Breaking Barriers to an AIDS Model with Macaque-Tropic HIV-1 Derivatives
Abstract
:1. Introduction
2. Cross-Species Transmission of HIV-1
3. SIV and SHIV Macaque Models
4. Innate Cellular Restriction Factors
4.1. Overview
4.2. APOBEC3 Proteins
Restriction Factors | Mechanism of Inhibition | Counter Measures Used by Lentiviruses | Species–Specific Counter Measures | ||
---|---|---|---|---|---|
Restriction Factors | Inhibited by: | Resistant to: | |||
ABOBEC3 family | Introduce G to A mutations, reduce infectivity, may affect reverse transcription | Vif prevents encapsidation of APOBEC3 family proteins in to the progeny virions | RM, AGM A3G | SIVmacVif, SIVagmVif | HIV-1 Vif |
CPZ, hA3G | HIV-1 Vif | SIVagmVif | |||
BST2 | Restrict release of mature progeny virions from the cell surface | HIV-1 Vpu, SIV Nef, and HIV-2 Env overcome BST2 function either by degrading or downmodulation of cell surface expression | CPZ, hBST2 | HIV-1 Vpu | SIVmacNef |
RM, PTM BST2 | SIVmacNef | HIV-1 Vpu | |||
SAMHD1 | Reduces dNTP pool required for cDNA synthesis | Vpx leads to proteasome mediated degradation of SAMHD1 | Human, gibbon, RM SAMHD1 | Vpx from HIV-2rod, SIVmac, and SIVsm | HIV-1 Vpr |
Restriction Factors | Mechanism of Action | Escape Mechanism | TRIM Proteins | Resistant Viruses | Inhibited Viruses |
TRIM family | Bind to incoming viral capsid and block infection at or before reverse transcription | Viral capsid mutations confer resistance to TRIM5 family proteins in their natural host | RM, CM TRIM5α | SIVmac | HIV-1 |
Human TRIM5α | HIV-1 | N-MLV, SIVmac | |||
AGM TRIM5α | SIVagm | HIV-1, HIV-2, SIVmac | |||
OWM TRIMcyp | SIVmac | HIV-1 | |||
RM TRIMcyp | HIV-1 | HIV-2, SIVmac | |||
PTM TRIMcyp | HIV-1 | FIV, SIVagm, HIV-2 |
4.3. TRIM5α and TRIMcyp
4.4. BST2/Tetherin/CD317
4.5. SAMHD1
4.6. Role of Interferon
5. Macaque-Tropic HIV-1
5.1. Rational Design of Macaque Tropic-HIV-1
5.2. Unique Susceptibility of Pigtailed Macaques to HIV-1 Infection
Clone Name (Backbone) | Substitutions Made | Passaging of Viruses | In vitro Replication | In vivo Replication | Disease | References |
---|---|---|---|---|---|---|
stHIV-1 (NL4-3) | SIVmac239 capsid and vif | Yes | Replicated robustly in RM T-cells (221) after in vitro passaging | ? | ? | [178] |
NL-DT5R (NL4-3) | Cyclophilin A binding domain of SIV capsid and vif | Yes | Shows spreading infections in CM T-cell line and CD8+ T-cells depleted T-cells PTMs | Viremia becomes undetectable within 11 and 4 weeks post infection in PTMs and CMs respectively | No | [179,180] |
NL-DT5R6/7S (NL4-3) | Modified version of NL-DT5R | No | Replicates in CD8+T-cells depleted T-cells from CMs | ? | ? | [181] |
MN4-5S (NL4-3) | Modified version of NL-DT5R | No | Replicates in CD8+T-cells depleted PBMCs from CMs | Viremia becomes undetectable after 6 weeks post-infection in CMs | ? | [182] |
stHIV-1sv, stHIV-12v (NL4-3) | SIVmac vif or HIV-2 vif and SHIVKB9 env | No | Shows spreading infections in PTM PBMCs | Viremia becomes undetectable after 25 weeks post-infection in PTMs | No | [194] |
HSIV-vif (NL4-3) | SIVmne027 vif | No | Replicates efficiently in PTM PBMCs | Viremia detectable through 2 years post-infection in PTMs | No | [190] |
HSIV-vif-Yu2 (BRU-YU2) | SIVmne027 vif | No | Replicates efficiently in PTM PBMCs | ? | ? | [190] |
HSIV-vif-AD8 (NL-AD8) | SIVmne027 vif | No | Replicates efficiently in PTM PBMCs | ? | ? | [190] |
5.3. HIV-1 Derivatives with a Minimal SIV vif Substitution
6. Potential Problems with Simian Tropic HIV-1 Derivatives
7. Concluding Remarks
Acknowledgments
References
- Keele, B.F.; Jones, J.H.; Terio, K.A.; Estes, J.D.; Rudicell, R.S.; Wilson, M.L.; Li, Y.; Learn, G.H.; Beasley, T.M.; Schumacher-Stankey, J.; et al. Increased mortality and aids-like immunopathology in wild chimpanzees infected with sivcpz. Nature 2009, 460, 515–519. [Google Scholar]
- Fultz, P.N. Nonhuman primate models for aids. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 1993, 17, S230–S235. [Google Scholar]
- Gao, F.; Bailes, E.; Robertson, D.L.; Chen, Y.; Rodenburg, C.M.; Michael, S.F.; Cummins, L.B.; Arthur, L.O.; Peeters, M.; Shaw, G.M.; et al. Origin of Hiv-1 in the chimpanzee pan troglodytes troglodytes. Nature 1999, 397, 436–4414. [Google Scholar]
- Keele, B.F.; Van Heuverswyn, F.; Li, Y.; Bailes, E.; Takehisa, J.; Santiago, M.L.; Bibollet-Ruche, F.; Chen, Y.; Wain, L.V.; Liegeois, F.; et al. Chimpanzee reservoirs of pandemic and nonpandemic hiv-1. Science 2006, 313, 523–526. [Google Scholar]
- Plantier, J.C.; Leoz, M.; Dickerson, J.E.; De Oliveira, F.; Cordonnier, F.; Lemee, V.; Damond, F.; Robertson, D.L.; Simon, F. A new human immunodeficiency virus derived from gorillas. Nat. Med. 2009, 15, 871–872. [Google Scholar]
- Bailes, E.; Gao, F.; Bibollet-Ruche, F.; Courgnaud, V.; Peeters, M.; Marx, P.A.; Hahn, B.H.; Sharp, P.M. Hybrid origin of siv in chimpanzees. Science 2003, 300, 1713. [Google Scholar]
- Sauter, D.; Schindler, M.; Specht, A.; Landford, W.N.; Munch, J.; Kim, K.A.; Votteler, J.; Schubert, U.; Bibollet-Ruche, F.; Keele, B.F.; et al. Tetherin-driven adaptation of vpu and nef function and the evolution of pandemic and nonpandemic hiv-1 strains. Cell Host Micr. 2009, 6, 409–421. [Google Scholar] [CrossRef]
- Gaddis, N.C.; Sheehy, A.M.; Ahmad, K.M.; Swanson, C.M.; Bishop, K.N.; Beer, B.E.; Marx, P.A.; Gao, F.; Bibollet-Ruche, F.; Hahn, B.H.; et al. Further investigation of simian immunodeficiency virus vif function in human cells. J. Virol. 2004, 78, 12041–12046. [Google Scholar]
- Kratovac, Z.; Virgen, C.A.; Bibollet-Ruche, F.; Hahn, B.H.; Bieniasz, P.D.; Hatziioannou, T. Primate lentivirus capsid sensitivity to trim5 proteins. J. Virol. 2008, 82, 6772–6777. [Google Scholar]
- Lim, E.S.; Malik, H.S.; Emerman, M. Ancient adaptive evolution of tetherin shaped the functions of vpu and nef in human immunodeficiency virus and primate lentiviruses. J. Virol. 2010, 84, 7124–7134. [Google Scholar] [CrossRef]
- Hirsch, V.M.; Olmsted, R.A.; Murphey-Corb, M.; Purcell, R.H.; Johnson, P.R. An african primate lentivirus (sivsm) closely related to hiv-2. Nature 1989, 339, 389–392. [Google Scholar]
- Chen, Z.; Telfier, P.; Gettie, A.; Reed, P.; Zhang, L.; Ho, D.D.; Marx, P.A. Genetic characterization of new west african simian immunodeficiency virus sivsm: Geographic clustering of household-derived siv strains with human immunodeficiency virus type 2 subtypes and genetically diverse viruses from a single feral sooty mangabey troop. J. Virol. 1996, 70, 3617–3627. [Google Scholar]
- Santiago, M.L.; Range, F.; Keele, B.F.; Li, Y.; Bailes, E.; Bibollet-Ruche, F.; Fruteau, C.; Noe, R.; Peeters, M.; Brookfield, J.F.; et al. Simian immunodeficiency virus infection in free-ranging sooty mangabeys (cercocebus atys atys) from the tai forest, cote d'ivoire: Implications for the origin of epidemic human immunodeficiency virus type 2. J. Virol. 2005, 79, 12515–12527. [Google Scholar]
- Allan, J.S.; Short, M.; Taylor, M.E.; Su, S.; Hirsch, V.M.; Johnson, P.R.; Shaw, G.M.; Hahn, B.H. Species-specific diversity among simian immunodeficiency viruses from african green monkeys. J. Virol. 1991, 65, 2816–2828. [Google Scholar]
- Muller, M.C.; Saksena, N.K.; Nerrienet, E.; Chappey, C.; Herve, V.M.; Durand, J.P.; Legal-Campodonico, P.; Lang, M.C.; Digoutte, J.P.; Georges, A.J.; et al. Simian immunodeficiency viruses from central and western africa: Evidence for a new species-specific lentivirus in tantalus monkeys. J. Virol. 1993, 67, 1227–1235. [Google Scholar]
