The Evolutionary History of New Zealand Deschampsia Is Marked by Long-Distance Dispersal, Endemism, and Hybridization
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Species
2.2. Taxon Sampling
2.3. DNA Extraction, Library Preparation, and Illumina Sequencing
2.4. SNP Filtering
2.5. RADseq Evolutionary Analyses
2.6. Phylogenetic Analyses for Whole Plastid Genomes
2.7. Morphology
3. Results
3.1. RADseq
3.2. Whole Plastid Data
3.3. Morphology
4. Discussion
4.1. Relationships between Deschampsia cespitosa and the Endemics
4.2. The Hybrids at the ‘Pyramid’ Lake Terrace Site
4.3. Relationships of New Zealand Deschampsia Species to Those of Other Regions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Notes
References
- Cockayne, L. The Vegetation of New Zealand-Die Vegetation der Erde XIV, 2nd ed.; Wilhelm Engelmann: Leipzig, Germany, 1928. [Google Scholar]
- Fleming, C.A. The geological history of New Zealand and its biota. In Biogeography and Ecology in New Zealand; Kuschel, G., Ed.; Dr W. Junk: The Hague, The Netherlands, 1975; pp. 1–86. [Google Scholar]
- Mildenhall, D. New Zealand late Cretaceous and cenozoic plant biogeography: A contribution. Palaeogeogr. Palaeoclim. Palaeoecol. 1980, 31, 197–233. [Google Scholar] [CrossRef]
- Pole, M. The New Zealand flora-entirely long-distance dispersal? J. Biogeogr. 1994, 21, 625–635. [Google Scholar] [CrossRef]
- Macphail, M.K. Comment on M. Pole (1994): ‘The New Zealand flora–entirely long-distance dispersal?’. J. Biogeogr. 1997, 24, 113–117. [Google Scholar]
- McGlone, M.; Duncan, R.; Heenan, P.B. Endemism, species selection and the origin and distribution of the vascular plant flora of New Zealand. J. Biogeogr. 2001, 28, 199–216. [Google Scholar] [CrossRef]
- Enting, B.; Molloy, L. The Ancient Islands; Port Nicholson Press: Wellington, New Zealand, 1982. [Google Scholar]
- Humphries, C.J.; Parenti, L.R. Cladistic biogeography. In Oxford Monographs on Biogeography, 2nd ed.; Clarendon Press: Oxford, UK, 1986. [Google Scholar]
- Nelson, G. Reviews: Biogeography, the vicariance paradigm and continental drift. Syst. Zool. 1975, 24, 490–504. [Google Scholar]
- Raven, P.H.; Arod, D.I.A. Plate tectonics and Australasian paleobiogeography. Science 1972, 176, 1379–1386. [Google Scholar] [CrossRef] [PubMed]
- Takhtajan, A. Floristic Regions of the World; University of California Press: Berkely, CA, USA, 1986. [Google Scholar]
- Lee, D.E.; Lee, W.G.; Mortimer, N. Where and why have all the flowers gone? Depletion and turnover in the New Zealand Cenozoic angiosperm flora in relation to palaeogeography and climate. Aust. J. Bot. 2001, 49, 341. [Google Scholar] [CrossRef]
- Hurr, A.K.; Lockhart, P.J.; Heenan, P.B.; Penny, D. Evidence for the recent dispersal of Sophora (Leguminosae) around the Southern Oceans: Molecular data. J. Biogeogr. 1999, 26, 565–577. [Google Scholar] [CrossRef]
- Wagstaff, S.J.; Bayly, M.J.; Garnock-Jones, P.J.; Albach, D.C. Classification, Origin, and diversification of the New Zealand hebes (Scrophulariaceae). Ann. Mo. Bot. Gard. 2002, 89, 38–63. [Google Scholar] [CrossRef]
- Winkworth, R.C.; Wagstaff, S.J.; Glenny, D.; Lockhart, P.J. Plant dispersal N.E.W.S from New Zealand. Trends Ecol. Evol. 2002, 17, 514–520. [Google Scholar] [CrossRef]
- Knapp, M.; Stöckler, K.; Havell, D.; Delsuc, F.; Sebastiani, F.; Lockhart, P.J. Relaxed Molecular Clock Provides Evidence for Long-Distance Dispersal of Nothofagus (Southern Beech). PLoS Biol. 2005, 3, e14. [Google Scholar] [CrossRef] [PubMed]
