Development of EST-Molecular Markers from RNA Sequencing for Genetic Management and Identification of Growth Traits in Potato Grouper (Epinephelus tukula)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. De Novo Assembly, Annotation, and Marker Detection
2.3. SSR Analysis
2.4. MassARRAY
2.5. Statistical Analysis
2.6. Quantitative Real-Time PCR
3. Results
3.1. RNA-Seq
3.1.1. Functional Annotation
3.1.2. Functional SSR and SNPs Discovery
3.2. Growth Experiment
3.3. Molecular Markers of the Potato Grouper
3.3.1. Genetic Diversity of Functional and Nonfunctional SSR
3.3.2. SNPs
3.3.3. Correlation Between Genotypes and Traits
3.4. Gene Expression in Different Tissues
4. Discussion
4.1. The Potato Grouper Transcriptome and Candidate Functional Molecular Markers
4.2. Genetic Management, Genetic Diversity, and Growth-Related Molecular Markers in the Potato Grouper
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, S.W.; Less, J.F.; Wang, L.; Yan, T.; Kiron, V.; Kaushik, S.J.; Lei, X.G. Meeting global feed protein demand: Challenge, opportunity, and strategy. Annu. Rev. Anim. Biosci. 2019, 7, 221–243. [Google Scholar] [CrossRef]
- Policar, T.; Schaefer, F.J.; Panana, E.; Meyer, S.; Teerlinck, S.; Toner, D.; Żarski, D. Recent progress in European percid fish culture production technology—tackling bottlenecks. Aquac. Int. 2019, 27, 1151–1174. [Google Scholar] [CrossRef]
- Vieira Ventura, R.; Fonseca e Silva, F.; Manuel Yáñez, J.; Brito, L.F. Opportunities and challenges of phenomics applied to livestock and aquaculture breeding in South America. Anim. Front. 2020, 10, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Eze, F. Marker-assisted selection in fish: A review. Asian J. Fish. Aquat. Res. 2019, 3, 1–11. [Google Scholar] [CrossRef]
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future protein supply and demand: Strategies and factors influencing a sustainable equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gjedrem, T.; Robinson, N.; Rye, M. The importance of selective breeding in aquaculture to meet future demands for animal protein: A review. Aquaculture 2012, 350–353, 117–129. [Google Scholar] [CrossRef]
- Lhorente, J.P.; Araneda, M.; Neira, R.; Yáñez, J.M. Advances in genetic improvement for salmon and trout aquaculture: The Chilean situation and prospects. Rev. Aquac. 2019, 11, 340–353. [Google Scholar] [CrossRef]
- Leeds, T.D.; Vallejo, R.L.; Weber, G.M.; Gonzalez-Pena, D.; Silverstein, J.T. Response to five generations of selection for growth performance traits in rainbow trout (Oncorhynchus mykiss). Aquaculture 2016, 465, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Yáñez, J.M.; Joshi, R.; Yoshida, G.M. Genomics to accelerate genetic improvement in tilapia. Anim. Genet. 2020, 51, 658–674. [Google Scholar] [CrossRef]
- Olesen, I.; Gjedrem, T.; Bentsen, H.B.; Gjerde, B.; Rye, M. Breeding programs for sustainable aquaculture. J. Appl. Aquac. 2003, 13, 179–204. [Google Scholar] [CrossRef]
- Ren, S.; Mather, P.B.; Tang, B.; Hurwood, D.A. Levels of genetic diversity and inferred origins of Penaeus vannamei culture resources in China: Implications for the production of a broad synthetic base population for genetic improvement. Aquaculture 2018, 491, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Luo, X.; Lu, C.; Ke, C.; You, W. Effects of artificial selection practices on loss of genetic diversity in the Pacific abalone, Haliotis discus hannai. Aquac. Res. 2017, 48, 4923–4933. [Google Scholar] [CrossRef]
- Moss, D.R.; Arce, S.M.; Otoshi, C.A.; Moss, S.M. Inbreeding effects on hatchery and growout performance of Pacific white shrimp, Penaeus (Litopenaeus) vannamei. J. World Aquac. Soc. 2008, 39, 467–476. [Google Scholar] [CrossRef]
- Gjedrem, T.; Baranski, M. Selective Breeding in Aquaculture: An. Introduction; Springer Science & Business Media: Amsterdam, The Netherlands, 2010; pp. 25–167. [Google Scholar]
- Varney, R.L.; Wilbur, A.E. Analysis of genetic variation and inbreeding among three lines of hatchery-reared Crassostrea virginica broodstock. Aquaculture 2020, 527. [Google Scholar] [CrossRef]
- Thodesen, J.; Gjedrem, T. Breeding Programs On Atlantic Salmon In Norway: Lessons learned. In Development of Aquatic Animal Genetic Improvement and Dissemination Programs: Current Status and Action Plans; Ponzoni, R.W., Acosta, B.O., Ponniah, A.G., Eds.; WorldFish Center: Penang, Malaysia, 2006; Volume 73, pp. 22–26. [Google Scholar]
- Gjedrem, T. Genetic improvement for the development of efficient global aquaculture: A personal opinion review. Aquaculture 2012, 344–349, 12–22. [Google Scholar] [CrossRef]
- Houston, R.D.; Macqueen, D.J. Atlantic salmon (Salmo salar L.) genetics in the 21st century: Taking leaps forward in aquaculture and biological understanding. Anim. Genet. 2019, 50, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Davis, G.P.; Hetzel, D.J.S. Integrating molecular genetic technology with traditional approaches for genetic improvement in aquaculture species. Aquac. Res. 2000, 31, 3–10. [Google Scholar] [CrossRef]
- Gjedrem, T.; Robinson, N. Advances by selective breeding for aquatic species: A review. J. Agric. Sci. 2014, 5, 1152–1158. [Google Scholar] [CrossRef] [Green Version]
- FAO. Global Production Statistics 1950–2018. Available online: http://www.fao.org/fishery/statistics/global-production/query/zh (accessed on 30 July 2020).
