Attraction to Smelly Food in Birds: Insectivorous Birds Discriminate between the Pheromones of Their Prey and Those of Non-Prey Insects
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and methods
2.1. Study Area and Species
2.2. Experimental Design and Procedure
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wyatt, T.D. Pheromones and Animal Behaviour: Communication by Smell and Taste; Cambridge University Press: New York, NY, USA, 2003. [Google Scholar]
- Caro, S.P.; Balthazart, J.; Bonadonna, F. The perfume of reproduction in birds: Chemosignaling in avian social life. Horm. Behav. 2015, 68, 25–42. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, D.J.; Hagelin, J.C. Female-Based Patterns and Social Function in Avian Chemical Communication. J. Chem. Ecol. 2021, 47, 43–62. [Google Scholar] [CrossRef]
- Bonadonna, F.; Villafane, M.; Bajzak, C.; Jouventin, P. Recognition of burrow’s olfactory signature in blue petrels, Halobaena caerulea: An efficient discrimination mechanism in the dark. Anim. Behav. 2004, 67, 893–898. [Google Scholar] [CrossRef]
- Caspers, B.A.; Krause, T. Odour-based natal nest recognition in the zebra finch (Taeniopygia guttata), a colony-breeding songbird. Biol. Lett. 2010, 7, 184–186. [Google Scholar] [CrossRef] [Green Version]
- Krause, E.T.; Caspers, B. Are Olfactory Cues Involved in Nest Recognition in Two Social Species of Estrildid Finches? PLoS ONE 2012, 7, e36615. [Google Scholar] [CrossRef] [Green Version]
- LeClaire, S.; Strandh, M.; Mardon, J.; Westerdahl, H.; Bonadonna, F. Odour-based discrimination of similarity at the major histocompatibility complex in birds. Proc. R. Soc. B Boil. Sci. 2017, 284, 20162466. [Google Scholar] [CrossRef] [Green Version]
- Caspers, B.A.; Hagelin, J.C.; Paul, M.; Bock, S.; Willeke, S.; Krause, E.T. Zebra Finch chicks recognise parental scent, and retain chemosensory knowledge of their genetic mother, even after egg cross-fostering. Sci. Rep. 2017, 7, 12859. [Google Scholar] [CrossRef]
- Griebel, I.A.; Dawson, R.D. Nestling tree swallows ( Tachycineta bicolor ) alter begging behaviour in response to odour of familiar adults, but not their nests. Ethology 2020, 126, 630–636. [Google Scholar] [CrossRef]
- Rossi, M.; Marfull, R.; Golüke, S.; Komdeur, J.; Korsten, P.; Caspers, B.A. Begging blue tit nestlings discriminate between the odour of familiar and unfamiliar conspecifics. Funct. Ecol. 2017, 31, 1761–1769. [Google Scholar] [CrossRef] [Green Version]
- Bonadonna, F. Partner-Specific Odor Recognition in an Antarctic Seabird. Science 2004, 306, 835. [Google Scholar] [CrossRef] [PubMed]
- Amo, L.; López-Rull, I.; Pagán, I.; Garcia, C.M. Male quality and conspecific scent preferences in the house finch, Carpodacus mexicanus. Anim. Behav. 2012, 84, 1483–1489. [Google Scholar] [CrossRef] [Green Version]
- Hirao, A.; Aoyama, M.; Sugita, S. The role of uropygial gland on sexual behavior in domestic chicken Gallus gallus domesticus. Behav. Process. 2009, 80, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-X.; Wei, W.; Zhang, J.-H.; Yang, W.-H. Uropygial Gland-Secreted Alkanols Contribute to Olfactory Sex Signals in Budgerigars. Chem. Sens. 2010, 35, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, D.; Richmond, K.M.; Miller, A.K.; Kiley, R.; Burns, C.B.; Atwell, J.W.; Ketterson, E.D. Intraspecific preen oil odor preferences in dark-eyed juncos (Junco hyemalis). Behav. Ecol. 2011, 22, 1256–1263. [Google Scholar] [CrossRef] [Green Version]