- VandeWoude, S.; Apetrei, C. Going wild: Lessons from naturally occurring t-lymphotropic lentiviruses. Clin. Microbiol. Rev. 2006, 19, 728–762. [Google Scholar] [CrossRef]
- Hirsch, V.M.; Dapolito, G.A.; Goldstein, S.; McClure, H.; Emau, P.; Fultz, P.N.; Isahakia, M.; Lenroot, R.; Myers, G.; Johnson, P.R. A distinct african lentivirus from sykes' monkeys. J. Virol. 1993, 67, 1517–1528. [Google Scholar]
- Daniel, M.D.; Letvin, N.L.; King, N.W.; Kannagi, M.; Sehgal, P.K.; Hunt, R.D.; Kanki, P.J.; Essex, M.; Desrosiers, R.C. Isolation of t-cell tropic htlv-iii-like retrovirus from macaques. Science 1985, 228, 1201–1204. [Google Scholar]
- Letvin, N.L.; Daniel, M.D.; Sehgal, P.K.; Desrosiers, R.C.; Hunt, R.D.; Waldron, L.M.; MacKey, J.J.; Schmidt, D.K.; Chalifoux, L.V.; King, N.W. Induction of aids-like disease in macaque monkeys with t-cell tropic retrovirus stlv-iii. Science 1985, 230, 71–73. [Google Scholar]
- Kestler, H.W., 3rd; Naidu, Y.N.; Kodama, T.; King, N.W.; Daniel, M.D.; Li, Y.; Desrosiers, R.C. Use of infectious molecular clones of simian immunodeficiency virus for pathogenesis studies. J. Med. Primatology 1989, 18, 305–309. [Google Scholar]
- Naidu, Y.M.; Kestler, H.W., 3rd; Li, Y.; Butler, C.V.; Silva, D.P.; Schmidt, D.K.; Troup, C.D.; Sehgal, P.K.; Sonigo, P.; Daniel, M.D.; et al. Characterization of infectious molecular clones of simian immunodeficiency virus (sivmac) and human immunodeficiency virus type 2: Persistent infection of rhesus monkeys with molecularly cloned sivmac. J. Virol. 1988, 62, 4691–4696. [Google Scholar]
- Benveniste, R.E.; Morton, W.R.; Clark, E.A.; Tsai, C.C.; Ochs, H.D.; Ward, J.M.; Kuller, L.; Knott, W.B.; Hill, R.W.; Gale, M.J.; et al. Inoculation of baboons and macaques with simian immunodeficiency virus/mne, a primate lentivirus closely related to human immunodeficiency virus type 2. J. Virol. 1988, 62, 2091–2101. [Google Scholar]
- Lewis, M.G.; Zack, P.M.; Elkins, W.R.; Jahrling, P.B. Infection of rhesus and cynomolgus macaques with a rapidly fatal siv (sivsmm/pbj) isolate from sooty mangabeys. AIDS Res. Hum. Retroviruses 1992, 8, 1631–1639. [Google Scholar] [CrossRef]
- Kestler, H.W., 3rd; Ringler, D.J.; Mori, K.; Panicali, D.L.; Sehgal, P.K.; Daniel, M.D.; Desrosiers, R.C. Importance of the nef gene for maintenance of high virus loads and for development of aids. Cell 1991, 65, 651–662. [Google Scholar] [CrossRef]
- Whatmore, A.M.; Cook, N.; Hall, G.A.; Sharpe, S.; Rud, E.W.; Cranage, M.P. Repair and evolution of nef in vivo modulates simian immunodeficiency virus virulence. J. Virol. 1995, 69, 5117–5123. [Google Scholar]
- Gibbs, J.S.; Lackner, A.A.; Lang, S.M.; Simon, M.A.; Sehgal, P.K.; Daniel, M.D.; Desrosiers, R.C. Progression to aids in the absence of a gene for vpr or vpx. J. Virol. 1995, 69, 2378–2383. [Google Scholar]
- Lang, S.M.; Weeger, M.; Stahl-Hennig, C.; Coulibaly, C.; Hunsmann, G.; Muller, J.; Muller-Hermelink, H.; Fuchs, D.; Wachter, H.; Daniel, M.M.; et al. Importance of vpr for infection of rhesus monkeys with simian immunodeficiency virus. J. Virol. 1993, 67, 902–912. [Google Scholar]
- Kimata, J.T. Hiv-1 fitness and disease progression: Insights from the siv-macaque model. Curr. HIV Res. 2006, 4, 65–77. [Google Scholar] [CrossRef]
- Belshan, M.; Kimata, J.T.; Brown, C.; Cheng, X.; McCulley, A.; Larsen, A.; Thippeshappa, R.; Hodara, V.; Giavedoni, L.; Hirsch, V.; et al. Vpx is critical for sivmne infection of pigtail macaques. Retrovirology 2012, 9, 32. [Google Scholar] [CrossRef]
- Hirsch, V.M.; Sharkey, M.E.; Brown, C.R.; Brichacek, B.; Goldstein, S.; Wakefield, J.; Byrum, R.; Elkins, W.R.; Hahn, B.H.; Lifson, J.D.; et al. Vpx is required for dissemination and pathogenesis of siv(sm) pbj: Evidence of macrophage-dependent viral amplification. Nat. Med. 1998, 4, 1401–1408. [Google Scholar]
- Ambrose, Z.; KewalRamani, V.N.; Bieniasz, P.D.; Hatziioannou, T. Hiv/aids: In search of an animal model. Trends Biotechnol. 2007, 25, 333–337. [Google Scholar] [CrossRef]
- Human Retroviruses and Aids: A Compilation and Analysis of Nucleic acid and Amino Acid Sequences; Myers, G.B.; Rabson, A.B.; Smith, T.F.; Wong-Staal, F. (Eds.) Theoretical Biology and Biophysics Group T- 10, K7 10, Los Alamos National Laboratory: Los Alamos, NM, USA, 1990.
- Isaka, Y.; Sato, A.; Kawauchi, S.; Suyama, A.; Miki, S.; Hayami, M.; Fujiwara, T. Construction of the chimeric reverse transcriptase of simian immunodeficiency virus sensitive to nonnucleoside reverse transcriptase inhibitor. Microbiol. Immunol. 1998, 42, 195–202. [Google Scholar]
- Ambrose, Z.; Boltz, V.; Palmer, S.; Coffin, J.M.; Hughes, S.H.; Kewalramani, V.N. In vitro characterization of a simian immunodeficiency virus-human immunodeficiency virus (hiv) chimera expressing hiv type 1 reverse transcriptase to study antiviral resistance in pigtail macaques. J. Virol. 2004, 78, 13553–13561. [Google Scholar]
- Pantophlet, R.; Burton, D.R. Gp120: Target for neutralizing hiv-1 antibodies. Annu. Rev. Immunol. 2006, 24, 739–769. [Google Scholar] [CrossRef]
- Shibata, R.; Kawamura, M.; Sakai, H.; Hayami, M.; Ishimoto, A.; Adachi, A. Generation of a chimeric human and simian immunodeficiency virus infectious to monkey peripheral blood mononuclear cells. J. Virol. 1991, 65, 3514–3520. [Google Scholar]
- Yuste, E.; Sanford, H.B.; Carmody, J.; Bixby, J.; Little, S.; Zwick, M.B.; Greenough, T.; Burton, D.R.; Richman, D.D.; Desrosiers, R.C.; et al. Simian immunodeficiency virus engrafted with human immunodeficiency virus type 1 (hiv-1)-specific epitopes: Replication, neutralization, and survey of hiv-1-positive plasma. J. Virol. 2006, 80, 3030–3041. [Google Scholar]
- Luciw, P.A.; Pratt-Lowe, E.; Shaw, K.E.; Levy, J.A.; Cheng-Mayer, C. Persistent infection of rhesus macaques with t-cell-line-tropic and macrophage-tropic clones of simian/human immunodeficiency viruses (shiv). Proc. Natl. Acad. Sci. USA 1995, 92, 7490–7494. [Google Scholar]
- Reimann, K.A.; Li, J.T.; Veazey, R.; Halloran, M.; Park, I.W.; Karlsson, G.B.; Sodroski, J.; Letvin, N.L. A chimeric simian/human immunodeficiency virus expressing a primary patient human immunodeficiency virus type 1 isolate env causes an aids-like disease after in vivo passage in rhesus monkeys. J. Virol. 1996, 70, 6922–6928. [Google Scholar]
- Joag, S.V.; Li, Z.; Foresman, L.; Stephens, E.B.; Zhao, L.J.; Adany, I.; Pinson, D.M.; McClure, H.M.; Narayan, O. Chimeric simian/human immunodeficiency virus that causes progressive loss of cd4+ t cells and aids in pig-tailed macaques. J. Virol. 1996, 70, 3189–3197. [Google Scholar]
- Harouse, J.M.; Gettie, A.; Tan, R.C.; Blanchard, J.; Cheng-Mayer, C. Distinct pathogenic sequela in rhesus macaques infected with ccr5 or cxcr4 utilizing shivs. Science 1999, 284, 816–819. [Google Scholar]
- Tan, R.C.; Harouse, J.M.; Gettie, A.; Cheng-Mayer, C. In vivo adaptation of shiv(sf162): Chimeric virus expressing a nsi, ccr5-specific envelope protein. J. Med. Primatology 1999, 28, 164–168. [Google Scholar] [CrossRef]
- Song, R.J.; Chenine, A.L.; Rasmussen, R.A.; Ruprecht, C.R.; Mirshahidi, S.; Grisson, R.D.; Xu, W.; Whitney, J.B.; Goins, L.M.; Ong, H.; et al. Molecularly cloned shiv-1157ipd3n4: A highly replication- competent, mucosally transmissible r5 simian-human immunodeficiency virus encoding hiv clade c env. J. Virol. 2006, 80, 8729–8738. [Google Scholar]