- Rimmer, M.A.; Glamuzina, B. A review of grouper (Family Serranidae: Subfamily Epinephelinae) aquaculture from a sustainability science perspective. Rev. Aquac. 2019, 11, 58–87. [Google Scholar] [CrossRef]
- Fennessy, S.; Pollard, D.; Myers, R. Epinephelus tukula. Available online: https://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T132773A100561780.en (accessed on 30 July 2020).
- Murase, A.; Miki, R.; Wada, M.; Itou, M.; Motomura, H.; Senou, H. Review of the Japanese records of an endangered grouper, Epinephelus tukula, with comments on its population status (Teleostei, Serranidae). Zookeys 2018, 772, 153–163. [Google Scholar] [CrossRef]
- Bunlipatanon, P.; U-taynapun, K. Growth performance and disease resistance against Vibrio vulnificus infection of novel hybrid grouper (Epinephelus lanceolatus × Epinephelus fuscoguttatus). Aquac. Res. 2017, 48, 1711–1723. [Google Scholar] [CrossRef]
- Dupont-Nivet, M.; Vandeputte, M.; Haffray, P.; Chevassus, B. Effect of different mating designs on inbreeding, genetic variance and response to selection when applying individual selection in fish breeding programs. Aquaculture 2006, 252, 161–170. [Google Scholar] [CrossRef]
- Kitada, S.; Shishidou, H.; Sugaya, T.; Kitakado, T.; Hamasaki, K.; Kishino, H. Genetic effects of long-term stock enhancement programs. Aquaculture 2009, 290, 69–79. [Google Scholar] [CrossRef]
- Khang, P.V.; Phuong, T.H.; Dat, N.K.; Knibb, W.; Nguyen, N.H. An 8-year breeding program for Asian seabass Lates calcarifer: Genetic evaluation, experiences, and challenges. Front. Genet. 2018, 9, 191. [Google Scholar] [CrossRef]
- Li, Y.H.; Wang, H.P. Advances of genotyping-by-sequencing in fisheries and aquaculture. Rev. Fish. Biol. Fish. 2017, 27, 535–559. [Google Scholar] [CrossRef]
- Houston, R.D.; Bean, T.P.; Macqueen, D.J.; Gundappa, M.K.; Jin, Y.H.; Jenkins, T.L.; Selly, S.L.C.; Martin, S.A.M.; Stevens, J.R.; Santos, E.M.; et al. Harnessing genomics to fast-track genetic improvement in aquaculture. Nat. Rev. Genet. 2020, 21, 389–409. [Google Scholar] [CrossRef]
- Nagalakshmi, U.; Waern, K.; Snyder, M. RNA-Seq: A method for comprehensive transcriptome analysis. Curr. Protoc. Mol. Biol. 2010, 89, 4.11.11–14.11.13. [Google Scholar] [CrossRef]
- Eisen, M.B.; Spellman, P.T.; Brown, P.O.; Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 1998, 95, 14863–14868. [Google Scholar] [CrossRef] [Green Version]
- de Hoon, M.J.L.; Imoto, S.; Nolan, J.; Miyano, S. Open source clustering software. Bioinformatics 2004, 20, 1453–1454. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiel, T.; Michalek, W.; Varshney, R.K.; Graner, A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 2003, 106, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 2000, 18, 233–234. [Google Scholar] [CrossRef]
- Mokhtar, M.A.; Normah, M.N.; Kumar, S.V.; Baharum, S.N. Characterization of 10 novel microsatellite loci for the brown marbled grouper, Epinephelus fuscoguttatus (Serranidae). Genet. Mol. Res. 2011, 10, 885–888. [Google Scholar] [CrossRef]
- Gao, C.; Wang, L.; Fan, B.; Yang, S.; Meng, Z.; Lin, H. Isolation and characterization of microsatellite markers from the brownmarbled grouper, Epinephelus fuscoguttatus. J. World Aquac. Soc. 2012, 43, 442–446. [Google Scholar] [CrossRef]
- Liu, N.; Li, S.; Zhang, J. Isolation and characterization of 16 polymorphic microsatellite loci in the leopard coral grouper Plectropomus leopardus. Conserv. Genet. Resour. 2013, 5, 1067–1069. [Google Scholar] [CrossRef]
- Ellis, J.A.; Ong, B. The MassARRAY® system for targeted SNP genotyping. Methods Mol. Biol. 2017, 1492, 77–94. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [Green Version]
- Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 1978, 89, 583–590. [Google Scholar]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314–331. [Google Scholar]
- Pan, G.; Yang, J. Analysis of microsatellite DNA markers reveals no genetic differentiation between wild and hatchery populations of Pacific threadfin in Hawaii. Int. J. Biol. Sci. 2010, 6, 827–833. [Google Scholar] [CrossRef] [Green Version]