- Amo, L.; Avilés, J.; Parejo, D.; Peña, A.; Rodríguez-Ruiz, J.; Tomas, G. Sex recognition by odour and variation in the uropygial gland secretion in starlings. J. Anim. Ecol. 2012, 81, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Grieves, L.; Gloor, G.; Bernards, M.; MacDougall-Shackleton, E. Songbirds show odour-based discrimination of similarity and diversity at the major histocompatibility complex. Anim. Behav. 2019, 158, 131–138. [Google Scholar] [CrossRef]
- Amo, L.; Galván, I.; Tomás, G.; Sanz, J.J. Predator odour recognition and avoidance in a songbird. Funct. Ecol. 2008, 22, 289–293. [Google Scholar] [CrossRef]
- Amo, L.; López-Rull, I.; Pagán, I.; Garcia, C.M. Evidence that the house finch (Carpodacus mexicanus) uses scent to avoid omnivore mammals. Rev. Chil. Hist. Nat. 2015, 88, 5. [Google Scholar] [CrossRef] [Green Version]
- Amo, L.; Tomas, G.; López-García, A. Role of chemical and visual cues of mammalian predators in nest defense in birds. Behav. Ecol. Sociobiol. 2017, 71, 49. [Google Scholar] [CrossRef]
- Roth, T.C.; Cox, J.G.; Lima, S.L. Can foraging birds assess predation risk by scent? Anim. Behav. 2008, 76, 2021–2027. [Google Scholar] [CrossRef]
- Eichholz, M.W.; Dassow, J.A.; Stafford, J.D.; Weatherhead, P.J. Experimental evidence that nesting ducks use mammalian urine to assess predator abundance. Auk 2012, 129, 638–644. [Google Scholar] [CrossRef]
- Parejo, D.; Amo, L.; Rodriguez, J.; Aviles, J.M. Rollers smell the fear of nestlings. Biol. Lett. 2012, 8, 502–504. [Google Scholar] [CrossRef] [PubMed]
- Zidar, J.; Løvlie, H. Scent of the enemy: Behavioural responses to predator faecal odour in the fowl. Anim. Behav. 2012, 84, 547–554. [Google Scholar] [CrossRef]
- Saavedra, I.; Amo, L. Egg concealment is an antipredatory strategy in a cavity-nesting bird. Ethology 2019, 125, 785–790. [Google Scholar] [CrossRef]
- Clark, L.; Mason, J.R. Olfactory discrimination of plant volatiles by the European starling. Anim. Behav. 1987, 35, 227–235. [Google Scholar] [CrossRef]
- Petit, C.; Hossaert-McKey, M.; Perret, P.; Blondel, J.; Lambrechts, M.M. Blue tits use selected plants and olfaction to maintain an aromatic environment for nestlings. Ecol. Lett. 2002, 5, 585–589. [Google Scholar] [CrossRef]
- Gwinner, H.; Berger, S. Starling males select green nest material by olfaction using experience-independent and experience-dependent cues. Anim. Behav. 2008, 75, 971–976. [Google Scholar] [CrossRef]
- Mennerat, A. Blue tits (Cyanistes caeruleus) respond to an experimental change in the aromatic plant odour composition of their nest. Behav. Process. 2008, 79, 189–191. [Google Scholar] [CrossRef] [PubMed]
- Wallraff, H.G. Avian olfactory navigation: Its empirical foundation and conceptual state. Anim. Behav. 2004, 67, 189–204. [Google Scholar] [CrossRef]
- A Nevitt, G.; Bonadonna, F. Sensitivity to dimethyl sulphide suggests a mechanism for olfactory navigation by seabirds. Biol. Lett. 2005, 1, 303–305. [Google Scholar] [CrossRef]
- Gagliardo, A. Forty years of olfactory navigation in birds. J. Exp. Biol. 2013, 216, 2165–2171. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, S.J.; Castro, I.; Potter, M. The relative importance of olfaction and remote touch in prey detection by North Island brown kiwis. Anim. Behav. 2009, 78, 899–905. [Google Scholar] [CrossRef]
- Gomez, L.G.; Houston, D.C.; Cotton, P.; Tye, A. The role of Greater Yellow-headed Vultures Cathartes melambrotus as scavengers in neotropical forest. Ibis 1994, 136, 193–196. [Google Scholar] [CrossRef]
- Nevitt, G.A.; Veit, R.R.; Kareiva, P. Dimethyl sulphide as a foraging cue for Antarctic Procellariiform seabirds. Nat. Cell Biol. 1995, 376, 680–682. [Google Scholar] [CrossRef]