- Shibata, R.; Igarashi, T.; Haigwood, N.; Buckler-White, A.; Ogert, R.; Ross, W.; Willey, R.; Cho, M.W.; Martin, M.A. Neutralizing antibody directed against the hiv-1 envelope glycoprotein can completely block hiv-1/siv chimeric virus infections of macaque monkeys. Nat. Med. 1999, 5, 204–210. [Google Scholar] [CrossRef]
- Nishimura, Y.; Igarashi, T.; Haigwood, N.L.; Sadjadpour, R.; Donau, O.K.; Buckler, C.; Plishka, R.J.; Buckler-White, A.; Martin, M.A. Transfer of neutralizing igg to macaques 6 h but not 24 h after shiv infection confers sterilizing protection: Implications for hiv-1 vaccine development. Proc. Natl. Acad. Sci. USA 2003, 100, 15131–15136. [Google Scholar]
- Mascola, J.R.; Stiegler, G.; VanCott, T.C.; Katinger, H.; Carpenter, C.B.; Hanson, C.E.; Beary, H.; Hayes, D.; Frankel, S.S.; Birx, D.L.; et al. Protection of macaques against vaginal transmission of a pathogenic hiv-1/siv chimeric virus by passive infusion of neutralizing antibodies. Nat. Med. 2000, 6, 207–210. [Google Scholar]
- Baba, T.W.; Liska, V.; Hofmann-Lehmann, R.; Vlasak, J.; Xu, W.; Ayehunie, S.; Cavacini, L.A.; Posner, M.R.; Katinger, H.; Stiegler, G.; et al. Human neutralizing monoclonal antibodies of the igg1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat. Med. 2000, 6, 200–206. [Google Scholar]
- Amara, R.R.; Villinger, F.; Altman, J.D.; Lydy, S.L.; O'Neil, S.P.; Staprans, S.I.; Montefiori, D.C.; Xu, Y.; Herndon, J.G.; Wyatt, L.S.; et al. Control of a mucosal challenge and prevention of aids by a multiprotein DNA/mva vaccine. Science 2001, 292, 69–74. [Google Scholar]
- Matano, T.; Kano, M.; Nakamura, H.; Takeda, A.; Nagai, Y. Rapid appearance of secondary immune responses and protection from acute cd4 depletion after a highly pathogenic immunodeficiency virus challenge in macaques vaccinated with a DNA prime/sendai virus vector boost regimen. J. Virol. 2001, 75, 11891–11896. [Google Scholar]
- Lederman, M.M.; Veazey, R.S.; Offord, R.; Mosier, D.E.; Dufour, J.; Mefford, M.; Piatak, M., Jr.; Lifson, J.D.; Salkowitz, J.R.; Rodriguez, B.; et al. Prevention of vaginal shiv transmission in rhesus macaques through inhibition of ccr5. Science 2004, 306, 485–487. [Google Scholar]
- Uberla, K.; Stahl-Hennig, C.; Bottiger, D.; Matz-Rensing, K.; Kaup, F.J.; Li, J.; Haseltine, W.A.; Fleckenstein, B.; Hunsmann, G.; Oberg, B.; et al. Animal model for the therapy of acquired immunodeficiency syndrome with reverse transcriptase inhibitors. Proc. Natl. Acad. Sci. USA 1995, 92, 8210–8214. [Google Scholar]
- Balzarini, J.; De Clercq, E.; Uberla, K. Siv/hiv-1 hybrid virus expressing the reverse transcriptase gene of hiv-1 remains sensitive to hiv-1-specific reverse transcriptase inhibitors after passage in rhesus macaques. Journal of acquired immune deficiency syndromes and human retrovirology : official publication of the International Retrovirology Association 1997, 15, 1–4. [Google Scholar] [CrossRef]
- Akiyama, H.; Ido, E.; Akahata, W.; Kuwata, T.; Miura, T.; Hayami, M. Construction and in vivo infection of a new simian/human immunodeficiency virus chimera containing the reverse transcriptase gene and the 3' half of the genomic region of human immunodeficiency virus type 1. J. Gen. Virol. 2003, 84, 1663–1669. [Google Scholar] [CrossRef]
- Ambrose, Z.; Palmer, S.; Boltz, V.F.; Kearney, M.; Larsen, K.; Polacino, P.; Flanary, L.; Oswald, K.; Piatak, M., Jr.; Smedley, J.; et al. Suppression of viremia and evolution of human immunodeficiency virus type 1 drug resistance in a macaque model for antiretroviral therapy. J. Virol. 2007, 81, 12145–12155. [Google Scholar]
- North, T.W.; Van Rompay, K.K.; Higgins, J.; Matthews, T.B.; Wadford, D.A.; Pedersen, N.C.; Schinazi, R.F. Suppression of virus load by highly active antiretroviral therapy in rhesus macaques infected with a recombinant simian immunodeficiency virus containing reverse transcriptase from human immunodeficiency virus type 1. J. Virol. 2005, 79, 7349–7354. [Google Scholar]
- Hofman, M.J.; Higgins, J.; Matthews, T.B.; Pedersen, N.C.; Tan, C.; Schinazi, R.F.; North, T.W. Efavirenz therapy in rhesus macaques infected with a chimera of simian immunodeficiency virus containing reverse transcriptase from human immunodeficiency virus type 1. Antimicrob. Agents Chemother. 2004, 48, 3483–3490. [Google Scholar]
- Sawyer, S.L.; Emerman, M.; Malik, H.S. Ancient adaptive evolution of the primate antiviral DNA-editing enzyme apobec3g. PLoS Biol. 2004, 2, E275. [Google Scholar] [CrossRef] [Green Version]
- Sawyer, S.L.; Wu, L.I.; Emerman, M.; Malik, H.S. Positive selection of primate trim5alpha identifies a critical species-specific retroviral restriction domain. Proc. Natl. Acad. Sci. USA 2005, 102, 2832–2837. [Google Scholar]
- McNatt, M.W.; Zang, T.; Hatziioannou, T.; Bartlett, M.; Fofana, I.B.; Johnson, W.E.; Neil, S.J.; Bieniasz, P.D. Species-specific activity of hiv-1 vpu and positive selection of tetherin transmembrane domain variants. PLoS Pathog. 2009, 5, e1000300. [Google Scholar]
- Liu, H.L.; Wang, Y.Q.; Liao, C.H.; Kuang, Y.Q.; Zheng, Y.T.; Su, B. Adaptive evolution of primate trim5alpha, a gene restricting hiv-1 infection. Gene 2005, 362, 109–116. [Google Scholar] [CrossRef]
- Lim, E.S.; Fregoso, O.I.; McCoy, C.O.; Matsen, F.A.; Malik, H.S.; Emerman, M. The ability of primate lentiviruses to degrade the monocyte restriction factor samhd1 preceded the birth of the viral accessory protein vpx. Cell Host Microb. 2012, 11, 194–204. [Google Scholar] [CrossRef]
- Laguette, N.; Rahm, N.; Sobhian, B.; Chable-Bessia, C.; Munch, J.; Snoeck, J.; Sauter, D.; Switzer, W.M.; Heneine, W.; Kirchhoff, F.; et al. Evolutionary and functional analyses of the interaction between the myeloid restriction factor samhd1 and the lentiviral vpx protein. Cell Host Microb. 2012, 11, 205–217. [Google Scholar] [CrossRef]
- Zhang, C.; de Silva, S.; Wang, J.H.; Wu, L. Co-evolution of primate samhd1 and lentivirus vpx leads to the loss of the vpx gene in hiv-1 ancestor. PloS One 2012, 7, e37477. [Google Scholar]
- Jarmuz, A.; Chester, A.; Bayliss, J.; Gisbourne, J.; Dunham, I.; Scott, J.; Navaratnam, N. An anthropoid-specific locus of orphan c to u rna-editing enzymes on chromosome 22. Genomics 2002, 79, 285–296. [Google Scholar]
- Sheehy, A.M.; Gaddis, N.C.; Choi, J.D.; Malim, M.H. Isolation of a human gene that inhibits hiv-1 infection and is suppressed by the viral vif protein. Nature 2002, 418, 646–650. [Google Scholar]
- Sheehy, A.M.; Gaddis, N.C.; Malim, M.H. The antiretroviral enzyme apobec3g is degraded by the proteasome in response to hiv-1 vif. Nat. Med. 2003, 9, 1404–1407. [Google Scholar] [CrossRef]
- Strebel, K.; Khan, M.A. Apobec3g encapsidation into hiv-1 virions: Which rna is it? Retrovirology 2008, 5, 55. [Google Scholar] [CrossRef]
- Xu, H.; Chertova, E.; Chen, J.; Ott, D.E.; Roser, J.D.; Hu, W.S.; Pathak, V.K. Stoichiometry of the antiviral protein apobec3g in hiv-1 virions. Virology 2007, 360, 247–256. [Google Scholar] [CrossRef]
- Bishop, K.N.; Holmes, R.K.; Sheehy, A.M.; Davidson, N.O.; Cho, S.-J.; Malim, M.H. Cytidine deamination of retroviral DNA by diverse apobec proteins. Curr. Biol. 2004, 14, 1392–1396. [Google Scholar]
- Harris, R.S.; Bishop, K.N.; Sheehy, A.M.; Craig, H.M.; Petersen-Mahrt, S.K.; Watt, I.N.; Neuberger, M.S.; Malim, M.H. DNA deamination mediates innate immunity to retroviral infection. Cell 2003, 113, 803–809. [Google Scholar] [CrossRef]
- Mangeat, B.; Turelli, P.; Caron, G.; Friedli, M.; Perrin, L.; Trono, D. Broad antiretroviral defence by human apobec3g through lethal editing of nascent reverse transcripts. Nature 2003, 424, 99–103. [Google Scholar]