- Sekino, M.; Kakehi, S. PARFEX v1.0: An EXCEL™-based software package for parentage allocation. Conserv. Genet. Resour. 2012, 4, 275–278. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Shapawi, R.; Abdullah, F.C.; Senoo, S.; Mustafa, S. Nutrition, growth and resilience of tiger grouper (Epinephelus fuscoguttatus) × giant grouper (Epinephelus lanceolatus) hybrid—A review. Rev. Aquac. 2019, 11, 1285–1296. [Google Scholar] [CrossRef]
- Hashimoto, D.T.; Prado, F.D.d.; Senhorini, J.A.; Foresti, F.; Porto-Foresti, F. Detection of post-F1 fish hybrids in broodstock using molecular markers: Approaches for genetic management in aquaculture. Aquac. Res. 2013, 44, 876–884. [Google Scholar] [CrossRef]
- Vera, J.C.; Wheat, C.W.; Fescemyer, H.W.; Frilander, M.J.; Crawford, D.L.; Hanski, I.; Marden, J.H. Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol. Ecol. 2008, 17, 1636–1647. [Google Scholar] [CrossRef]
- Holman, L.E.; Garcia de la serrana, D.; Onoufriou, A.; Hillestad, B.; Johnston, I.A. A workflow used to design low density SNP panels for parentage assignment and traceability in aquaculture species and its validation in Atlantic salmon. Aquaculture 2017, 476, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Yue, G.H.; Wang, L. Current status of genome sequencing and its applications in aquaculture. Aquaculture 2017, 468, 337–347. [Google Scholar] [CrossRef]
- You, X.; Shan, X.; Shi, Q. Research advances in the genomics and applications for molecular breeding of aquaculture animals. Aquaculture 2020, 526. [Google Scholar] [CrossRef]
- Parchman, T.L.; Geist, K.S.; Grahnen, J.A.; Benkman, C.W.; Buerkle, C.A. Transcriptome sequencing in an ecologically important tree species: Assembly, annotation, and marker discovery. BMC Genom. 2010, 11, 180. [Google Scholar] [CrossRef] [Green Version]
- Santos, C.A.; Blanck, D.V.; de Freitas, P.D. RNA-seq as a powerful tool for penaeid shrimp genetic progress. Front. Genet. 2014, 5, 298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuznetsova, I.S.; Thevasagayam, N.M.; Sridatta, P.S.R.; Komissarov, A.S.; Saju, J.M.; Ngoh, S.Y.; Jiang, J.; Shen, X.; Orbán, L. Primary analysis of repeat elements of the Asian seabass (Lates calcarifer) transcriptome and genome. Front. Genet. 2014, 5, 223. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, L.; Wu, B.; Song, Z.; He, S. Transcriptome analysis of the plateau fish (Triplophysa dalaica): Implications for adaptation to hypoxia in fishes. Gene 2015, 565, 211–220. [Google Scholar] [CrossRef]
- Tian, Y.; Wen, H.; Qi, X.; Zhang, X.; Liu, S.; Li, B.; Sun, Y.; Li, J.; He, F.; Yang, W.; et al. Characterization of full-length transcriptome sequences and splice variants of Lateolabrax maculatus by single-molecule long-read sequencing and their involvement in salinity regulation. Front. Genet. 2019, 10, 1126. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, H.; Zhang, M.; Zhao, R.; Wang, S.; Qin, Q.; Wang, J.; Zhang, C.; Tao, M.; Ma, M.; et al. The hybrid genome of a new goldfish-like fish lineage provides insights into the origin of the goldfish. Front. Genet. 2020, 11, 122. [Google Scholar] [CrossRef] [Green Version]
- Stefaniuk, M.; Ropka-Molik, K. RNA sequencing as a powerful tool in searching for genes influencing health and performance traits of horses. J. Appl. Genet. 2016, 57, 199–206. [Google Scholar] [CrossRef]
- Abdelrahman, H.; ElHady, M.; Alcivar-Warren, A.; Allen, S.; Al-Tobasei, R.; Bao, L.; Beck, B.; Blackburn, H.; Bosworth, B.; Buchanan, J.; et al. Aquaculture genomics, genetics and breeding in the United States: Current status, challenges, and priorities for future research. BMC Genom. 2017, 18, 191. [Google Scholar] [CrossRef] [Green Version]
- Maduna, S.N.; Vivian-Smith, A.; Jónsdóttir, Ó.D.B.; Imsland, A.K.D.; Klütsch, C.F.C.; Nyman, T.; Eiken, H.G.; Hagen, S.B. Genome-and transcriptome-derived microsatellite loci in lumpfish Cyclopterus lumpus: Molecular tools for aquaculture, conservation and fisheries management. Sci. Rep. 2020, 10, 559. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Liang, X.F.; Sun, J.; Li, L.; Yu, Y.; Huang, W.; Qu, C.M.; Cao, L.; Bai, X.L.; Tao, Y.-X. Insights into food preference in hybrid F1 of Siniperca chuatsi (♀) × Siniperca scherzeri (♂) mandarin fish through transcriptome analysis. BMC Genom. 