- Cunningham, G.B.; Strauss, V.; Ryan, P. African penguins (Spheniscus demersus) can detect dimethyl sulphide, a prey-related odour. J. Exp. Biol. 2008, 211, 3123–3127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amo, L.; Rodríguez-Gironés, M.; Barbosa, A. Olfactory detection of dimethyl sulphide in a krill-eating Antarctic penguin. Mar. Ecol. Prog. Ser. 2013, 474, 277–285. [Google Scholar] [CrossRef] [Green Version]
- Marples, N.M.; Roper, T.J. Effects of novel colour and smell on the response of naive chicks towards food and water. Anim. Behav. 1996, 51, 1417–1424. [Google Scholar] [CrossRef] [Green Version]
- Kelly, D.J.; Marples, N. The effects of novel odour and colour cues on food acceptance by the zebra finch, Taeniopygia guttata. Anim. Behav. 2004, 68, 1049–1054. [Google Scholar] [CrossRef]
- Amo, L.; Jansen, J.J.; van Dam, N.M.; Dicke, M.; Visser, M.E. Birds exploit herbivore-induced plant volatiles to locate herbivorous prey. Ecol. Lett. 2013, 16, 1348–1355. [Google Scholar] [CrossRef] [Green Version]
- Mrazova, A.; Sam, K.; Amo, L. What do we know about birds’ use of plant volatile cues in tritrophic interactions? Curr. Opin. Insect Sci. 2019, 32, 131–136. [Google Scholar] [CrossRef]
- Mäntylä, E.; Kipper, S.; Hilker, M. Insectivorous birds can see and smell systemically herbivore-induced pines. Ecol. Evol. 2020, 10, 9358–9370. [Google Scholar] [CrossRef] [PubMed]
- Avilés, J.M.; Amo, L. The Evolution of Olfactory Capabilities in Wild Birds: A Comparative Study. Evol. Biol. 2017, 45, 27–36. [Google Scholar] [CrossRef]
- Wenzel, B.M. Olfactory Prowess of the Kiwi. Nat. Cell Biol. 1968, 220, 1133–1134. [Google Scholar] [CrossRef] [PubMed]
- Houston, D.C. Scavenging Efficiency of Turkey Vultures in Tropical Forest. Condor 1986, 88, 318–323. [Google Scholar] [CrossRef]
- Graves, G.R. Greater Yellow-Headad Vulture (Cathartes melambrotus) Locates Food by Olfaction. J. Raptor Res. 1992, 26, 38–39. [Google Scholar]
- Stager, K.E. Avian Olfaction. Am. Zool. 1967, 7, 415–420. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Walther, B.A.; Weng, G.-J. Stop and Smell the Pollen: The Role of Olfaction and Vision of the Oriental Honey Buzzard in Identifying Food. PLoS ONE 2015, 10, e0130191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roper, T.J. Olfactory discrimination in Yellow-backed Chattering Lories Lorius garrulus flavopalliatus: First demonstration of olfaction in Psittaciformes. Ibis 2003, 145, 689–691. [Google Scholar] [CrossRef]
- Hagelin, J.C. Observations on the olfactory ability of the Kakapo Strigops habroptilus, the critically endangered parrot of New Zealand. Ibis 2003, 146, 161–164. [Google Scholar] [CrossRef]
- Nevitt, G.A. The Neuroecology of Dimethyl Sulfide: A Global-Climate Regulator Turned Marine Infochemical. Integr. Comp. Biol. 2011, 51, 819–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mäntylä, E.; Klemola, T.; Sirkia, P.; Laaksonen, T. Low light reflectance may explain the attraction of birds to defoliated trees. Behav. Ecol. 2007, 19, 325–330. [Google Scholar] [CrossRef] [Green Version]
- Mantyla, E.; Alessio, G.A.; Blande, J.D.; Heijari, J.; Holopainen, J.K.; Laaksonen, T.; Piirtola, P.; Klemola, T. From Plants to Birds: Higher Avian Predation Rates in Trees Responding to Insect Herbivory. PLoS ONE 2008, 3, e2832. [Google Scholar] [CrossRef]
- Mantyla, E.; Klemola, T.; Haukioja, E. Attraction of willow warblers to sawfly-damaged mountain birches: Novel function of inducible plant defences? Ecol. Lett. 2004, 7, 915–918. [Google Scholar] [CrossRef]