- Meudt, H.M.; Lockhart, P.J.; Bryant, D. Species delimitation and phylogeny of a New Zealand plant species radiation. BMC Evol. Biol. 2009, 9, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heenan, P.; Mitchell, A.; De Lange, P.; Keeling, J.; Paterson, A. Late-Cenozoic origin and diversification of Chatham Islands endemic plant species revealed by analyses of DNA sequence data. N. Z. J. Bot. 2010, 48, 83–136. [Google Scholar] [CrossRef]
- Puente-Lelièvre, C.; Harrington, M.G.; Brown, E.A.; Kuzmina, M.; Crayn, D.M. Cenozoic extinction and recolonization in the New Zealand flora: The case of the fleshy-fruited epacrids (Styphelieae, Styphelioideae, Ericaceae). Mol. Phylogenet. Evol. 2013, 66, 203–214. [Google Scholar] [CrossRef]
- Wallis, G.P.; Trewick, S.A. New Zealand phylogeography: Evolution on a small continent. Mol. Ecol. 2009, 18, 3548–3580. [Google Scholar] [CrossRef] [PubMed]
- Heenan, P.B.; McGlone, M.S. Cenozoic formation and colonisation history of the New Zealand vascular flora based on molecular clock dating of the plastidrbcLgene. N. Z. J. Bot. 2019, 57, 204–226. [Google Scholar] [CrossRef]
- Ford, K.; Ward, J.; Smissen, R.; Wagstaff, S.; Breitwieser, I. Phylogeny and Biogeography of Craspedia (Asteraceae: Gnaphalieae) Based on ITS, ETS and psbA-trnH Sequence Data. Taxon 2007, 56, 783–794. [Google Scholar] [CrossRef]
- Pirie, M.D.; Lloyd, K.M.; Lee, W.G.; Linder, H.P. Diversification of Chionochloa (Poaceae) and biogeography of the New Zealand Southern Alps. J. Biogeogr. 2010, 37, 379–392. [Google Scholar] [CrossRef]
- Prebble, J.M.; Cupido, C.N.; Meudt, H.M.; Garnock-Jones, P.J. First phylogenetic and biogeographical study of the southern bluebells (Wahlenbergia, Campanulaceae). Mol. Phylogenet. Evol. 2011, 59, 636–648. [Google Scholar] [CrossRef]
- Meudt, H.M.; Prebble, J.; Lehnebach, C.A. Native New Zealand forget-me-nots (Myosotis, Boraginaceae) comprise a Pleistocene species radiation with very low genetic divergence. Plant Syst. Evol. 2014, 301, 1455–1471. [Google Scholar] [CrossRef]
- Nge, F.J.; Kellermann, J.; Biffin, E.; Waycott, M.; Thiele, K.R. Historical biogeography of Pomaderris (Rhamnaceae): Continental vicariance in Australia and repeated independent dispersals to New Zealand. Mol. Phylogenet. Evol. 2021, 158, 107085. [Google Scholar] [CrossRef]
- Holmes, G.D.; Weston, P.; Murphy, D.; Connelly, C.; Cantrill, D.J. The genealogy of geebungs: Phylogenetic analysis of Persoonia (Proteaceae) and related genera in subfamily Persoonioideae. Aust. Syst. Bot. 2018, 31, 166–189. [Google Scholar] [CrossRef]
- Cook, L.G.; Crisp, M. Not so ancient: The extant crown group of Nothofagus represents a post-Gondwanan radiation. Proc. Royal Soc. B Biol. Sci. 2005, 272, 2535–2544. [Google Scholar] [CrossRef]
- Raven, P.H. Evolution of subalpine and alpine plant groups in New Zealand. N. Z. J. Bot. 1973, 11, 177–200. [Google Scholar] [CrossRef]
- Wardle, P. Origin of the New Zealand mountain flora, with special reference to trans-Tasman relationships. N. Z. J. Bot. 1978, 16, 535–550. [Google Scholar] [CrossRef]
- McGlone, M.S.; Heenan, P.; Millar, T.; Cieraad, E. The Biogeography, Origin and Characteristics of the vascular plant flora and vegetation of the New Zealand Mountains. In Mountains, Climate and Biodiversity; Hoorn, C., Perrigo, A., Antonelli, A., Eds.; John Wiley & Sons Ltd: Hoboken, NJ, USA, 2018; pp. 375–389. [Google Scholar]
