouxiophyceae | [87] |
35, 200, 400 | 400 | 0.2 a | Lobosphaeraincisa (=Parietochloris incisa) | Trebouxiophyceae | [88] |
133, 182 | 133 | * | Tetraselmis sp. | Chlorodendrophyceae | [89] |
200, 500, 1000, 1500 | 1000 | 0.2 (DF15) 0.55 (UTEX 2538) | Dunaliella salina (DF15, UTEX 2538) | Chlorophyceae | [48] |
200, 500, 1000, 1500 | 1500 | 1.3 (CCAP 19/30) 1.05 (DF17) 0.75 (DF40) | Dunaliella salina (CCAP 19/30, DF17, DF40) | Chlorophyceae | [48] |
20–500 | 330 | 1.78 | Arthrospira fusiformis | Cyanophyceae | [90] |
200–700 | 360 | 0.26 | Arthrospira fusiformis | Cyanophyceae | [91] |
40, 160 | 160 | 0.491 | Phormidium sp. | Cyanophyceae | [92] |
75, 100, 150, 500, 660, 750 | 660 | 2.14 b | Synechococcus sp. PCC 11901 | Cyanophyceae | [93] |
75, 100, 150, 500, 660, 750 | 500 | 1.93 b | Synechococcus sp. UTEX 2973 | Cyanophyceae | [93] |
Investigated Light Intensity, μmol photons m−2 s−1 | Optimal Light Intensity for Carotenoid Synthesis, μmol photons m−2 s−1 | Species and Strain | Carotenoid | Content in Dry Weight, mg g−1 | Productivity, mg L−1 day−1 | References |
---|---|---|---|---|---|---|
36.7, 69.5, 102.3 | 69.5 | Tetradesmus obliquus | all carotenoids | 374.30 | [123] | |
21, 42, 63 | 63 | Nostoc calcicola | all carotenoids | 6.88 | [124] | |
40, 160 | 40 | Phormidium sp. | all carotenoids | 4.62 | [92] | |
1200 | Haematococcus lacustris CCAP 34/7 | Astaxanthin | 590.31 | [121] | ||
350 | Haematococcus lacustris | Astaxanthin | 21.8 | [125] | ||
50, 100, 200, 400 | 400 | Chromochloris zofingiensis | Astaxanthin | 2.88 | 9.9 | [122] |
90, 460, 920 | 460, 920 | Chromochloris zofingiensis | Astaxanthin | 1.5 | [126] | |
350 | Chromochloris zofingiensis | Astaxanthin | 6.3 | [125] | ||
350 | Coelastrella oocystiformis (=Scotiellopsis oocystiformis) | Astaxanthin | 6.4 | [125] | ||
350 | Neochloris wimmeri | Astaxanthin | 19.3 | [125] | ||
350 | Scenedesmus vacuolatus | Astaxanthin | 1.5 | [125] | ||
350 | Protosiphon botryoides | Astaxanthin | 14.3 | [125] | ||
1200 | Haematococcus lacustris CCAP 34/7 | Zeaxanthin | 108.50 | [121] | ||
200, 500, 1000, 1500 | 1500 | Dunaliella salina DF15 | all-trans and 9-cis β-carotene | 3.5 and 2.3 | [48] | |
200, 500, 1000, 1500 | 1500 | Dunaliella salina DF17 | all-trans and 9-cis β-carotene | 1.3 and 0.2 | [48] | |
200, 500, 1000, 1500 | 1500 | Dunaliella salina DF40 | all-trans and 9-cis β-carotene | 2.6 and 2.0 | [48] | |
200, 500, 1000, 1500 | 1500 | Dunaliella salina CCAP 19/30 | all-trans and 9-cis β-carotene | 3.2 and 0.2 | [48] | |
200, 500, 1000, 1500 | 1500 | Dunaliella bardawil UTEX 2538 (=Dunaliella salina) | all-trans β-carotene | 2.9 and 2.2 | [48] | |
200, 500, 1000, 1500 | 1000 | Dunaliella bardawil UTEX 2538 (=Dunaliella salina) | 9-cis β-carotene | 2.9 and 2.2 | [48] | |
1200 | Haematococcus lacustris CCAP 34/7 | β-carotene | 59.99 | [124] | ||
33, 170, 280 | 33 (35 °C) | Tetraselmis sp. CTP4 | β-carotene | 4.41 | [127] | |
33, 170, 280 | 170 (35 °C) | Tetraselmis sp. CTP4 | β-carotene | 3.21 | [127] | |
33, 170, 280 | 280 (30 °C) | Tetraselmis sp. CTP4 | Lutein | 2.24 | [127] | |
33, 170, 280 | 170 (35 °C) | Tetraselmis sp. CTP4 | Lutein | 3.17 | [127] | |