- Mäntylä, E.; Kleier, S.; Kipper, S.; Hilker, M. The attraction of insectivorous tit species to herbivore-damaged Scots pines. J. Ornithol. 2016, 158, 479–491. [Google Scholar] [CrossRef]
- Mrazova, A.; Sam, K. Application of methyl jasmonate to grey willow (Salix cinerea) attracts insectivorous birds in nature. Arthropod-Plant Interact. 2017, 12, 1–8. [Google Scholar] [CrossRef]
- Rubene, D.; Leidefors, M.; Ninkovic, V.; Eggers, S.; Low, M. Disentangling olfactory and visual information used by field foraging birds. Ecol. Evol. 2018, 9, 545–552. [Google Scholar] [CrossRef] [Green Version]
- Heil, M. Indirect defence via tritrophic interactions. New Phytol. 2008, 178, 41–61. [Google Scholar] [CrossRef]
- Takabayashi, J.; Dicke, M.; Posthumus, M.A. Variation in composition of predator-attracting allelochemicals emitted by herbivore-infested plants: Relative influence of plant and herbivore. Chemoecology 1991, 2, 1–6. [Google Scholar] [CrossRef]
- Kessler, A. Defensive Function of Herbivore-Induced Plant Volatile Emissions in Nature. Science 2001, 291, 2141–2144. [Google Scholar] [CrossRef] [PubMed]
- Koski, T.-M.; Laaksonen, T.; Mantyla, E.; Ruuskanen, S.; Li, T.; Girón-Calva, P.S.; Huttunen, L.; Blande, J.D.; Holopainen, J.K.; Klemola, T. Do Insectivorous Birds use Volatile Organic Compounds from Plants as Olfactory Foraging Cues? Three Experimental Tests. Ethology 2015, 121, 1131–1144. [Google Scholar] [CrossRef]
- Hopke, J.; Donath, J.; Blechert, S.; Boland, W. Herbivore-induced volatiles: The emission of acyclic homoterpenes from leaves of Phaseolus lunatus and Zea mays can be triggered by a β-glucosidase and jasmonic acid. FEBS Lett. 1994, 352, 146–150. [Google Scholar] [CrossRef] [Green Version]
- Thaler, J.S.; Farag, M.A.; Paré, P.W.; Dicke, M. Jasmonate-deficient plants have reduced direct and indirect defences against herbivores. Ecol. Lett. 2002, 5, 764–774. [Google Scholar] [CrossRef]
- Thaler, J.S.; Stout, M.J.; Karban, R.; Duffey, S.S. Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J. Chem. Ecol. 1996, 22, 1767–1781. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, I.; Amo, L. Are wild insectivorous birds attracted to methyl-jasmonate-treated Pyrenean oak trees? Behaviour 2018, 155, 945–967. [Google Scholar] [CrossRef]
- Mäntylä, E.; Blande, J.; Klemola, T. Does application of methyl jasmonate to birch mimic herbivory and attract insectivorous birds in nature? Arthropod-Plant Interact. 2014, 8, 143–153. [Google Scholar] [CrossRef]
- Mäntylä, E.; Kleier, S.; Lindstedt, C.; Kipper, S.; Hilker, M. Insectivorous Birds Are Attracted by Plant Traits Induced by Insect Egg Deposition. J. Chem. Ecol. 2018, 44, 1127–1138. [Google Scholar] [CrossRef] [PubMed]
- Touhara, K. Sexual communication via peptide and protein pheromones. Curr. Opin. Pharmacol. 2008, 8, 759–764. [Google Scholar] [CrossRef]
- Yew, J.Y.; Chung, H. Insect pheromones: An overview of function, form, and discovery. Prog. Lipid Res. 2015, 59, 88–105. [Google Scholar] [CrossRef]
- Zuk, M.; Kolluru, G.R. Exploitation of Sexual Signals by Predators and Parasitoids. Q. Rev. Biol. 1998, 73, 415–438. [Google Scholar] [CrossRef]
- Hughes, N.K.; Kelley, J.L.; Banks, P. Dangerous liaisons: The predation risks of receiving social signals. Ecol. Lett. 2012, 15, 1326–1339. [Google Scholar] [CrossRef]
- Saavedra, I.; Amo, L. Insectivorous birds eavesdrop on the pheromones of their prey. PLoS ONE 2018, 13, e0190415. [Google Scholar] [CrossRef] [Green Version]