- Vollan, K.; Heide, O.M.; Lye, K.A.; Heun, M. Carex species (Cyperaceae) analysed by AFLP fingerprinting. Aust. J. Bot. 2006, 54, 305–313. [Google Scholar] [CrossRef]
- Corlett, R.T. Human impact on the subalpine vegetation of Mt Wilhelm, Papua New Guinea. J. Ecol. 1984, 72, 841. [Google Scholar] [CrossRef]
- Bouchenak-Khelladi, Y.; Verboom, G.A.; Savolainen, V.; Hodkinson, T. Biogeography of the grasses (Poaceae): A phylogenetic approach to reveal evolutionary history in geographical space and geological time. Bot. J. Linn. Soc. 2010, 162, 543–557. [Google Scholar] [CrossRef]
- Clarke, G.C.S. Deschampsia (L.) P. Bauv. In Flora Europaea 5; Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A., Eds.; Cambridge University Press: Cambridge, UK, 1980; pp. 225–227. [Google Scholar]
- Chiapella, J.; Zuloaga, F.O. A Revision of Deschampsia, Avenella, and Vahlodea (Poaceae, Poeae, Airinae) in South America. Ann. Mo. Bot. Gard. 2010, 97, 141–162. [Google Scholar] [CrossRef]
- Nicora, E.G. Deschampsia . In Flora Patagónica 3; Correa, M.N., Ed.; Gramineae Colección Científi-ca INTA: Buenos Aires, Argentina, 1978. [Google Scholar]
- Mark, A.F.; Dickinson, K.J.M. Deschampsia cespitosa subalpine tussockland on the Green Lake landslide, Hunter Mountains, Fiord Ecological Region, New Zealand. N. Z. J. Bot. 2001, 39, 577–585. [Google Scholar] [CrossRef]
- Chiapella, J. The Deschampsia cespitosa complex in central and Northern Europe: A morphological analysis. Bot. J. Linn. Soc. 2000, 134, 495–512. [Google Scholar] [CrossRef]
- Chiapella, J.; Probatova, N.S. The Deschampsia cespitosa complex (Poaceae: Aveneae) with special reference to Russia. Bot. J. Linn. Soc. 2003, 142, 213–228. [Google Scholar] [CrossRef]
- Chiapella, J.O.; DeBoer, V.L.; Amico, G.C.; Kuhl, J.C. A morphological and molecular study in the Deschampsia cespitosa complex (Poaceae; Poeae; Airinae) in northern North America. Am. J. Bot. 2011, 98, 1366–1380. [Google Scholar] [CrossRef]
- Fasanella, M.; Premoli, A.C.; Urdampilleta, J.D.; González, M.L.; O’Chiapella, J. How did a grass reach Antarctica? The Patagonian connection of Deschampsia antarctica (Poaceae). Bot. J. Linn. Soc. 2017, 185, 511–524. [Google Scholar] [CrossRef]
- Hedberg, O. Evolution and speciation in a tropical high mountain flora. Biol. J. Linn. Soc. 1969, 1, 135–148. [Google Scholar] [CrossRef]
- Sklenář, P.; Hedberg, I.; Cleef, A.M. Island biogeography of tropical alpine floras. J. Biogeogr. 2014, 41, 287–297. [Google Scholar] [CrossRef]
- Edgar, E.; Connor, H.E. Flora of New Zealand Vol 5 Gramineae, 2nd ed.; Manaaki Whenua Press: Lincoln, New Zealand, 2010. [Google Scholar]
- Cockayne, L.; Allan, H.H. An Annotated List of Groups of Wild Hybrids in the New Zealand Flora. Ann. Bot. 1934, 48, 1–55. [Google Scholar] [CrossRef]
- de Lange, P.J.; Norton, D.A.; Courtney, S.P.; Heenan, P.B.; Barkla, J.W.; Cameron, E.K.; Hitchmough, R.; Townsend, A.J. Threatened and uncommon plants of New Zealand (2008 revision). N. Z. J. Bot. 2009, 47, 61–96. [Google Scholar] [CrossRef]
- Buchanan, J. Manual of the Indigenous Grasses of New Zealan; Huges, J., Ed.; Colonial Museum and Geological Survey Department: Wellington, New Zealand, 1880. [Google Scholar]
- Cheeseman, T.F. Manual of the New Zealand Flora, 2nd ed.; Government Printer: Wellington, New Zealand, 1925.