- Zhang, H.; Yang, B.; Pomerantz, R.J.; Zhang, C.; Arunachalam, S.C.; Gao, L. The cytidine deaminase cem15 induces hypermutation in newly synthesized hiv-1 DNA. Nature 2003, 424, 94–98. [Google Scholar]
- Yang, B.; Chen, K.; Zhang, C.; Huang, S.; Zhang, H. Virion-associated uracil DNA glycosylase-2 and apurinic/apyrimidinic endonuclease are involved in the degradation of apobec3g-edited nascent hiv-1 DNA. J. Biol. Chem. 2007, 282, 11667–11675. [Google Scholar]
- Casartelli, N.; Guivel-Benhassine, F.; Bouziat, R.; Brandler, S.; Schwartz, O.; Moris, A. The antiviral factor apobec3g improves ctl recognition of cultured hiv-infected t cells. J. Exp. Med. 2010, 207, 39–49. [Google Scholar] [CrossRef]
- Liddament, M.T.; Brown, W.L.; Schumacher, A.J.; Harris, R.S. Apobec3f properties and hypermutation preferences indicate activity against hiv-1 in vivo. Curr. Biol. CB 2004, 14, 1385–1391. [Google Scholar] [CrossRef]
- Wiegand, H.L.; Doehle, B.P.; Bogerd, H.P.; Cullen, B.R. A second human antiretroviral factor, apobec3f, is suppressed by the hiv-1 and hiv-2 vif proteins. EMBO J. 2004, 23, 2451–2458. [Google Scholar] [CrossRef]
- Zheng, Y.H.; Irwin, D.; Kurosu, T.; Tokunaga, K.; Sata, T.; Peterlin, B.M. Human apobec3f is another host factor that blocks human immunodeficiency virus type 1 replication. J. Virol. 2004, 78, 6073–6076. [Google Scholar]
- Bourara, K.; Liegler, T.J.; Grant, R.M. Target cell apobec3c can induce limited g-to-a mutation in hiv-1. PLoS Pathog. 2007, 3, 1477–1485. [Google Scholar]
- Dang, Y.; Wang, X.; Esselman, W.J.; Zheng, Y.H. Identification of apobec3de as another antiretroviral factor from the human apobec family. J. Virol. 2006, 80, 10522–10533. [Google Scholar] [CrossRef]
- Bishop, K.N.; Verma, M.; Kim, E.Y.; Wolinsky, S.M.; Malim, M.H. Apobec3g inhibits elongation of hiv-1 reverse transcripts. PLoS Pathog. 2008, 4, e1000231. [Google Scholar] [CrossRef]
- Holmes, R.K.; Koning, F.A.; Bishop, K.N.; Malim, M.H. Apobec3f can inhibit the accumulation of hiv-1 reverse transcription products in the absence of hypermutation. Comparisons with apobec3g. J. Biol. Chem. 2007, 282, 2587–2595. [Google Scholar]
- Bishop, K.N.; Holmes, R.K.; Malim, M.H. Antiviral potency of apobec proteins does not correlate with cytidine deamination. J. Virol. 2006, 80, 8450–8458. [Google Scholar]
- Conticello, S.G.; Harris, R.S.; Neuberger, M.S. The vif protein of hiv triggers degradation of the human antiretroviral DNA deaminase apobec3g. Curr. Biol. CB 2003, 13, 2009–2013. [Google Scholar] [CrossRef]
- Kobayashi, M.; Takaori-Kondo, A.; Miyauchi, Y.; Iwai, K.; Uchiyama, T. Ubiquitination of apobec3g by an hiv-1 vif-cullin5-elongin b-elongin c complex is essential for vif function. J. Biol. Chem. 2005, 280, 18573–18578. [Google Scholar]
- Marin, M.; Rose, K.M.; Kozak, S.L.; Kabat, D. Hiv-1 vif protein binds the editing enzyme apobec3g and induces its degradation. Nat. Med. 2003, 9, 1398–1403. [Google Scholar] [CrossRef]
- Mehle, A.; Strack, B.; Ancuta, P.; Zhang, C.; McPike, M.; Gabuzda, D. Vif overcomes the innate antiviral activity of apobec3g by promoting its degradation in the ubiquitin-proteasome pathway. J. Biol. Chem. 2004, 279, 7792–7798. [Google Scholar]
- Yu, X.; Yu, Y.; Liu, B.; Luo, K.; Kong, W.; Mao, P.; Yu, X.F. Induction of apobec3g ubiquitination and degradation by an hiv-1 vif-cul5-scf complex. Science 2003, 302, 1056–1060. [Google Scholar]
- Kao, S.; Khan, M.A.; Miyagi, E.; Plishka, R.; Buckler-White, A.; Strebel, K. The human immunodeficiency virus type 1 vif protein reduces intracellular expression and inhibits packaging of apobec3g (cem15), a cellular inhibitor of virus infectivity. J. Virol. 2003, 77, 11398–11407. [Google Scholar]
- Stopak, K.; de Noronha, C.; Yonemoto, W.; Greene, W.C. Hiv-1 vif blocks the antiviral activity of apobec3g by impairing both its translation and intracellular stability. Mol. cell 2003, 12, 591–601. [Google Scholar]
- Mariani, R.; Chen, D.; Schrofelbauer, B.; Navarro, F.; Konig, R.; Bollman, B.; Munk, C.; Nymark-McMahon, H.; Landau, N.R. Species-specific exclusion of apobec3g from hiv-1 virions by vif. Cell 2003, 114, 21–31. [Google Scholar] [CrossRef]
- Bogerd, H.P.; Doehle, B.P.; Wiegand, H.L.; Cullen, B.R. A single amino acid difference in the host apobec3g protein controls the primate species specificity of hiv type 1 virion infectivity factor. Proc. Natl. Acad. Sci. USA 2004, 101, 3770–3774. [Google Scholar]
- Mangeat, B.; Turelli, P.; Liao, S.; Trono, D. A single amino acid determinant governs the species-specific sensitivity of apobec3g to vif action. J. Biol. Chem. 2004, 279, 14481–14483. [Google Scholar]
- Schrofelbauer, B.; Chen, D.; Landau, N.R. A single amino acid of apobec3g controls its species-specific interaction with virion infectivity factor (vif). Proc. Natl. Acad. Sci. USA 2004, 101, 3927–3932. [Google Scholar] [CrossRef]
- Xu, H.; Svarovskaia, E.S.; Barr, R.; Zhang, Y.; Khan, M.A.; Strebel, K.; Pathak, V.K. A single amino acid substitution in human apobec3g antiretroviral enzyme confers resistance to hiv-1 virion infectivity factor-induced depletion. Proc. Natl. Acad. Sci. USA 2004, 101, 5652–5657. [Google Scholar]
- Schrofelbauer, B.; Senger, T.; Manning, G.; Landau, N.R. Mutational alteration of human immunodeficiency virus type 1 vif allows for functional interaction with nonhuman primate apobec3g. J. Virol. 2006, 80, 5984–5991. [Google Scholar] [CrossRef]
- Cowan, S.; Hatziioannou, T.; Cunningham, T.; Muesing, M.A.; Gottlinger, H.G.; Bieniasz, P.D. Cellular inhibitors with fv1-like activity restrict human and simian immunodeficiency virus tropism. Proc. Natl. Acad. Sci. USA 2002, 99, 11914–11919. [Google Scholar]
- Munk, C.; Brandt, S.M.; Lucero, G.; Landau, N.R. A dominant block to hiv-1 replication at reverse transcription in simian cells. Proc. Natl. Acad. Sci. USA 2002, 99, 13843–13848. [Google Scholar]
- Besnier, C.; Takeuchi, Y.; Towers, G. Restriction of lentivirus in monkeys. Proc. Natl. Acad. Sci. USA 2002, 99, 11920–11925. [Google Scholar]
- Hatziioannou, T.; Cowan, S.; Goff, S.P.; Bieniasz, P.D.; Towers, G.J. Restriction of multiple divergent retroviruses by lv1 and ref1. EMBO J. 2003, 22, 385–394. [Google Scholar]
- Stremlau, M.; Owens, C.M.; Perron, M.J.; Kiessling, M.; Autissier, P.; Sodroski, J. The cytoplasmic body component trim5alpha restricts hiv-1 infection in old world monkeys. Nature 2004, 427, 848–853. [Google Scholar]
- Stremlau, M.; Perron, M.; Lee, M.; Li, Y.; Song, B.; Javanbakht, H.; Diaz-Griffero, F.; Anderson, D.J.; Sundquist, W.I.; Sodroski, J. Specific recognition and accelerated uncoating of retroviral capsids by the trim5alpha restriction factor. Proc. Natl. Acad. Sci. USA 2006, 103, 5514–5519. [Google Scholar]
- Anderson, J.L.; Campbell, E.M.; Wu, X.; Vandegraaff, N.; Engelman, A.; Hope, T.J. Proteasome inhibition reveals that a functional preintegration complex intermediate can be generated during restriction by diverse trim5 proteins. J. Virol. 2006, 80, 9754–9760. [Google Scholar]
- Wu, X.; Anderson, J.L.; Campbell, E.M.; Joseph, A.M.; Hope, T.J. Proteasome inhibitors uncouple rhesus trim5alpha restriction of hiv-1 reverse transcription and infection. Proc. Natl. Acad. Sci. USA 2006, 103, 7465–7470. [Google Scholar]
- Hofmann, W.; Schubert, D.; LaBonte, J.; Munson, L.; Gibson, S.; Scammell, J.; Ferrigno, P.; Sodroski, J. Species-specific, postentry barriers to primate immunodeficiency virus infection. J. Virol. 1999, 73, 10020–10028. [Google Scholar]
