Gut Microbiota Cannot Compensate the Impact of (quasi) Aposymbiosis in Blattella germanica
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Blattella germanica Rearing Conditions
2.2. Experimental Design
2.3. Cockroach Dissections
2.4. Fitness Parameters Determination
2.5. DNA Extraction and Quantitative PCR
2.6. DNA Sequencing and Bioinformatics Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Patiño-Navarrete, R.; Moya, A.; Latorre, A.; Peretó, J. Comparative genomics of Blattabacterium cuenoti: The frozen legacy of an ancient endosymbiont genome. Genome Biol. Evol. 2013, 5, 351–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brune, A.; Dietrich, C. The gut microbiota of termites: Digesting the diversity in the light of ecology and evolution. Annu. Rev. Microbiol. 2015, 69, 145–166. [Google Scholar] [CrossRef] [PubMed]
- Shan, H.; Wu, W.; Sun, Z.; Chen, J.; Li, H. The gut microbiota of the insect infraorder Pentatomomorpha (Hemiptera: Heteroptera) for the light of ecology and evolution. Microorganisms 2021, 9, 464. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, P.; Pérez-Cobas, A.E.; van de Pol, C.; Baixeras, J.; Moya, A.; Latorre, A. Succession of the gut microbiota in the cockroach Blattella germanica. Int. Microbiol. 2014, 17, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Rosas, T.; García-Ferris, C.; Domínguez-Santos, R.; Llop, P.; Latorre, A.; Moya, A. Rifampicin treatment of Blattella germanica evidences a fecal transmission route of their gut microbiota. FEMS Microbiol. Ecol. 2018, 94, fiy002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domínguez-Santos, R.; Pérez-Cobas, A.E.; Artacho, A.; Castro, J.A.; Talón, I.; Moya, A.; García-Ferris, C.; Latorre, A. Unraveling assemblage, functions and stability of the gut microbiota of Blattella germanica by antibiotic treatment. Front. Microbiol. 2020, 11, 487. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Santos, R.; Pérez-Cobas, A.E.; Cuti, P.; Pérez-Brocal, V.; García-Ferris, C.; Moya, A.; Latorre, A.; Gil, R. Interkingdom gut microbiome and resistome of the cockroach Blattella germanica. mSystems 2021, 6, e01213-20. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, L.; Grigolo, A.; Mazzinit, M.; Bigliardi, E.; Baccetti, B.; Laudani, U. Symbionts in the oocytes of Blattella germanica (L.) (Dictyoptera: Blattellidae): Their mode of transmission. Int. J. lnsect Morphol. Embryol. 1988, 17, 437–446. [Google Scholar] [CrossRef]
- Henry, S.M. The significance of microorganisms in the nutrition of insects. Trans. N. Y. Acad. Sci. 1962, 24, 676–683. [Google Scholar] [CrossRef]
- Brooks, M.A. Comments on the classification of intracellular symbionts of cockroaches and a description of the species. J. Invertbr. Pathol. 1970, 16, 249–258. [Google Scholar] [CrossRef]
- González-Serrano, F.; Pérez-Cobas, A.E.; Rosas, T.; Baixeras, J.; Latorre, A.; Moya, A. The gut microbiota composition of the moth Brithys crini reflects insect metamorphosis. Microb. Ecol. 2020, 79, 960–970. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Aitchison, J. Principal component analysis of compositional data. Biometrika 1983, 70, 57–65. [Google Scholar] [CrossRef]
- Martino, C.; Morton, J.T.; Marotz, C.A.; Thompson, L.R.; Tripathi, A.; Knight, R.; Zengler, K. A novel sparse compositional technique reveals microbial perturbations. mSystems 2019, 4, e00016-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozupone, C.; Lladser, M.E.; Knights, D.; Stombaugh, J.; Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J. 2011, 5, 169–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, M.A.; Richards, A.G. Intracellular symbiosis in cockroaches. I. Production of aposymbiotic cockroaches. Biol. Bull. 1955, 109, 22–39. [Google Scholar] [CrossRef]