- Allan, H.H. An Introduction to the Grasses of New Zealand; Department of Scientific and Industrial Research Bulletin: Wellington, New Zealand, 1936.
- Wardle, P. Vegetation of New Zealand; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Greimler, J.; Temsch, E.T.; Xue, Z.; Weiss-Schneeweiss, H.; Volkova, P.; Peintinger, M.; Wasowicz, P.; Shang, H.; Schanzer, I.; Chiapella, J.O. Genome size variation in Deschampsia cespitosa sensu lato (Poaceae) in Eurasia. Plant Syst. Evol. 2021. Under review. [Google Scholar]
- Paun, O.; Turner, B.; Trucchi, E.; Munzinger, J.; Chase, M.W.; Samuel, R. Processes driving the adaptive radiation of a tropical tree (Diospyros, Ebenaceae) in New Caledonia, a biodiversity hotspot. Syst. Biol. 2016, 65, 212–227. [Google Scholar] [CrossRef] [Green Version]
- Catchen, J.; Hohenlohe, P.A.; Bassham, S.; Amores, A.; Cresko, W.A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 2013, 22, 3124–3140. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Xu, T.; Ling, Z.; Wang, Y.; Li, X.; Xu, S.; Xu, Q.; Zha, S.; Qimei, W.; Basang, Y.; et al. An improved high-quality genome assembly and annotation of Tibetan hulless barley. Sci. Data 2020, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 2011, 27, 2987–2993. [Google Scholar] [CrossRef] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Rstudio Team. RStudio: Integrated Development for R; Rstudio, Inc.: Boston, MA, USA, 2015. [Google Scholar]
- Lischer, H.E.L.; Excoffier, L. PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 2011, 28, 298–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korneliussen, T.S.; Albrechtsen, A.; Nielsen, R. ANGSD: Analysis of next generation sequencing data. BMC Bioinform. 2014, 15, 356. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Heckenhauer, J.; Paun, O.; Chase, M.W.; Ashton, P.S.; Kamariah, A.S.; Samuel, R. Molecular phylogenomics of the tribe Shoreeae (Dipterocarpaceae) using whole plastid genomes. Ann. Bot. 2018, 123, 857–865. [Google Scholar] [CrossRef]
- Thorvaldsdóttir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief. Bioinform. 2013, 14, 178–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meisner, J.; Albrechtsen, A. Inferring Population Structure and Admixture Proportions in Low-Depth NGS Data. Genetics 2018, 210, 719–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skotte, L.; Korneliussen, T.S.; Albrechtsen, A. Estimating Individual Admixture Proportions from Next Generation Sequencing Data. Genetics 2013, 195, 693–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef] [Green Version]
- Huson, D.H.; Bryant, D. Application of Phylogenetic Networks in Evolutionary Studies. Mol. Biol. Evol. 2005, 23, 254–267. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. The CIPRES science gateway. In Proceedings of the 2011 TeraGrid Conference on Extreme Digital Discovery-TG ’11, Salt Lake City, UT, USA, 18–21 July 2011; ACM Press: New York, NY, USA, 2011; p. 41. [Google Scholar]
- Lewis, P.O. A Likelihood Approach to Estimating Phylogeny from Discrete Morphological Character Data. Syst. Biol. 2001, 50, 913–925. [Google Scholar] [CrossRef] [Green Version]
- Bouckaert, R.; Heled, J.; Kühnert, D.; Vaughan, T.; Wu, C.-H.; Xie, D.; Suchard, M.A.; Rambaut, A.; Drummond, A.J. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput. Biol. 2014, 10, e1003537. [Google Scholar] [CrossRef] [Green Version]