- Sayah, D.M.; Sokolskaja, E.; Berthoux, L.; Luban, J. Cyclophilin a retrotransposition into trim5 explains owl monkey resistance to hiv-1. Nature 2004, 430, 569–573. [Google Scholar]
- Nisole, S.; Lynch, C.; Stoye, J.P.; Yap, M.W. A trim5-cyclophilin a fusion protein found in owl monkey kidney cells can restrict hiv-1. Proc. Natl. Acad. Sci. USA 2004, 101, 13324–13328. [Google Scholar]
- Sokolskaja, E.; Sayah, D.M.; Luban, J. Target cell cyclophilin a modulates human immunodeficiency virus type 1 infectivity. J. Virol. 2004, 78, 12800–12808. [Google Scholar]
- Hatziioannou, T.; Perez-Caballero, D.; Cowan, S.; Bieniasz, P.D. Cyclophilin interactions with incoming human immunodeficiency virus type 1 capsids with opposing effects on infectivity in human cells. J. Virol. 2005, 79, 176–183. [Google Scholar]
- Keckesova, Z.; Ylinen, L.M.; Towers, G.J. Cyclophilin a renders human immunodeficiency virus type 1 sensitive to old world monkey but not human trim5 alpha antiviral activity. J. Virol. 2006, 80, 4683–4690. [Google Scholar]
- Berthoux, L.; Sebastian, S.; Sokolskaja, E.; Luban, J. Cyclophilin a is required for trim5{alpha}-mediated resistance to hiv-1 in old world monkey cells. Proc. Natl. Acad. Sci. USA 2005, 102, 14849–14853. [Google Scholar]
- Nakayama, E.E.; Miyoshi, H.; Nagai, Y.; Shioda, T. A specific region of 37 amino acid residues in the spry (b30.2) domain of african green monkey trim5alpha determines species-specific restriction of simian immunodeficiency virus sivmac infection. J. Virol. 2005, 79, 8870–8877. [Google Scholar]
- Virgen, C.A.; Kratovac, Z.; Bieniasz, P.D.; Hatziioannou, T. Independent genesis of chimeric trim5-cyclophilin proteins in two primate species. Proc. Natl. Acad. Sci. USA 2008, 105, 3563–3568. [Google Scholar]
- Nakayama, E.E.; Shioda, T. Anti-retroviral activity of trim5 alpha. Rev. Med. Virol. 2010, 20, 77–92. [Google Scholar] [CrossRef]
- Hatziioannou, T.; Perez-Caballero, D.; Yang, A.; Cowan, S.; Bieniasz, P.D. Retrovirus resistance factors ref1 and lv1 are species-specific variants of trim5alpha. Proc. Natl. Acad. Sci. USA 2004, 101, 10774–10779. [Google Scholar]
- Keckesova, Z.; Ylinen, L.M.; Towers, G.J. The human and african green monkey trim5alpha genes encode ref1 and lv1 retroviral restriction factor activities. Proc. Natl. Acad. Sci. USA 2004, 101, 10780–10785. [Google Scholar]
- Song, B.; Javanbakht, H.; Perron, M.; Park, D.H.; Stremlau, M.; Sodroski, J. Retrovirus restriction by trim5alpha variants from old world and new world primates. J. Virol. 2005, 79, 3930–3937. [Google Scholar]
- Wilson, S.J.; Webb, B.L.; Ylinen, L.M.; Verschoor, E.; Heeney, J.L.; Towers, G.J. Independent evolution of an antiviral trimcyp in rhesus macaques. Proc. Natl. Acad. Sci. USA 2008, 105, 3557–3562. [Google Scholar]
- Brennan, G.; Kozyrev, Y.; Hu, S.L. Trimcyp expression in old world primates macaca nemestrina and macaca fascicularis. Proc. Natl. Acad. Sci. USA 2008, 105, 3569–3574. [Google Scholar]
- Kupzig, S.; Korolchuk, V.; Rollason, R.; Sugden, A.; Wilde, A.; Banting, G. Bst-2/hm1.24 is a raft-associated apical membrane protein with an unusual topology. Traffic 2003, 4, 694–709. [Google Scholar] [CrossRef]
- Neil, S.J.; Zang, T.; Bieniasz, P.D. Tetherin inhibits retrovirus release and is antagonized by Hiv-1 vpu. Nature 2008, 451, 425–430. [Google Scholar]
- Van Damme, N.; Goff, D.; Katsura, C.; Jorgenson, R.L.; Mitchell, R.; Johnson, M.C.; Stephens, E.B.; Guatelli, J. The interferon-induced protein bst-2 restricts hiv-1 release and is downregulated from the cell surface by the viral vpu protein. Cell Host Microb. 2008, 3, 245–252. [Google Scholar] [CrossRef]
- Neil, S.J.; Sandrin, V.; Sundquist, W.I.; Bieniasz, P.D. An interferon-alpha-induced tethering mechanism inhibits hiv-1 and ebola virus particle release but is counteracted by the hiv-1 vpu protein. Cell Host Microb. 2007, 2, 193–203. [Google Scholar] [CrossRef]
- Sato, K.; Yamamoto, S.P.; Misawa, N.; Yoshida, T.; Miyazawa, T.; Koyanagi, Y. Comparative study on the effect of human bst-2/tetherin on hiv-1 release in cells of various species. Retrovirology 2009, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Casartelli, N.; Sourisseau, M.; Feldmann, J.; Guivel-Benhassine, F.; Mallet, A.; Marcelin, A.G.; Guatelli, J.; Schwartz, O. Tetherin restricts productive hiv-1 cell-to-cell transmission. PLoS Pathog. 2010, 6, e1000955. [Google Scholar]
- Kuhl, B.D.; Sloan, R.D.; Donahue, D.A.; Bar-Magen, T.; Liang, C.; Wainberg, M.A. Tetherin restricts direct cell-to-cell infection of hiv-1. Retrovirology 2010, 7, 115. [Google Scholar] [CrossRef]
- Jolly, C.; Booth, N.J.; Neil, S.J. Cell-cell spread of human immunodeficiency virus type 1 overcomes tetherin/bst-2-mediated restriction in t cells. J. Virol. 2010, 84, 12185–12199. [Google Scholar]
- Coleman, C.M.; Spearman, P.; Wu, L. Tetherin does not significantly restrict dendritic cell-mediated hiv-1 transmission and its expression is upregulated by newly synthesized hiv-1 nef. Retrovirology 2011, 8, 26. [Google Scholar] [CrossRef]
- Bartee, E.; McCormack, A.; Fruh, K. Quantitative membrane proteomics reveals new cellular targets of viral immune modulators. PLoS Pathog. 2006, 2, e107. [Google Scholar] [CrossRef]
- Douglas, J.L.; Viswanathan, K.; McCarroll, M.N.; Gustin, J.K.; Fruh, K.; Moses, A.V. Vpu directs the degradation of the human immunodeficiency virus restriction factor bst-2/tetherin via a {beta}trcp-dependent mechanism. J. Virol. 2009, 83, 7931–7947. [Google Scholar]
- Mangeat, B.; Gers-Huber, G.; Lehmann, M.; Zufferey, M.; Luban, J.; Piguet, V. Hiv-1 vpu neutralizes the antiviral factor tetherin/bst-2 by binding it and directing its beta-trcp2-dependent degradation. PLoS Pathog. 2009, 5, e1000574. [Google Scholar] [CrossRef]
- Mitchell, R.S.; Katsura, C.; Skasko, M.A.; Fitzpatrick, K.; Lau, D.; Ruiz, A.; Stephens, E.B.; Margottin-Goguet, F.; Benarous, R.; Guatelli, J.C. Vpu antagonizes bst-2-mediated restriction of hiv-1 release via beta-trcp and endo-lysosomal trafficking. PLoS Pathog. 2009, 5, e1000450. [Google Scholar] [CrossRef]
- Goffinet, C.; Allespach, I.; Homann, S.; Tervo, H.M.; Habermann, A.; Rupp, D.; Oberbremer, L.; Kern, C.; Tibroni, N.; Welsch, S.; et al. Hiv-1 antagonism of cd317 is species specific and involves vpu-mediated proteasomal degradation of the restriction factor. Cell Host Microb. 2009, 5, 285–297. [Google Scholar] [CrossRef]
- Le Tortorec, A.; Neil, S.J. Antagonism to and intracellular sequestration of human tetherin by the human immunodeficiency virus type 2 envelope glycoprotein. J. Virol. 2009, 83, 11966–11978. [Google Scholar] [CrossRef]
- Jia, B.; Serra-Moreno, R.; Neidermyer, W.; Rahmberg, A.; Mackey, J.; Fofana, I.B.; Johnson, W.E.; Westmoreland, S.; Evans, D.T. Species-specific activity of siv nef and hiv-1 vpu in overcoming restriction by tetherin/bst2. PLoS Pathog. 2009, 5, e1000429. [Google Scholar]
- Zhang, F.; Wilson, S.J.; Landford, W.C.; Virgen, B.; Gregory, D.; Johnson, M.C.; Munch, J.; Kirchhoff, F.; Bieniasz, P.D.; Hatziioannou, T. Nef proteins from simian immunodeficiency viruses are tetherin antagonists. Cell Host Microb. 2009, 6, 54–67. [Google Scholar] [CrossRef]
- Lim, E.S.; Emerman, M. Simian immunodeficiency virus sivagm from african green monkeys does not antagonize endogenous levels of african green monkey tetherin/bst-2. J. Virol. 2009, 83, 11673–11681. [Google Scholar]