2013, 14, 601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caballero-Solares, A.; Xue, X.; Parrish, C.C.; Foroutani, M.B.; Taylor, R.G.; Rise, M.L. Changes in the liver transcriptome of farmed Atlantic salmon (Salmo salar) fed experimental diets based on terrestrial alternatives to fish meal and fish oil. BMC Genom. 2018, 19, 796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudhagar, A.; Kumar, G.; El-Matbouli, M. Transcriptome analysis based on RNA-Seq in understanding pathogenic mechanisms of diseases and the immune system of fish: A comprehensive review. Int. J. Mol. Sci. 2018, 19, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao Joe, J.T.; Chiou, P.P.; Kuo, C.Y.; Jia Lin, J.H.; Wu, J.L.; Lu, M.W. The microbiota profile and transcriptome analysis of immune response during metamorphosis stages in orange spotted grouper (Epinephelus coioides). Fish. Shellfish Immunol. 2019, 90, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.S.; Wang, L.; Song, K.; Lu, K.L.; Zhang, C.X.; Rahimnejad, S. Evaluation of protein requirement of spotted seabass (Lateolabrax maculatus) under two temperatures, and the liver transcriptome response to thermal stress. Aquaculture 2020, 516, 734615. [Google Scholar] [CrossRef]
- Xiong, Y.; Dong, S.; Huang, M.; Li, Y.; Wang, X.; Wang, F.; Ma, S.; Zhou, Y. Growth, osmoregulatory response, adenine nucleotide contents, and liver transcriptome analysis of steelhead trout (Oncorhynchus mykiss) under different salinity acclimation methods. Aquaculture 2020, 520, 734937. [Google Scholar] [CrossRef]
- Tymchuk, W.; Sakhrani, D.; Devlin, R. Domestication causes large-scale effects on gene expression in rainbow trout: Analysis of muscle, liver and brain transcriptomes. Gen. Comp. Endocrinol. 2009, 164, 175–183. [Google Scholar] [CrossRef]
- Vieira, F.A.; Thorne, M.A.S.; Stueber, K.; Darias, M.; Reinhardt, R.; Clark, M.S.; Gisbert, E.; Power, D.M. Comparative analysis of a teleost skeleton transcriptome provides insight into its regulation. Gen. Comp. Endocrinol. 2013, 191, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Li, E.; Li, T.; Xu, C.; Wang, X.; Lin, H.; Qin, J.G.; Chen, L. Transcriptome and molecular pathway analysis of the hepatopancreas in the pacific white shrimp Litopenaeus vannamei under chronic low-salinity stress. PLoS ONE 2015, 10, e0131503. [Google Scholar] [CrossRef] [Green Version]
- Dahle, M.K.; Wessel, Ø.; Timmerhaus, G.; Nyman, I.B.; Jørgensen, S.M.; Rimstad, E.; Krasnov, A. Transcriptome analyses of Atlantic salmon (Salmo salar L.) erythrocytes infected with piscine orthoreovirus (PRV). Fish. Shellfish Immunol. 2015, 45, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.; Paneru, B.; Al-Tobasei, R.; Abdouni, F.; Thorgaard, G.H.; Rexroad, C.E.; Yao, J. Transcriptome assembly, gene annotation and tissue gene expression atlas of the rainbow trout. PLoS ONE 2015, 10, e0121778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Król, E.; Douglas, A.; Tocher, D.R.; Crampton, V.O.; Speakman, J.R.; Secombes, C.J.; Martin, S.A.M. Differential responses of the gut transcriptome to plant protein diets in farmed Atlantic salmon. BMC Genom. 2016, 17, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moghadam, H.K.; Johnsen, H.; Robinson, N.; Andersen, Ø.H.; Jørgensen, E.; Johnsen, H.K.; Bæhr, V.J.; Tveiten, H. Impacts of early life stress on the methylome and transcriptome of Atlantic salmon. Sci. Rep. 2017, 7, 5023. [Google Scholar] [CrossRef] [PubMed]
- Robledo, D.; Rubiolo, J.A.; Cabaleiro, S.; Martínez, P.; Bouza, C. Differential gene expression and SNP association between fast- and slow-growing turbot (Scophthalmus maximus). Sci. Rep. 2017, 7, 12105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Guo, C.Y.; Wang, D.D.; Li, X.F.; Xiao, L.; Zhang, X.; You, X.; Shi, Q.; Hu, G.J.; Fang, C.; et al. Transcriptome analysis reveals the molecular mechanisms underlying growth superiority in a novel grouper hybrid (Epinephelus fuscogutatus♀ × E. lanceolatus♂). BMC Genet. 2016, 17, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maekawa, S.; Byadgi, O.; Chen, Y.C.; Aoki, T.; Takeyama, H.; Yoshida, T.; Hikima, J.I.; Sakai, M.; Wang, P.C.; Chen, S.C. Transcriptome analysis of immune response against Vibrio harveyi infection in orange-spotted grouper (Epinephelus coioides). Fish. Shellfish Immunol. 2017, 70, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Tan, X.; Xu, M.; Liu, Q.; Ye, H.; Zou, C.; Ye, C. Liver transcriptome analysis and de novo annotation of the orange-spotted groupers (Epinephelus coioides) under cold stress. Comp. Biochem. Physiol. Part. D Genom. Proteom. 2019, 29, 264–273. [Google Scholar] [CrossRef]