- Waite, D.W.; Chuvochina, M.; Pelikan, C.; Parks, D.H.; Yilmaz, P.; Wagner, M.; Loy, A.; Naganuma, T.; Nakai, R.; Whitman, B.W.B.; et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int. J. Syst. Evol. Microbiol. 2020, 70, 5972–6016. [Google Scholar] [CrossRef] [PubMed]
- Tegtmeier, D.; Thompson, C.L.; Schauer, C.; Brune, A. Oxygen affects gut bacterial colonization and metabolic activities in a gnotobiotic cockroach model. Appl. Environ. Microbiol. 2016, 82, 1080–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Date Hatching | Date Adult Ecdysis | Date Ootheca | Date Offspring Hatching | Days to Adult | Days to Hatching | Nymphs/Ootheca | Ratio ureC/actin5C |
---|---|---|---|---|---|---|---|---|
RsR-1 a | 15/04/18 | 25/06/18 | 10/07/18 | 06/08/18 | 71 | 113 | 31 | 0.0932 |
RsR-2 | 15/04/18 | 26/06/18 | _ | _ | 72 | _ | _ | 0.0001 |
RsR-3 | 15/04/18 | 28/06/18 | _ | _ | 74 | _ | _ | 0.0723 |
RsR-4 | 15/04/18 | 03/07/18 | _ | _ | 79 | _ | _ | 0.1797 |
RsR-5 | 15/04/18 | 20/07/18 | _ | _ | 96 | _ | _ | nd |
RsC-1 b | 15/04/18 | 13/06/18 | 26/07/18 | 13/09/18 | 59 | 151 | 24 | 6868.99 |
RsC-2 | 15/04/18 | 09/07/18 | _ | _ | 85 | _ | _ | 16.802 |
RfC-1 c | 15/04/18 | 06/06/18 | 19/06/18 | 20/07/18 | 52 | 96 | 13 | 1470.02 |
RfC-2 | 15/04/18 | 09/06/18 | 21/06/18 | 26/07/18 | 55 | 102 | 16 | 1103.08 |
RfC-3 | 15/04/18 | 10/06/18 | 20/07/18 | 03/08/18 | 56 | 110 | 6 | 1015.49 |
RfC-4 | 15/04/18 | 14/06/18 | 20/07/18 | 10/08/18 | 60 | 117 | 33 | 514.67 |
RfC-5 | 15/04/18 | 18/06/18 | 20/07/18 | 16/08/18 | 64 | 123 | 33 | nd |
RsRR-1 | 06/08/18 | 10/10/18 | 22/10/18 | 27/11/18 | 65 | 113 | 39 | 2223.70 |
RsRR-2 | 06/08/18 | 22/10/18 | 16/11/18 | 11/12/18 | 77 | 127 | 19 | 1465.86 |
RsRR-3 | 06/08/18 | 29/10/18 | 16/11/18 | 14/12/18 | 84 | 130 | 28 | 735.42 |
RsRR-4 | 06/08/18 | 05/11/18 | 27/11/18 | 26/12/18 | 91 | 142 | 22 | 5872.96 |
RsRR-5 | 06/08/18 | 09/11/18 | 27/11/18 | 26/12/18 | 95 | 142 | 20 | nd |
RsCC-1 | 13/09/18 | 30/10/18 | 20/11/18 | 26/12/18 | 47 | 104 | 36 | 16.42 |
RsCC-2 | 13/09/18 | 03/11/18 | 27/11/18 | 26/12/18 | 51 | 104 | 30 | 2263.17 |
RsCC-3 | 13/09/18 | 06/11/18 | 26/12/18 | 03/01/19 | 54 | 112 | 30 | 2033.46 |
RsCC-4 | 13/09/18 | 20/11/18 | 26/12/18 | 03/01/19 | 68 | 112 | 22 | 520.99 |
RsCC-5 | 13/09/18 | 20/11/18 | 26/12/18 | 08/01/19 | 68 | 117 | 40 | nd |
RfCC-1 | 20/07/18 | 10/09/18 | 14/09/18 | 23/10/18 | 52 | 95 | 44 | 5106.13 |
RfCC-2 | 20/07/18 | 11/09/18 | 17/10/18 | 24/10/18 | 53 | 96 | 45 | 463.96 |
RfCC-3 | 20/07/18 | 12/09/18 | 17/10/18 | 26/10/18 | 54 | 98 | 46 | 1017.05 |
RfCC-4 | 20/07/18 | 13/09/18 | 17/10/18 | 26/10/18 | 55 | 98 | 44 | 504.08 |
RfCC-5 | 20/07/18 | 13/09/18 | 17/10/18 | 29/10/18 | 55 | 101 | 46 | nd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Benavent, M.; Latorre, A.; Alemany-Cosme, E.; Marín-Miret, J.; Domínguez-Santos, R.; Silva, F.J.; Gil, R.; García-Ferris, C. Gut Microbiota Cannot Compensate the Impact of (quasi) Aposymbiosis in Blattella germanica. Biology 2021, 10, 1013. https://doi.org/10.3390/biology10101013
Muñoz-Benavent M, Latorre A, Alemany-Cosme E, Marín-Miret J, Domínguez-Santos R, Silva FJ, Gil R, García-Ferris C. Gut Microbiota Cannot Compensate the Impact of (quasi) Aposymbiosis in Blattella germanica. Biology. 2021; 10(10):1013. https://doi.org/10.3390/biology10101013
Chicago/Turabian StyleMuñoz-Benavent, Maria, Amparo Latorre, Ester Alemany-Cosme, Jesús Marín-Miret, Rebeca Domínguez-Santos, Francisco J. Silva, Rosario Gil, and Carlos García-Ferris. 2021. "Gut Microbiota Cannot Compensate the Impact of (quasi) Aposymbiosis in Blattella germanica" Biology 10, no. 10: 1013. https://doi.org/10.3390/biology10101013
APA StyleMuñoz-Benavent, M., Latorre, A., Alemany-Cosme, E., Marín-Miret, J., Domínguez-Santos, R., Silva, F. J., Gil, R., & García-Ferris, C. (2021). Gut Microbiota Cannot Compensate the Impact of (quasi) Aposymbiosis in Blattella germanica. Biology, 10(10), 1013. https://doi.org/10.3390/biology10101013