- Gupta, R.K.; Hue, S.; Schaller, T.; Verschoor, E.; Pillay, D.; Towers, G.J. Mutation of a single residue renders human tetherin resistant to hiv-1 vpu-mediated depletion. PLoS Pathog. 2009, 5, e1000443. [Google Scholar] [CrossRef]
- Rong, L.; Zhang, J.; Lu, J.; Pan, Q.; Lorgeoux, R.P.; Aloysius, C.; Guo, F.; Liu, S.L.; Wainberg, M.A.; Liang, C. The transmembrane domain of bst-2 determines its sensitivity to down-modulation by human immunodeficiency virus type 1 vpu. J. Virol. 2009, 83, 7536–7546. [Google Scholar]
- Yang, S.J.; Lopez, L.A.; Hauser, H.; Exline, C.M.; Haworth, K.G.; Cannon, P.M. Anti-tetherin activities in vpu-expressing primate lentiviruses. Retrovirology 2010, 7, 13. [Google Scholar] [CrossRef]
- Theodore, T.S.; Englund, G.; Buckler-White, A.; Buckler, C.E.; Martin, M.A.; Peden, K.W. Construction and characterization of a stable full-length macrophage-tropic hiv type 1 molecular clone that directs the production of high titers of progeny virions. AIDS Res. Hum. Retroviruses 1996, 12, 191–194. [Google Scholar] [CrossRef]
- Li, Y.; Kappes, J.C.; Conway, J.A.; Price, R.W.; Shaw, G.M.; Hahn, B.H. Molecular characterization of human immunodeficiency virus type 1 cloned directly from uncultured human brain tissue: Identification of replication-competent and -defective viral genomes. J. Virol. 1991, 65, 3973–3985. [Google Scholar]
- Miyagi, E.; Andrew, A.J.; Kao, S.; Strebel, K. Vpu enhances hiv-1 virus release in the absence of bst-2 cell surface down-modulation and intracellular depletion. Proc. Natl. Acad. Sci. USA 2009, 106, 2868–2873. [Google Scholar]
- Goujon, C.; Arfi, V.; Pertel, T.; Luban, J.; Lienard, J.; Rigal, D.; Darlix, J.L.; Cimarelli, A. Characterization of simian immunodeficiency virus sivsm/human immunodeficiency virus type 2 vpx function in human myeloid cells. J. Virol. 2008, 82, 12335–12345. [Google Scholar]
- Goujon, C.; Riviere, L.; Jarrosson-Wuilleme, L.; Bernaud, J.; Rigal, D.; Darlix, J.L.; Cimarelli, A. Sivsm/hiv-2 vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells. Retrovirology 2007, 4, 2. [Google Scholar] [CrossRef]
- Kaushik, R.; Zhu, X.; Stranska, R.; Wu, Y.; Stevenson, M. A cellular restriction dictates the permissivity of nondividing monocytes/macrophages to lentivirus and gammaretrovirus infection. Cell Host Microb. 2009, 6, 68–80. [Google Scholar] [CrossRef]
- Sharova, N.; Wu, Y.; Zhu, X.; Stranska, R.; Kaushik, R.; Sharkey, M.; Stevenson, M. Primate lentiviral vpx commandeers ddb1 to counteract a macrophage restriction. PLoS Pathog. 2008, 4, e1000057. [Google Scholar] [CrossRef]
- Goujon, C.; Jarrosson-Wuilleme, L.; Bernaud, J.; Rigal, D.; Darlix, J.L.; Cimarelli, A. With a little help from a friend: Increasing hiv transduction of monocyte-derived dendritic cells with virion-like particles of siv(mac). Gene Ther. 2006, 13, 991–994. [Google Scholar] [CrossRef]
- Ayinde, D.; Maudet, C.; Transy, C.; Margottin-Goguet, F. Limelight on two hiv/siv accessory proteins in macrophage infection: Is vpx overshadowing vpr? Retrovirology 2010, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, S.; Swanson, S.K.; Manel, N.; Florens, L.; Washburn, M.P.; Skowronski, J. Lentiviral vpx accessory factor targets vprbp/dcaf1 substrate adaptor for cullin 4 e3 ubiquitin ligase to enable macrophage infection. PLoS Pathog. 2008, 4, e1000059. [Google Scholar] [CrossRef]
- Bergamaschi, A.; Ayinde, D.; David, A.; Le Rouzic, E.; Morel, M.; Collin, G.; Descamps, D.; Damond, F.; Brun-Vezinet, F.; Nisole, S.; et al. The human immunodeficiency virus type 2 vpx protein usurps the cul4a-ddb1 dcaf1 ubiquitin ligase to overcome a postentry block in macrophage infection. J. Virol. 2009, 83, 4854–4860. [Google Scholar]
- Hrecka, K.; Hao, C.; Gierszewska, M.; Swanson, S.K.; Kesik-Brodacka, M.; Srivastava, S.; Florens, L.; Washburn, M.P.; Skowronski, J. Vpx relieves inhibition of hiv-1 infection of macrophages mediated by the samhd1 protein. Nature 2011, 474, 658–661. [Google Scholar]
- Laguette, N.; Sobhian, B.; Casartelli, N.; Ringeard, M.; Chable-Bessia, C.; Segeral, E.; Yatim, A.; Emiliani, S.; Schwartz, O.; Benkirane, M. Samhd1 is the dendritic- and myeloid-cell-specific hiv-1 restriction factor counteracted by vpx. Nature 2011, 474, 654–657. [Google Scholar]
- Rice, G.I.; Bond, J.; Asipu, A.; Brunette, R.L.; Manfield, I.W.; Carr, I.M.; Fuller, J.C.; Jackson, R.M.; Lamb, T.; Briggs, T.A.; et al. Mutations involved in aicardi-goutieres syndrome implicate samhd1 as regulator of the innate immune response. Nat. Genet. 2009, 41, 829–832. [Google Scholar]
- Crow, Y.J.; Leitch, A.; Hayward, B.E.; Garner, A.; Parmar, R.; Griffith, E.; Ali, M.; Semple, C.; Aicardi, J.; Babul-Hirji, R.; et al. Mutations in genes encoding ribonuclease h2 subunits cause aicardi-goutieres syndrome and mimic congenital viral brain infection. Nat. Genet. 2006, 38, 910–916. [Google Scholar]
- Crow, Y.J.; Hayward, B.E.; Parmar, R.; Robins, P.; Leitch, A.; Ali, M.; Black, D.N.; van Bokhoven, H.; Brunner, H.G.; Hamel, B.C.; et al. Mutations in the gene encoding the 3'-5' DNA exonuclease trex1 cause aicardi-goutieres syndrome at the ags1 locus. Nat. Genet. 2006, 38, 917–920. [Google Scholar]
- Yan, N.; Regalado-Magdos, A.D.; Stiggelbout, B.; Lee-Kirsch, M.A.; Lieberman, J. The cytosolic exonuclease trex1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat. Immunol. 2010, 11, 1005–1013. [Google Scholar] [CrossRef]
- Genovesio, A.; Kwon, Y.J.; Windisch, M.P.; Kim, N.Y.; Choi, S.Y.; Kim, H.C.; Jung, S.; Mammano, F.; Perrin, V.; Boese, A.S.; et al. Automated genome-wide visual profiling of cellular proteins involved in hiv infection. J. Biomol. Screening 2011, 16, 945–958. [Google Scholar] [CrossRef]
- Goldstone, D.C.; Ennis-Adeniran, V.; Hedden, J.J.; Groom, H.C.; Rice, G.I.; Christodoulou, E.; Walker, P.A.; Kelly, G.; Haire, L.F.; Yap, M.W.; et al. Hiv-1 restriction factor samhd1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 2011, 480, 379–382. [Google Scholar]
- Powell, R.D.; Holland, P.J.; Hollis, T.; Perrino, F.W. Aicardi-goutieres syndrome gene and hiv-1 restriction factor samhd1 is a dgtp-regulated deoxynucleotide triphosphohydrolase. J. Biol. Chem. 2011, 286, 43596–43600. [Google Scholar]
- Lahouassa, H.; Daddacha, W.; Hofmann, H.; Ayinde, D.; Logue, E.C.; Dragin, L.; Bloch, N.; Maudet, C.; Bertrand, M.; Gramberg, T.; et al. Samhd1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat. Immunol. 2012, 13, 223–228. [Google Scholar]
- Manel, N.; Hogstad, B.; Wang, Y.; Levy, D.E.; Unutmaz, D.; Littman, D.R. A cryptic sensor for hiv-1 activates antiviral innate immunity in dendritic cells. Nature 2010, 467, 214–217. [Google Scholar]
- Beignon, A.S.; McKenna, K.; Skoberne, M.; Manches, O.; DaSilva, I.; Kavanagh, D.G.; Larsson, M.; Gorelick, R.J.; Lifson, J.D.; Bhardwaj, N. Endocytosis of hiv-1 activates plasmacytoid dendritic cells via toll-like receptor-viral rna interactions. J. Clin. Invest. 2005, 115, 3265–3275. [Google Scholar]
- Tsang, J.; Chain, B.M.; Miller, R.F.; Webb, B.L.; Barclay, W.; Towers, G.J.; Katz, D.R.; Noursadeghi, M. Hiv-1 infection of macrophages is dependent on evasion of innate immune cellular activation. AIDS 2009, 23, 2255–2263. [Google Scholar] [CrossRef]
- Asaoka, K.; Ikeda, K.; Hishinuma, T.; Horie-Inoue, K.; Takeda, S.; Inoue, S. A retrovirus restriction factor trim5alpha is transcriptionally regulated by interferons. Biochem. Biophys. Res. Commun. 2005, 338, 1950–1956. [Google Scholar] [CrossRef]