- Tai, H.M.; Huang, H.N.; Tsai, T.Y.; You, M.F.; Wu, H.Y.; Rajanbabu, V.; Chang, H.Y.; Pan, C.Y.; Chen, J.Y. Dietary supplementation of recombinant antimicrobial peptide Epinephelus lanceolatus piscidin improves growth performance and immune response in Gallus gallus domesticus. PLoS ONE 2020, 15, e0230021. [Google Scholar] [CrossRef] [Green Version]
- Ashton, D.T.; Ritchie, P.A.; Wellenreuther, M. Fifteen years of quantitative trait loci studies in fish: Challenges and future directions. Mol. Ecol. 2017, 26, 1465–1476. [Google Scholar] [CrossRef] [Green Version]
- Laurentino, T.G.; Moser, D.; Roesti, M.; Ammann, M.; Frey, A.; Ronco, F.; Kueng, B.; Berner, D. Genomic release-recapture experiment in the wild reveals within-generation polygenic selection in stickleback fish. Nat. Commun. 2020, 11, 1928. [Google Scholar] [CrossRef] [Green Version]
- Rey, C.; Darnaude, A.; Ferraton, F.; Guinand, B.; Bonhomme, F.; Bierne, N.; Gagnaire, P.-A. Within-generation polygenic selection shapes fitness-related traits across environments in juvenile sea bream. Genes 2020, 11, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tymchuk, W.E.; Biagi, C.; Withler, R.; Devlin, R.H. Growth and behavioral consequences of introgression of a domesticated aquaculture genotype into a native strain of coho salmon. Trans. Am. Fish. Soc. 2006, 135, 442–455. [Google Scholar] [CrossRef]
- Salem, M.; Vallejo, R.L.; Leeds, T.D.; Palti, Y.; Liu, S.; Sabbagh, A.; Rexroad, C.E., III; Yao, J. RNA-Seq identifies SNP markers for growth traits in rainbow trout. PLoS ONE 2012, 7, e36264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Z.; Niu, P.; Wang, M.; Huang, G.; Xu, S.; Sun, Y.; Xu, X.; Hou, Y.; Sun, X.; Yan, Y.; et al. Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp. Sci. Rep. 2016, 6, 22953. [Google Scholar] [CrossRef] [Green Version]
- Kishimoto, K.; Washio, Y.; Yoshiura, Y.; Toyoda, A.; Ueno, T.; Fukuyama, H.; Kato, K.; Kinoshita, M. Production of a breed of red sea bream Pagrus major with an increase of skeletal muscle mass and reduced body length by genome editing with CRISPR/Cas9. Aquaculture 2018, 495, 415–427. [Google Scholar] [CrossRef]
- Kim, J.; Cho, J.Y.; Kim, J.W.; Kim, H.C.; Noh, J.K.; Kim, Y.O.; Hwang, H.K.; Kim, W.J.; Yeo, S.Y.; An, C.M.; et al. CRISPR/Cas9-mediated myostatin disruption enhances muscle mass in the olive flounder Paralichthys olivaceus. Aquaculture 2019, 512, 734336. [Google Scholar] [CrossRef]
- Limborg, M.T.; Helyar, S.J.; De Bruyn, M.; Taylor, M.I.; Nielsen, E.E.; Ogden, R.; Carvalho, G.R.; Consortium, F.P.T.; Bekkevold, D. Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring (Clupea harengus). Mol. Ecol. 2012, 21, 3686–3703. [Google Scholar] [CrossRef]
- Du, X.; Li, L.; Zhang, S.; Meng, F.; Zhang, G. SNP identification by transcriptome sequencing and candidate gene-based association analysis for heat tolerance in the bay scallop Argopecten irradians. PLoS ONE 2014, 9, e104960. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, W.; Song, X.; Lin, Q.; Gui, J.-F.; Mei, J. Characterization and development of EST-SSR markers derived from transcriptome of yellow catfish. Molecules 2014, 19, 16402–16415. [Google Scholar] [CrossRef]
- Li, S.; Liu, H.; Bai, J.; Zhu, X. Transcriptome assembly and identification of genes and SNPs associated with growth traits in largemouth bass (Micropterus salmoides). Genetica 2017, 145, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Xiao, S.; Li, W.; Ye, K.; Wang, Z.Y. The identification of growth, immune related genes and marker discovery through transcriptome in the yellow drum (Nibea albiflora). Genes Genom 2018, 40, 881–891. [Google Scholar] [CrossRef]
- Wen, X.; Hu, Y.; Zhang, X.; Wei, X.; Wang, T.; Yin, S. Integrated application of multi-omics provides insights into cold stress responses in pufferfish Takifugu fasciatus. BMC Genom. 2019, 20, 563. [Google Scholar] [CrossRef] [Green Version]