- Bryant, D.; Bouckaert, R.; Felsenstein, J.; Rosenberg, N.; Roychoudhury, A. Inferring Species Trees Directly from Biallelic Genetic Markers: Bypassing Gene Trees in a Full Coalescent Analysis. Mol. Biol. Evol. 2012, 29, 1917–1932. [Google Scholar] [CrossRef] [Green Version]
- Brandrud, M.K.; Baar, J.; Lorenzo, M.T.; Athanasiadis, A.; Bateman, R.M.; Chase, M.W.; Hedrén, M.; Paun, O. Phylogenomic Relationships of Diploids and the Origins of Allotetraploids in Dactylorhiza (Orchidaceae). Syst. Biol. 2020, 69, 91–109. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [Green Version]
- Bouckaert, R.R.; Heled, J. DensiTree 2: Seeing Trees Through the Forest. bioRxiv 2014. bioRxiv:012401. [Google Scholar] [CrossRef] [Green Version]
- de la Torre, J.A.; Núñez, J.M.; Medellín, R.A. Habitat availability and connectivity for jaguars (Panthera onca) in the Southern Mayan Forest: Conservation priorities for a fragmented landscape. Biol. Conserv. 2017, 206, 270–282. [Google Scholar] [CrossRef]
- Blanco-Pastor, J.L.; Manel, S.; Barre, P.; Roschanski, A.M.; Willner, E.; Dehmer, K.J.; Hegarty, M.; Muylle, H.; Ruttink, T.; Roldán-Ruiz, I.; et al. Pleistocene climate changes explain large-scale genetic variation in a dominant grassland species, Lolium perenne L. bioRxiv 2018. bioRxiv:414227. [Google Scholar] [CrossRef] [Green Version]
- Pickrell, J.K.; Pritchard, J.K. Inference of Population Splits and Mixtures from Genome-Wide Allele Frequency Data. PLoS Genet. 2012, 8, e1002967. [Google Scholar] [CrossRef] [Green Version]
- Swofford, D.L. PAUP. In Phylogenetic Analysis Using Parsimony (* and Other Methods); Version Sinauer Associates: Sunderland, UK, 2003. [Google Scholar]
- Batt, G.E.; Kohn, B.P.; Braun, J.; McDougall, I.; Ireland, T.R. New insight into the dynamic development of the Southern Alps, New Zealand, from detailed thermochronological investigation of the Mataketake Range pegmatites. In Special Volume on Exhumation Processes: Normal Faulting, Ductile Flow, and Erosion; Ring, U., Brandon, M.T., Lister, G.S., Willett, D., Eds.; Geological Society Special Publications: Bath, UK, 1999. [Google Scholar]
- Takayama, K.; Crawford, D.J.; López-Sepúlveda, P.; Greimler, J.; Stuessy, T.F. Factors driving adaptive radiation in plants of oceanic islands: A case study from the Juan Fernández Archipelago. J. Plant Res. 2018, 131, 469–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davy, A.J. Biological Flora of the British Isles No. Deschampsia cespitosa (L.). Beauv. J. Ecol. 1980, 68, 1075–1096. [Google Scholar]
- Wang, T.; Li, Y.; Shi, Y.; Reboud, X.; Darmency, H.; Gressel, J. Low frequency transmission of a plastid-encoded trait in Setaria italica. Theor. Appl. Genet. 2004, 108, 315–320. [Google Scholar] [CrossRef]
- Byrne, M.; Yeates, D.; Joseph, L.; Kearney, M.; Bowler, J.; Williams, M.; Cooper, S.; Donnellan, S.; Keogh, J.S.; Leys, R. Birth of a biome: Insights into the assembly and maintenance of the Australian arid zone biota. Mol. Ecol. 2008, 17, 4398–4417. [Google Scholar] [CrossRef]
- Tzvelev, N.N. Deschampsia . In Grasses of the Soviet Union; Nauka Publishing House: Sankt Peterburg, Russia, 1976; pp. 411–424. [Google Scholar]
- Tzvelev, N.N.; Probatova, N.S.; Chiapella, J. New taxa of Deschampsia, P. Beauv. (Poaceae) from Russia. Bot. Pacifica 2015, 4, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Buchanan, J. The Indigenous Grasses of New Zealand, Part I & II ed.; Government Printer: Wellington, New Zealand, 1878.