- Betts, M.M. The Food of Titmice in Oak Woodland. J. Anim. Ecol. 1955, 24, 282. [Google Scholar] [CrossRef]
- Vel’Ký, M.; Kaňuch, P.; Krištín, A. Food composition of wintering great tits (Parus major): Habitat and seasonal aspects. Folia Zool. 2011, 60, 228–236. [Google Scholar] [CrossRef]
- Soria, S. Operopthera brumata. In Lepidopteros Defoliadores de Quercus Pyrenaica, Willdenow, 1805. Boletin de Sanidad Vegetal. Secretaría Técnica; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 1987; pp. 79–84. [Google Scholar]
- Bestmann, H.J.; Brosche, T.; Koschatzky, K.H.; Michaelis, K.; Platz, H.; Roth, K.; Süβ, J.; Vostrowsky, O.; Knauf, W. Pheromone-XLII. 1,3,6,9-nonadecatetraen, das sexualpheromon des frostspanners operophtera brumata (geometridae). Tetrahedron Lett. 1982, 23, 4007–4010. [Google Scholar] [CrossRef]
- Roelofs, W.L.; Hill, A.S.; Linn, C.E.; Meinwald, J.; Jain, S.C.; Herbert, H.J.; Smith, R.F. Sex Pheromone of the Winter Moth, a Geometrid with Unusually Low Temperature Precopulatory Responses. Science 1982, 217, 657–659. [Google Scholar] [CrossRef] [PubMed]
- Posa, M.R.C.; Sodhi, N.S.; Koh, L.P. Predation on artificial nests and caterpillar models across a disturbance gradient in Subic Bay, Philippines. J. Trop. Ecol. 2007, 23, 27–33. [Google Scholar] [CrossRef]
- Richards, L.A.; Coley, P.D. Seasonal and habitat differences affect the impact of food and predation on herbivores: A comparison between gaps and understory of a tropical forest. Oikos 2006, 116, 31–40. [Google Scholar] [CrossRef]
- Remmel, T.; Davison, J.; Tammaru, T. Quantifying predation on folivorous insect larvae: The perspective of life-history evolution. Biol. J. Linn. Soc. 2011, 104, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Tvardikova, K.; Novotny, V. Predation on exposed and leaf-rolling artificial caterpillars in tropical forests of Papua New Guinea. J. Trop. Ecol. 2012, 28, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Sam, K.; Koane, B.; Novotny, V. Herbivore damage increases avian and ant predation of caterpillars on trees along a complete elevational forest gradient in Papua New Guinea. Ecography 2014, 38, 293–300. [Google Scholar] [CrossRef]
- R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2015.
- Jain, S.C.; Roelofs, W.L.; Meinwald, J. Synthetic of sex attractant pheromone from a geometrid moth Operopthera brumata (the winter moth). J. Org. Chem. 1983, 48, 2274–2276. [Google Scholar] [CrossRef]
- Bonadonna, F.; Caro, S.; Jouventin, P.; Nevitt, G.A. Evidence that blue petrel, Halobaena caerulea, fledglings can detect and orient to dimethyl sulfide. J. Exp. Biol. 2006, 209, 2165–2169. [Google Scholar] [CrossRef] [Green Version]
- Amo, L.; Dicke, M.; Visser, M.E. Are naïve birds attracted to herbivore-induced plant defences? Behaviour 2016, 153, 353–366. [Google Scholar] [CrossRef] [Green Version]
- Sam, K.; Kovarova, E.; Freiberga, I.; Uthe, H.; Weinhold, A.; Jorge, L.R.; Sreekar, R. Great tits (Parus major) flexibly learn that herbivore-induced plant volatiles indicate prey location: An experimental evidence with two tree species. Ecol. Evol. 2021, 11, 10917–10925. [Google Scholar] [CrossRef]
- Vet, L.E.M.; Dicke, M. Ecology of Infochemical Use by Natural Enemies in a Tritrophic Context. Annu. Rev. Entomol. 1992, 37, 141–172. [Google Scholar] [CrossRef]
- Gols, R.; Veenemans, C.; Potting, R.P.; Smid, H.M.; Dicke, M.; Harvey, J.A.; Bukovinszky, T. Variation in the specificity of plant volatiles and their use by a specialist and a generalist parasitoid. Anim. Behav. 2012, 83, 1231–1242. [Google Scholar] [CrossRef]