- de los Ríos-Pérez, L.; Brunner, R.M.; Hadlich, F.; Rebl, A.; Kühn, C.; Wittenburg, D.; Goldammer, T.; Verleih, M. Comparative analysis of the transcriptome and distribution of putative SNPs in two rainbow trout (Oncorhynchus mykiss) breeding strains by using next-generation sequencing. Genes 2020, 11, 841. [Google Scholar] [CrossRef] [PubMed]
- Maqsood, H.M.; Ahmad, S.M. Advances in molecular markers and their applications in aquaculture and fisheries. Genet. Aquat. Org. 2017, 1, 27–41. [Google Scholar] [CrossRef]
- González, P.; Dettleff, P.; Valenzuela, C.; Estrada, J.M.; Valdés, J.A.; Meneses, C.; Molina, A. Evaluating the genetic structure of wild and commercial red cusk-eel (Genypterus chilensis) populations through the development of novel microsatellite markers from a reference transcriptome. Mol. Biol. Rep. 2019, 46, 5875–5882. [Google Scholar] [CrossRef]
- Xiao, M.; Bao, F.; Zhao, Y.; Hu, Q. Transcriptome sequencing and de novo analysis of the northern snakehead, Ophiocephalus argus. J. Genet. 2019, 98, 49. [Google Scholar] [CrossRef]
- Sanetra, M.; Henning, F.; Fukamachi, S.; Meyer, A. A microsatellite-based genetic linkage map of the cichlid fish, Astatotilapia burtoni (Teleostei): A comparison of genomic architectures among rapidly speciating cichlids. Genetics 2009, 182, 387. [Google Scholar] [CrossRef] [Green Version]
- Dawson, D.A.; Ball, A.D.; Spurgin, L.G.; Martín-Gálvez, D.; Stewart, I.R.K.; Horsburgh, G.J.; Potter, J.; Molina-Morales, M.; Bicknell, A.W.J.; Preston, S.A.J.; et al. High-utility conserved avian microsatellite markers enable parentage and population studies across a wide range of species. BMC Genom. 2013, 14, 176. [Google Scholar] [CrossRef] [Green Version]
- Roberge, C.; Normandeau, É.; Einum, S.; Guderley, H.; Bernatchez, L. Genetic consequences of interbreeding between farmed and wild Atlantic salmon: Insights from the transcriptome. Mol. Ecol. 2008, 17, 314–324. [Google Scholar] [CrossRef]
- Aramburu, O.; Ceballos, F.; Casanova, A.; Le Moan, A.; Hemmer-Hansen, J.; Bekkevold, D.; Bouza, C.; Martínez, P. Genomic signatures after five generations of intensive selective breeding: Runs of homozygosity and genetic diversity in representative domestic and wild populations of turbot (Scophthalmus maximus). Front. Genet. 2020, 11. [Google Scholar] [CrossRef]
- Yue, H.; Li, C.; Du, H.; Zhang, S.; Wei, Q. Sequencing and de novo assembly of the gonadal transcriptome of the endangered chinese sturgeon (Acipenser sinensis). PLoS ONE 2015, 10, e0127332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fovargue, R.; Bode, M.; Armsworth, P.R. Size and spacing rules can balance conservation and fishery management objectives for marine protected areas. J. Appl. Ecol. 2018, 55, 1050–1059. [Google Scholar] [CrossRef]
- Knibb, W.; Whatmore, P.; Lamont, R.; Quinn, J.; Powell, D.; Elizur, A.; Anderson, T.; Remilton, C.; Nguyen, N.H. Can genetic diversity be maintained in long term mass selected populations without pedigree information?—A case study using banana shrimp Fenneropenaeus merguiensis. Aquaculture 2014, 428–429, 71–78. [Google Scholar] [CrossRef]
- In, V.V.; O’Connor, W.; Dove, M.; Knibb, W. Can genetic diversity be maintained across multiple mass selection lines of Sydney rock oyster, Saccostrea glomerata despite loss within each? Aquaculture 2016, 454, 210–216. [Google Scholar] [CrossRef]
- Kohlmann, K.; Kersten, P.; Geßner, J.; Eroglu, O.; Firidin, S.; Ciorpac, M.; Taflan, E.; Suciu, R. Validation of 12 species-specific, tetrasomic microsatellite loci from the Russian sturgeon, Acipenser gueldenstaedtii, for genetic broodstock management. Aquac. Int. 2018, 26, 1365–1376. [Google Scholar] [CrossRef] [Green Version]
- Hsu, T.H.; Huang, C.W.; Lee, H.T.; Kuo, Y.H.; Liu, K.M.; Lin, C.H.; Gong, H.Y. Population genetic analysis for stock enhancement of silver sea bream (Rhabdosargus sarba) in Taiwan. Fishes 2020, 5, 19. [Google Scholar] [CrossRef]
- López, M.E.; Neira, R.; Yáñez, J.M. Applications in the search for genomic selection signatures in fish. Front. Genet. 2015, 5, 458. [Google Scholar] [CrossRef] [Green Version]