- Ricotta, C.; Rapson, G.L.; Asmus, U.; Pyšek, P.; Kühn, I.; La Sorte, F.A.; Thompson, K. British plants as aliens in New Zealand cities: Residence time moderates their impact on the beta diversity of urban floras. Biol. Invasions 2017, 19, 3589–3599. [Google Scholar] [CrossRef]
- de Lange, P.J. Deschampsia cespitosa Fact Sheet (content continuously updated). New Zealand Plant Conservation Network. Available online: https://www.nzpcn.org.nz/flora/species/deschampsia-cespitosa/ (accessed on 17 December 2020).
Character | Cesp/Chap | Cesp/Grac | Cesp/Tene | Chap/Grac | Chap/Tene | Grac/Tene |
---|---|---|---|---|---|---|
Plant height | 0.002 | 0.001 | 0.023 | 0.437 | 0.233 | 0.005 |
Basal leaf length | 0.001 | 0.001 | 0.004 | 1.000 | 0.616 | 0.039 |
Penultimate leaf length | 0.003 | 0.002 | 0.131 | 1.000 | 0. 112 | 0.065 |
Panicle length | 0.001 | 0.001 | 0.023 | 0.862 | 0.604 | 0.006 |
Panicle width | 0.141 | 0.056 | 1.000 | 1.000 | 0.126 | 0.049 |
Lower glume length | 0.001 | 0.001 | 0.003 | 0.002 | 1.000 | 0.004 |
Upper glume length | 0.001 | 0.003 | 0.003 | 0.010 | 1.000 | 0.004 |
Lemma length | 0.001 | 0.001 | 0.003 | 0.002 | 0.040 | 0.986 |
Awn length | 0.007 | 0.003 | 0.005 | 1.000 | 1.000 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Z.; Greimler, J.; Paun, O.; Ford, K.A.; Barfuss, M.H.J.; Chiapella, J.O. The Evolutionary History of New Zealand Deschampsia Is Marked by Long-Distance Dispersal, Endemism, and Hybridization. Biology 2021, 10, 1001. https://doi.org/10.3390/biology10101001
Xue Z, Greimler J, Paun O, Ford KA, Barfuss MHJ, Chiapella JO. The Evolutionary History of New Zealand Deschampsia Is Marked by Long-Distance Dispersal, Endemism, and Hybridization. Biology. 2021; 10(10):1001. https://doi.org/10.3390/biology10101001
Chicago/Turabian StyleXue, Zhiqing, Josef Greimler, Ovidiu Paun, Kerry A. Ford, Michael H. J. Barfuss, and Jorge O. Chiapella. 2021. "The Evolutionary History of New Zealand Deschampsia Is Marked by Long-Distance Dispersal, Endemism, and Hybridization" Biology 10, no. 10: 1001. https://doi.org/10.3390/biology10101001
APA StyleXue, Z., Greimler, J., Paun, O., Ford, K. A., Barfuss, M. H. J., & Chiapella, J. O. (2021). The Evolutionary History of New Zealand Deschampsia Is Marked by Long-Distance Dispersal, Endemism, and Hybridization. Biology, 10(10), 1001. https://doi.org/10.3390/biology10101001