- Roper, T.J. Olfaction in Birds. Adv. Study Behav. 1999, 28, 247–332. [Google Scholar] [CrossRef]
- Cushing, B.S. A selective preference by least weasels for oestrous versus dioestrous urine of prairie deer mice. Anim. Behav. 1984, 32, 1263–1265. [Google Scholar] [CrossRef]
- Cushing, B.S. Estrous Mice and Vulnerability to Weasel Predation. Ecology 1985, 66, 1976–1978. [Google Scholar] [CrossRef]
- Ylönen, H.; Sundell, J.; Tiilikainen, R.; Eccard, J.A.; Horne, T. Weasels’ (Mustela Nivalis Nivalis) Preference for Olfactory Cues of The Vole (Clethrionomys Glareolus). Ecology 2003, 84, 1447–1452. [Google Scholar] [CrossRef]
- Hughes, N.K.; Price, C.; Banks, P. Predators Are Attracted to the Olfactory Signals of Prey. PLoS ONE 2010, 5, e13114. [Google Scholar] [CrossRef] [Green Version]
- Amo, L.; López, P.; Martin, J. Chemosensory Recognition of Its Lizard Prey by the Ambush Smooth Snake, Coronella austriaca. South Am. J. Herpetol. 2004, 38, 451–454. [Google Scholar] [CrossRef]
- Basolo, A.L.; Wagner, W.E. Covariation between predation risk, body size and fin elaboration in the green swordtail, Xiphophorus helleri. Biol. J. Linn. Soc. 2004, 83, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-H.; Liang, H.-C.; Guo, H.-L.; Zhang, J.-X. Exaggerated male pheromones in rats may increase predation cost. Curr. Zool. 2016, 62, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Viitala, J.; Korplmäki, E.; Palokangas, P.; Koivula, M. Attraction of kestrels to vole scent marks visible in ultraviolet light. Nat. Cell Biol. 1995, 373, 425–427. [Google Scholar] [CrossRef]
- Probst, R.; Pavlicev, M.; Viitala, J. UV reflecting vole scent marks attract a passerine, the great grey shrike Lanius excubitor. J. Avian Biol. 2002, 33, 437–440. [Google Scholar] [CrossRef]
- Zampiga, E.; Gaibani, G.; Csermely, D.; Frey, H.; Hoi, H. Innate and learned aspects of vole urine UV-reflectance use in the hunting behaviour of the common kestrel Falco tinnunculus. J. Avian Biol. 2006, 37, 318–322. [Google Scholar] [CrossRef]
- McNeil, J.N. Behavioral Ecology of Pheromone-Mediated Communication in Moths and its Importance in the use of Pheromone Traps. Annu. Rev. Entomol. 1991, 36, 407–430. [Google Scholar] [CrossRef]
- Mäntylä, E.; Klemola, T.; Laaksonen, T. Birds help plants: A meta-analysis of top-down trophic cascades caused by avian predators. Oecologia 2010, 165, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Mols, C.M.M.; Visser, M.E. Great tits can reduce caterpillar damage in apple orchards. J. Appl. Ecol. 2002, 39, 888–899. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amo, L.; Saavedra, I. Attraction to Smelly Food in Birds: Insectivorous Birds Discriminate between the Pheromones of Their Prey and Those of Non-Prey Insects. Biology 2021, 10, 1010. https://doi.org/10.3390/biology10101010
Amo L, Saavedra I. Attraction to Smelly Food in Birds: Insectivorous Birds Discriminate between the Pheromones of Their Prey and Those of Non-Prey Insects. Biology. 2021; 10(10):1010. https://doi.org/10.3390/biology10101010
Chicago/Turabian StyleAmo, Luisa, and Irene Saavedra. 2021. "Attraction to Smelly Food in Birds: Insectivorous Birds Discriminate between the Pheromones of Their Prey and Those of Non-Prey Insects" Biology 10, no. 10: 1010. https://doi.org/10.3390/biology10101010
APA StyleAmo, L., & Saavedra, I. (2021). Attraction to Smelly Food in Birds: Insectivorous Birds Discriminate between the Pheromones of Their Prey and Those of Non-Prey Insects. Biology, 10(10), 1010. https://doi.org/10.3390/biology10101010