- Zenger, K.R.; Khatkar, M.S.; Jones, D.B.; Khalilisamani, N.; Jerry, D.R.; Raadsma, H.W. Genomic selection in aquaculture: Application, limitations and opportunities with special reference to marine shrimp and pearl oysters. Front. Genet. 2019, 9, 693. [Google Scholar] [CrossRef]
- Yáñez, J.M.; Newman, S.; Houston, R.D. Genomics in aquaculture to better understand species biology and accelerate genetic progress. Front. Genet. 2015, 6, 128. [Google Scholar] [CrossRef] [Green Version]
- Bailie, D.A.; Fitzpatrick, S.; Connolly, M.; Thiel, M.; Hynes, R.; Prodöhl, P.A. Genetic assessment of parentage in the caridean rock shrimp Rhynchocinetes typus based on microsatellite markers. J. Crust. Biol. 2014, 34, 658–662. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chen, Y.; Gong, Q.; Lai, J.; Du, J.; Deng, X. Paternity assignment in the polyploid Acipenser dabryanus based on a novel microsatellite marker system. PLoS ONE 2017, 12, e0185280. [Google Scholar] [CrossRef] [Green Version]
- Schulze, M.J.; Henriques, R.; Feldheim, K.A.; Bowie, R.C.K.; von der Heyden, S. How many daddies: Microsatellite genotyping reveals polyandry in a live-bearing clinid fish Muraenoclinus dorsalis. J. Fish. Biol. 2018, 92, 1435–1445. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Huang, H.; Meng, Z.; Zhang, Y.; Luo, J.; Chen, G.; Lin, H. Single nucleotide polymorphisms in the leptin-a gene and associations with growth traits in the orange-spotted grouper (Epinephelus coioides). Int. J. Mol. Sci. 2013, 14, 8625–8637. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Wei, Y.; Meng, Z.; Zhang, Y.; Liu, X.; Guo, L.; Luo, J.; Chen, G.; Lin, H. Polymorphisms of leptin-b gene associated with growth traits in orange-spotted grouper (Epinephelus coioides). Int. J. Mol. Sci. 2014, 15, 11996–12006. [Google Scholar] [CrossRef] [Green Version]
- Tsai, H.Y.; Hamilton, A.; Tinch, A.E.; Guy, D.R.; Gharbi, K.; Stear, M.J.; Matika, O.; Bishop, S.C.; Houston, R.D. Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a high density SNP array. BMC Genom. 2015, 16, 969. [Google Scholar] [CrossRef] [Green Version]
- Robledo, D.; Fernández, C.; Hermida, M.; Sciara, A.; Álvarez-Dios, J.A.; Cabaleiro, S.; Caamaño, R.; Martínez, P.; Bouza, C. Integrative transcriptome, genome and quantitative trait loci resources identify single nucleotide polymorphisms in candidate genes for growth traits in turbot. Int. J. Mol. Sci. 2016, 17, 243. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Huang, Y.; Hu, G.; Zhang, X.; Ruan, Z.; Zhao, X.; Guo, C.; Tang, Z.; Li, X.; You, X.; et al. Comparative transcriptomic study of muscle provides new insights into the growth superiority of a novel grouper hybrid. PLoS ONE 2016, 11, e0168802. [Google Scholar] [CrossRef]
- Yu, H.; You, X.; Li, J.; Zhang, X.; Zhang, S.; Jiang, S.; Lin, X.; Lin, H.-R.; Meng, Z.; Shi, Q. A genome-wide association study on growth traits in orange-spotted grouper (Epinephelus coioides) with RAD-seq genotyping. Sci. China Life Sci. 2018, 61, 934–946. [Google Scholar] [CrossRef]
- Kim, S.; Karsi, A.; Dunham, R.A.; Liu, Z. The skeletal muscle α-actin gene of channel catfish (Ictalurus punctatus) and its association with piscine specific SINE elements. Gene 2000, 252, 173–181. [Google Scholar] [CrossRef]
- Olson, T.M.; Doan, T.P.; Kishimoto, N.Y.; Whitby, F.G.; Ackerman, M.J.; Fananapazir, L. Inherited and de novo mutations in the cardiac actin gene cause hypertrophic cardiomyopathy. J. Mol. Cell. Cardiol. 2000, 32, 1687–1694. [Google Scholar] [CrossRef]
- Olson, T.M.; Michels, V.V.; Thibodeau, S.N.; Tai, Y.S.; Keating, M.T. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 1998, 280, 750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.Y.; Lee, J.A.; Nam, Y.K. Molecular characterization of three muscle alpha actin genes in mud loach (Misgurnus mizolepis; Cypriniformes). Fish. Aquatic. Sci. 2017, 20, 27. [Google Scholar] [CrossRef]
- Avey, S.R.; Ojehomon, M.; Dawson, J.F.; Gillis, T.E. How the expression of green fluorescent protein and human cardiac actin in the heart influences cardiac function and aerobic performance in zebrafish Danio rerio. J. Fish. Biol. 2018, 92, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Rauch, A.; Thiel, C.T.; Schindler, D.; Wick, U.; Crow, Y.J.; Ekici, A.B.; van Essen, A.J.; Goecke, T.O.; Al-Gazali, L.; Chrzanowska, K.H.; et al. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism. Science 2008, 319, 816. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Yu, J.; Zhuo, X.; Jiang, Q.; Zhang, C. Pericentrin contains five NESs and an NLS essential for its nucleocytoplasmic trafficking during the cell cycle. Cell Res. 2010, 20, 948–962. [Google Scholar] [CrossRef] [Green Version]