90, 460, 920 | 90 | Chromochloris zofingiensis | Lutein | 4.0 | [126] | |
92, 230, 368, 460, 690, 920, 1495 | 690 | Chlorella sorokiniana * | Lutein | 3.1 | [128] | |
300 | Tetradesmus obliquus FSP-3 | Lutein | 4.08 | [78] |
LED | Light Intensity, μmol photons m−2 s−1 | Species | Stimulating Effect in Decreasing Order | References | ||||
---|---|---|---|---|---|---|---|---|
Biomass | Lipid | Fatty Acids | Carotenoid | |||||
MUFA, PUFA | Individual Fatty Acids | |||||||
white, red, blue, green | 60 | Botryococcus braunii | red > white > blue > green | red > white > blue > green | [138] | |||
white, red, blue, green, yellow | 100 | Chlorella vulgaris | white > red > blue > yellow > green | ↑EPA, ↑DHA green > yellow | [139] | |||
white, red, blue, green, yellow | Chlorella vulgaris | white > red > blue > yellow > green | blue > red > white > green > yellow | yellow > green > white > red > blue | [39] | |||
white, red, blue, green, yellow | Tetradesmus obliquus | red > blue > white > yellow > green | blue > red > white > green > yellow | yellow > green > white > red > blue | [39] | |||
red | Tetraselmis suecica | ↑EPA | [24] | |||||
white, red, blue | Chlorella vulgaris, Auxenochlorella pyrenoidosa (=Chlorella pyrenoidosa), Scenedesmus quadricaud, Tetradesmus obliquus | blue > red > white | ↑PUFA blue | ↑ALA | [140] | |||
white, red, blue, green, yellow | 100 | Diacronema lutheri | blue > red > green > yellow | ↑EPA, ↑DHA yellow > green | [139] | |||
white, red, blue, green, yellow | 100 | Porphyridium purpureum (=Porphyridium cruentum) | green > blue > yellow > red | ↑EPA, ↑DHA red > blue | [139] | |||
white, red, yellow | Phaeodactylum tricornutum | red > white > yellow | red > white | omega-3, omega-6 white > red | [72] | |||
red | Phaeodactylum tricornutum | ↓MUFA ↑PUFA | [72] | |||||
white, red, blue | 52 a | Isochrysis galbana | ↑blue | ↑blue | ↑DHA blue | [141] | ||
white, red, blue, green, yellow | Arthospira platensis | red > white > blue > yellow > green | blue > red > white > green > yellow | green > yellow > white > red > blue | [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maltsev, Y.; Maltseva, K.; Kulikovskiy, M.; Maltseva, S. Influence of Light Conditions on Microalgae Growth and Content of Lipids, Carotenoids, and Fatty Acid Composition. Biology 2021, 10, 1060. https://doi.org/10.3390/biology10101060
Maltsev Y, Maltseva K, Kulikovskiy M, Maltseva S. Influence of Light Conditions on Microalgae Growth and Content of Lipids, Carotenoids, and Fatty Acid Composition. Biology. 2021; 10(10):1060. https://doi.org/10.3390/biology10101060
Chicago/Turabian StyleMaltsev, Yevhen, Kateryna Maltseva, Maxim Kulikovskiy, and Svetlana Maltseva. 2021. "Influence of Light Conditions on Microalgae Growth and Content of Lipids, Carotenoids, and Fatty Acid Composition" Biology 10, no. 10: 1060. https://doi.org/10.3390/biology10101060
APA StyleMaltsev, Y., Maltseva, K., Kulikovskiy, M., & Maltseva, S. (2021). Influence of Light Conditions on Microalgae Growth and Content of Lipids, Carotenoids, and Fatty Acid Composition. Biology, 10(10), 1060. https://doi.org/10.3390/biology10101060