- Tanaka, Y.; Marusawa, H.; Seno, H.; Matsumoto, Y.; Ueda, Y.; Kodama, Y.; Endo, Y.; Yamauchi, J.; Matsumoto, T.; Takaori-Kondo, A.; et al. Anti-viral protein apobec3g is induced by interferon-alpha stimulation in human hepatocytes. Biochem. Biophys. Res. Commun. 2006, 341, 314–319. [Google Scholar] [CrossRef]
- Carthagena, L.; Parise, M.C.; Ringeard, M.; Chelbi-Alix, M.K.; Hazan, U.; Nisole, S. Implication of trim alpha and trimcyp in interferon-induced anti-retroviral restriction activities. Retrovirology 2008, 5, 59. [Google Scholar] [CrossRef]
- Tissot, C.; Mechti, N. Molecular cloning of a new interferon-induced factor that represses human immunodeficiency virus type 1 long terminal repeat expression. J. Biol. Chem. 1995, 270, 14891–14898. [Google Scholar]
- Kajaste-Rudnitski, A.; Marelli, S.S.; Pultrone, C.; Pertel, T.; Uchil, P.D.; Mechti, N.; Mothes, W.; Poli, G.; Luban, J.; Vicenzi, E. Trim22 inhibits hiv-1 transcription independently of its e3 ubiquitin ligase activity, tat, and nf-kappab-responsive long terminal repeat elements. J. Virol. 2011, 85, 5183–5196. [Google Scholar]
- Barr, S.D.; Smiley, J.R.; Bushman, F.D. The interferon response inhibits hiv particle production by induction of trim22. PLoS Pathog. 2008, 4, e1000007. [Google Scholar] [CrossRef]
- Lu, J.; Pan, Q.; Rong, L.; He, W.; Liu, S.L.; Liang, C. The ifitm proteins inhibit hiv-1 infection. J. Virol. 2011, 85, 2126–2137. [Google Scholar]
- Poli, G.; Orenstein, J.M.; Kinter, A.; Folks, T.M.; Fauci, A.S. Interferon-alpha but not azt suppresses hiv expression in chronically infected cell lines. Science 1989, 244, 575–577. [Google Scholar]
- Bednarik, D.P.; Mosca, J.D.; Raj, N.B.; Pitha, P.M. Inhibition of human immunodeficiency virus (hiv) replication by hiv-trans-activated alpha 2-interferon. Proc. Natl. Acad. Sci. USA 1989, 86, 4958–4962. [Google Scholar]
- Meylan, P.R.; Guatelli, J.C.; Munis, J.R.; Richman, D.D.; Kornbluth, R.S. Mechanisms for the inhibition of hiv replication by interferons-alpha, -beta, and -gamma in primary human macrophages. Virology 1993, 193, 138–148. [Google Scholar] [CrossRef]
- Gendelman, H.E.; Baca, L.M.; Turpin, J.; Kalter, D.C.; Hansen, B.; Orenstein, J.M.; Dieffenbach, C.W.; Friedman, R.M.; Meltzer, M.S. Regulation of hiv replication in infected monocytes by ifn-alpha. Mechanisms for viral restriction. J. Immunol. 1990, 145, 2669–2676. [Google Scholar]
- Shirazi, Y.; Pitha, P.M. Interferon alpha-mediated inhibition of human immunodeficiency virus type 1 provirus synthesis in t-cells. Virology 1993, 193, 303–312. [Google Scholar] [CrossRef]
- Agy, M.B.; Acker, R.L.; Sherbert, C.H.; Katze, M.G. Interferon treatment inhibits virus replication in hiv-1- and siv-infected cd4+ t-cell lines by distinct mechanisms: Evidence for decreased stability and aberrant processing of hiv-1 proteins. Virology 1995, 214, 379–386. [Google Scholar] [CrossRef]
- Goujon, C.; Malim, M.H. Characterization of the alpha interferon-induced postentry block to hiv-1 infection in primary human macrophages and t cells. J. Virol. 2010, 84, 9254–9266. [Google Scholar] [CrossRef]
- Hatziioannou, T.; Princiotta, M.; Piatak, M., Jr.; Yuan, F.; Zhang, F.; Lifson, J.D.; Bieniasz, P.D. Generation of simian-tropic hiv-1 by restriction factor evasion. Science 2006, 314, 95. [Google Scholar]
- Kamada, K.; Igarashi, T.; Martin, M.A.; Khamsri, B.; Hatcho, K.; Yamashita, T.; Fujita, M.; Uchiyama, T.; Adachi, A. Generation of hiv-1 derivatives that productively infect macaque monkey lymphoid cells. Proc. Natl. Acad. Sci. USA 2006, 103, 16959–16964. [Google Scholar]
- Igarashi, T.; Iyengar, R.; Byrum, R.A.; Buckler-White, A.; Dewar, R.L.; Buckler, C.E.; Lane, H.C.; Kamada, K.; Adachi, A.; Martin, M.A. Human immunodeficiency virus type 1 derivative with 7% simian immunodeficiency virus genetic content is able to establish infections in pig-tailed macaques. J. Virol. 2007, 81, 11549–11552. [Google Scholar]
- Kuroishi, A.; Saito, A.; Shingai, Y.; Shioda, T.; Nomaguchi, M.; Adachi, A.; Akari, H.; Nakayama, E.E. Modification of a loop sequence between alpha-helices 6 and 7 of virus capsid (ca) protein in a human immunodeficiency virus type 1 (hiv-1) derivative that has simian immunodeficiency virus (sivmac239) vif and ca alpha-helices 4 and 5 loop improves replication in cynomolgus monkey cells. Retrovirology 2009, 6, 70. [Google Scholar]
- Saito, A.; Nomaguchi, M.; Iijima, S.; Kuroishi, A.; Yoshida, T.; Lee, Y.-J.; Hayakawa, T.; Kono, K.; Nakayama, E.E.; Shioda, T.; et al. Improved capacity of a monkey-tropic hiv-1 derivative to replicate in cynomolgus monkeys with minimal modifications. Microbes Infection 2011, 13, 58–64. [Google Scholar]
- Agy, M.B.; Frumkin, L.R.; Corey, L.; Coombs, R.W.; Wolinsky, S.M.; Koehler, J.; Morton, W.R.; Katze, M.G. Infection of macaca nemestrina by human immunodeficiency virus type-1. Science 1992, 257, 103–106. [Google Scholar]
- Agy, M.B.; Schmidt, A.; Florey, M.J.; Kennedy, B.J.; Schaefer, G.; Katze, M.G.; Corey, L.; Morton, W.R.; Bosch, M.L. Serial in vivo passage of hiv-1 infection in macaca nemestrina. Virology 1997, 238, 336–343. [Google Scholar] [CrossRef]
- Gartner, S.; Liu, Y.; Lewis, M.G.; Polonis, V.; Elkins, W.R.; Zack, P.M.; Miao, J.; Hunter, E.A.; Greenhouse, J.; Eddy, G.A. Hiv-1 infection in pigtailed macaques. AIDS Res. Hum. Retroviruses 1994, 10 Suppl 2, S129–133. [Google Scholar]
- Frumkin, L.R.; Agy, M.B.; Coombs, R.W.; Panther, L.; Morton, W.R.; Koehler, J.; Florey, M.J.; Dragavon, J.; Schmidt, A.; Katze, M.G.; et al. Acute infection of macaca nemestrina by human immunodeficiency virus type 1. Virology 1993, 195, 422–431. [Google Scholar] [CrossRef]
- Gartner, S.; Liu, Y.; Polonis, V.; Lewis, M.G.; Elkins, W.R.; Hunter, E.A.; Miao, J.; Corts, K.J.; Eddy, G.A. Adaptation of hiv-1 to pigtailed macaques. J. Med. Primatology 1994, 23, 155–163. [Google Scholar] [CrossRef]
- Bosch, M.L.; Schmidt, A.; Chen, J.; Florey, M.J.; Agy, M.; Morton, W.R. Enhanced replication of hiv-1 in vivo in pigtailed macaques (macaca nemestrina). J. Med. Primatology 2000, 29, 107–113. [Google Scholar]
- Bosch, M.L.; Schmidt, A.; Agy, M.B.; Kimball, L.E.; Morton, W.R. Infection of macaca nemestrina neonates with hiv-1 via different routes of inoculation. AIDS 1997, 11, 1555–1563. [Google Scholar] [CrossRef]
- Thippeshappa, R.; Polacino, P.; Yu Kimata, M.T.; Siwak, E.B.; Anderson, D.; Wang, W.; Sherwood, L.; Arora, R.; Wen, M.; Zhou, P.; et al. Vif substitution enables persistent infection of pig-tailed macaques by human immunodeficiency virus type 1. J. Virol. 2011, 85, 3767–3779. [Google Scholar]
- Brennan, G.; Kozyrev, Y.; Kodama, T.; Hu, S.L. Novel trim5 isoforms expressed by macaca nemestrina. J. Virol. 2007, 81, 12210–12217. [Google Scholar]
- Liao, C.H.; Kuang, Y.Q.; Liu, H.L.; Zheng, Y.T.; Su, B. A novel fusion gene, trim5-cyclophilin a in the pig-tailed macaque determines its susceptibility to hiv-1 infection. AIDS 2007, 21, S19–S26. [Google Scholar]
- Newman, R.M.; Hall, L.; Kirmaier, A.; Pozzi, L.A.; Pery, E.; Farzan, M.; O'Neil, S.P.; Johnson, W. Evolution of a trim5-cypa splice isoform in old world monkeys. PLoS Pathog. 2008, 4, e1000003. [Google Scholar] [CrossRef]
- Hatziioannou, T.; Ambrose, Z.; Chung, N.P.; Piatak, M., Jr.; Yuan, F.; Trubey, C.M.; Coalter, V.; Kiser, R.; Schneider, D.; Smedley, J.; et al. A macaque model of hiv-1 infection. Proc. Natl. Acad. Sci. USA 2009, 106, 4425–4429. [Google Scholar]