- Tsai, H.Y.; Hamilton, A.; Guy, D.R.; Tinch, A.E.; Bishop, S.C.; Houston, R.D. Verification of SNPs associated with growth traits in two populations of farmed Atlantic salmon. Int. J. Mol. Sci. 2016, 17, 5. [Google Scholar] [CrossRef]
- Robledo, D.; Palaiokostas, C.; Bargelloni, L.; Martínez, P.; Houston, R. Applications of genotyping by sequencing in aquaculture breeding and genetics. Rev. Aquac. 2018, 10, 670–682. [Google Scholar] [CrossRef]
- Best, C.; Ikert, H.; Kostyniuk, D.J.; Craig, P.M.; Navarro-Martin, L.; Marandel, L.; Mennigen, J.A. Epigenetics in teleost fish: From molecular mechanisms to physiological phenotypes. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2018, 224, 210–244. [Google Scholar] [CrossRef] [Green Version]
Broodstock | ||||||||
---|---|---|---|---|---|---|---|---|
Locus a | N | NA | NG | HO | HE | PIC | FIS | HWE |
Unigene18343 | 80 | 2 | 3 | 0.463 | 0.393 | 0.396 | −0.177 | ns |
Unigene24547 | 80 | 7 | 14 | 0.800 | 0.710 | 0.715 | −0.126 | ns |
Unigene64240 | 80 | 4 | 9 | 0.788 | 0.694 | 0.698 | −0.135 | ns |
CL4125.Contig1 | 80 | 7 | 17 | 0.825 | 0.749 | 0.753 | −0.102 | ns |
Efu_2–32 | 80 | 4 | 9 | 0.575 | 0.524 | 0.528 | −0.097 | ** |
Efu_2–33 | 80 | 3 | 4 | 0.513 | 0.502 | 0.505 | −0.021 | ns |
Efu_6–1 | 80 | 10 | 19 | 0.738 | 0.831 | 0.836 | 0.112 | ** |
Mean | 80.0 | 5.3 | 10.7 | 0.7 | 0.6 | 0.6 | −0.1 | |
±SD | ±0 | ±2.8 | ±6.2 | ±0.2 | ±0.2 | ±0.2 | ±0.1 | |
Juveniles | ||||||||
Locus a | N | NA | NG | HO | PIC | |||
Unigene18343 | 94 | 2 | 3 | 0.511 | 0.501 | |||
Unigene24547 | 94 | 4 | 4 | 1.000 | 0.753 | |||
Unigene64240 | 94 | 3 | 3 | 0.574 | 0.423 | |||
CL4125.Contig1 | 94 | 3 | 4 | 0.713 | 0.631 | |||
Efu_2–32 | 94 | 2 | 2 | 0.479 | 0.366 | |||
Efu_2–33 | 94 | 2 | 2 | 0.521 | 0.387 | |||
Efu_6–1 | 94 | 3 | 2 | 1.000 | 0.627 | |||
Mean | 94 | 2.7 | 2.9 | 0.7 | 0.5 | |||
±SD | ±0.0 | ±0.8 | ±0.9 | ±0.2 | ±0.1 |
Assay a | SNP | Amino Acid | Genotypes of Juveniles | Correlation with Growth Traits | Genotypes of Parent | |
---|---|---|---|---|---|---|
Female | Male | |||||
Unigene7626 | T/C | I/T | TT/TC | 0.046 * | TT | TC |
Unigene15453 | A/G | H/R | GG/AA | 0.253 | GA | GA |
Unigene18387 | C/A | H/N | AA/CA | 0.447 | CA | AA |
Unigene18772 | C/T | P/L | CC/CA | 0.475 | CA | CC |
Unigene22300 | G/T | STOP/L | GG/GT/TT | 0.155 | GT | GT |
CL2428.Contig3 | C/G | T/R | CC/CG | 0.259 | CG | CC |
CL2880.Contig2 | C/T | S/L | CC/CT/TT | 0.746 | CT | CT |
CL4922.Contig6 | A/G | S/G | AA/AG | 0.580 | AA | GA |
CL5621.Contig2 | G/A | R/K | AA/GA | 0.318 | AG | GG |
CL7963.Contig2 | T/G | V/G | GT/TT | 0.290 | TT | GT |
CL8791.Contig3 | A/C | K/Q | AA/CA | 0.032 * | AA | CA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, T.-H.; Chiu, Y.-T.; Lee, H.-T.; Gong, H.-Y.; Huang, C.-W. Development of EST-Molecular Markers from RNA Sequencing for Genetic Management and Identification of Growth Traits in Potato Grouper (Epinephelus tukula). Biology 2021, 10, 36. https://doi.org/10.3390/biology10010036
Hsu T-H, Chiu Y-T, Lee H-T, Gong H-Y, Huang C-W. Development of EST-Molecular Markers from RNA Sequencing for Genetic Management and Identification of Growth Traits in Potato Grouper (Epinephelus tukula). Biology. 2021; 10(1):36. https://doi.org/10.3390/biology10010036
Chicago/Turabian StyleHsu, Te-Hua, Yu-Ting Chiu, Hung-Tai Lee, Hong-Yi Gong, and Chang-Wen Huang. 2021. "Development of EST-Molecular Markers from RNA Sequencing for Genetic Management and Identification of Growth Traits in Potato Grouper (Epinephelus tukula)" Biology 10, no. 1: 36. https://doi.org/10.3390/biology10010036
APA StyleHsu, T. -H., Chiu, Y. -T., Lee, H. -T., Gong, H. -Y., & Huang, C. -W. (2021). Development of EST-Molecular Markers from RNA Sequencing for Genetic Management and Identification of Growth Traits in Potato Grouper (Epinephelus tukula). Biology, 10(1), 36. https://doi.org/10.3390/biology10010036