- Kimata, J.T.; Kuller, L.; Anderson, D.B.; Dailey, P.; Overbaugh, J. Emerging cytopathic and antigenic simian immunodeficiency virus variants influence aids progression. Nat.Med. 1999, 5, 535–541. [Google Scholar] [CrossRef]
- Kimata, J.T.; Mozaffarian, A.; Overbaugh, J. A lymph node-derived cytopathic simian immunodeficiency virus mne variant replicates in nonstimulated peripheral blood mononuclear cells. J. Virol. 1998, 72, 245–256. [Google Scholar]
- Thippeshappa, R.; Kimata, J.T. Unpublished Work. Baylor College of Medicine: Houston, Texas, USA, 2012. [Google Scholar]
- Virgen, C.A.; Hatziioannou, T. Antiretroviral activity and vif sensitivity of rhesus macaque apobec3 proteins. J. Virol. 2007, 81, 13932–13937. [Google Scholar]
- Chen, K.; Huang, J.; Zhang, C.; Huang, S.; Nunnari, G.; Wang, F.X.; Tong, X.; Gao, L.; Nikisher, K.; Zhang, H. Alpha interferon potently enhances the anti-human immunodeficiency virus type 1 activity of apobec3g in resting primary cd4 t cells. J. Virol. 2006, 80, 7645–7657. [Google Scholar]
- Koning, F.A.; Newman, E.N.; Kim, E.Y.; Kunstman, K.J.; Wolinsky, S.M.; Malim, M.H. Defining apobec3 expression patterns in human tissues and hematopoietic cell subsets. J. Virol. 2009, 83, 9474–9485. [Google Scholar]
- Pido-Lopez, J.; Whittall, T.; Wang, Y.; Bergmeier, L.A.; Babaahmady, K.; Singh, M.; Lehner, T. Stimulation of cell surface ccr5 and cd40 molecules by their ligands or by hsp70 up-regulates apobec3g expression in cd4(+) t cells and dendritic cells. J. Immunol. 2007, 178, 1671–1679. [Google Scholar]
- Refsland, E.W.; Stenglein, M.D.; Shindo, K.; Albin, J.S.; Brown, W.L.; Harris, R.S. Quantitative profiling of the full apobec3 mrna repertoire in lymphocytes and tissues: Implications for hiv-1 restriction. Nucleic Acids Res. 2010, 38, 4274–4284. [Google Scholar]
- Rose, K.M.; Marin, M.; Kozak, S.L.; Kabat, D. Transcriptional regulation of apobec3g, a cytidine deaminase that hypermutates human immunodeficiency virus. J. Biol. Chem. 2004, 279, 41744–41749. [Google Scholar]
- Sarkis, P.T.; Ying, S.; Xu, R.; Yu, X.F. Stat1-independent cell type-specific regulation of antiviral apobec3g by ifn-alpha. J. Immunol. 2006, 177, 4530–4540. [Google Scholar]
- Stopak, K.S.; Chiu, Y.L.; Kropp, J.; Grant, R.M.; Greene, W.C. Distinct patterns of cytokine regulation of apobec3g expression and activity in primary lymphocytes, macrophages, and dendritic cell. J. Biol. Chem. 2007, 282, 3539–3546. [Google Scholar]
- Ying, S.; Zhang, X.; Sarkis, P.T.; Xu, R.; Yu, X. Cell-specific regulation of apobec3f by interferons. Acta Biochim. Biophy. Sin. 2007, 39, 297–304. [Google Scholar] [CrossRef]
- Dettenhofer, M.; Yu, X.F. Highly purified human immunodeficiency virus type 1 reveals a virtual absence of vif in virions. J. Virol. 1999, 73, 1460–1467. [Google Scholar]
- Kao, S.; Akari, H.; Khan, M.A.; Dettenhofer, M.; Yu, X.F.; Strebel, K. Human immunodeficiency virus type 1 vif is efficiently packaged into virions during productive but not chronic infection. J. Virol. 2003, 77, 1131–1140. [Google Scholar] [CrossRef]
- Khan, M.A.; Aberham, C.; Kao, S.; Akari, H.; Gorelick, R.; Bour, S.; Strebel, K. Human immunodeficiency virus type 1 vif protein is packaged into the nucleoprotein complex through an interaction with viral genomic rna. J. Virol. 2001, 75, 7252–7265. [Google Scholar]
- Liu, B.; Yu, X.; Luo, K.; Yu, Y.; Yu, X.F. Influence of primate lentiviral vif and proteasome inhibitors on human immunodeficiency virus type 1 virion packaging of apobec3g. J. Virol. 2004, 78, 2072–2081. [Google Scholar] [CrossRef]
- Liu, H.; Wu, X.; Newman, M.; Shaw, G.M.; Hahn, B.H.; Kappes, J.C. The vif protein of human and simian immunodeficiency viruses is packaged into virions and associates with viral core structures. J. Virol. 1995, 69, 7630–7638. [Google Scholar]
- Simon, J.H.; Miller, D.L.; Fouchier, R.A.; Malim, M.H. Virion incorporation of human immunodeficiency virus type-1 vif is determined by intracellular expression level and may not be necessary for function. Virology 1998, 248, 182–187. [Google Scholar] [CrossRef]
- Carr, J.M.; Coolen, C.; Davis, A.J.; Burrell, C.J.; Li, P. Human immunodeficiency virus 1 (hiv-1) virion infectivity factor (vif) is part of reverse transcription complexes and acts as an accessory factor for reverse transcription. Virology 2008, 372, 147–156. [Google Scholar] [CrossRef]
- Izumi, T.; Io, K.; Matsui, M.; Shirakawa, K.; Shinohara, M.; Nagai, Y.; Kawahara, M.; Kobayashi, M.; Kondoh, H.; Misawa, N.; et al. Hiv-1 viral infectivity factor interacts with tp53 to induce g2 cell cycle arrest and positively regulate viral replication. Proc. Natl. Acad. Sci. USA 2010, 107, 20798–20803. [Google Scholar]
- Okumura, A.; Alce, T.; Lubyova, B.; Ezelle, H.; Strebel, K.; Pitha, P.M. Hiv-1 accessory proteins vpr and vif modulate antiviral response by targeting irf-3 for degradation. Virology 2008, 373, 85–97. [Google Scholar] [CrossRef]
- Sakai, K.; Dimas, J.; Lenardo, M.J. The vif and vpr accessory proteins independently cause Hiv-1-induced t cell cytopathicity and cell cycle arrest. Proc. Natl. Acad. Sci. USA 2006, 103, 3369–3374. [Google Scholar]
- Alexander, L.; Du, Z.; Howe, A.Y.; Czajak, S.; Desrosiers, R.C. Induction of aids in rhesus monkeys by a recombinant simian immunodeficiency virus expressing nef of human immunodeficiency virus type 1. J. Virol. 1999, 73, 5814–5825. [Google Scholar]
- Kirchhoff, F.; Munch, J.; Carl, S.; Stolte, N.; Matz-Rensing, K.; Fuchs, D.; Haaft, P.T.; Heeney, J.L.; Swigut, T.; Skowronski, J.; et al. The human immunodeficiency virus type 1 nef gene can to a large extent replace simian immunodeficiency virus nef in vivo. J. Virol. 1999, 73, 8371–8383. [Google Scholar]
- Mandell, C.P.; Reyes, R.A.; Cho, K.; Sawai, E.T.; Fang, A.L.; Schmidt, K.A.; Luciw, P.A. Siv/hiv nef recombinant virus (shivnef) produces simian aids in rhesus macaques. Virology 1999, 265, 235–251. [Google Scholar] [CrossRef]
- Thippeshappa, R.P.P.P.; Yu-Kimata, M.T.; Anderson, D.; Wang, W.; Arora, R.; Wen, M.; Zhou, P.; Hu, S.-L.; Kimata, J.T. Overcoming Restriction by Apobec3 Family Protiens Is Key for Persistent Hiv-1 Infection of Pig-Tailed Macaques. In Proceeding of 30th Annual Meeting of the American Society for Virology, University of Minnesota, Minneapolis, MN, USA, 16-20 July 2011.
- Thippeshappa, R.P.P.; Ruan, H.; Yu-Kimata, M.T.; Siwak, E.B.; Anderson, D.; Wang, W.; Arora, R.; Wen, M.; Zhou, P.; Hu, S-L.; Kimata, J.T. Pig-tail tropic human immunodeficiency virus type 1 is susceptible to innate immune factors compared to pathogenic sivmne. In Proceeding of 29th Annual Symposium on Nonhuman Primate Models for AIDS Seattle, Washington, DC, USA, 28 October 2011.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Thippeshappa, R.; Ruan, H.; Kimata, J.T. Breaking Barriers to an AIDS Model with Macaque-Tropic HIV-1 Derivatives. Biology 2012, 1, 134-164. https://doi.org/10.3390/biology1020134
Thippeshappa R, Ruan H, Kimata JT. Breaking Barriers to an AIDS Model with Macaque-Tropic HIV-1 Derivatives. Biology. 2012; 1(2):134-164. https://doi.org/10.3390/biology1020134
Chicago/Turabian StyleThippeshappa, Rajesh, Hongmei Ruan, and Jason T. Kimata. 2012. "Breaking Barriers to an AIDS Model with Macaque-Tropic HIV-1 Derivatives" Biology 1, no. 2: 134-164. https://doi.org/10.3390/biology1020134
APA StyleThippeshappa, R., Ruan, H., & Kimata, J. T. (2012). Breaking Barriers to an AIDS Model with Macaque-Tropic HIV-1 Derivatives. Biology, 1(2), 134-164. https://doi.org/10.3390/biology1020134