Exploring the Role and Variability of 3d Transition Metal Complexes in Artistic Coloration through a Bottom-Up Scientific Approach
Abstract
:1. Introduction
1.1. Perception of Color in Ceramics and Pigments
1.2. Transition Metal Complexes
1.3. Historical Usage of Transitional Metal Complexes as Color Centers
2. Chemical Origin of Color in Ceramics with Transition Metal Complexes
2.1. D-Orbital Splitting
2.2. Charge Transfer
2.3. The Influence of Ligand Fields
3. The Impact of Processing Conditions on Complex Coloration
3.1. Temperature
3.2. Redox Environment
3.3. Raw Materials
4. Methods of Investigation
4.1. UV-Vis Spectroscopy
4.2. X-ray Diffraction Spectroscopy
4.3. Infrared and Raman Spectroscopy
4.4. Electron Paramagnetic Resonance
4.5. Synchrotron Radiation (SR)-Based Techniques
5. Future Perspective
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orna, M.V.; Fontani, M. The Modernity of Ancient Pigments: A Historical Approach. Colorants 2022, 1, 307–346. [Google Scholar] [CrossRef]
- García-Fernández, P.; Moreno, M.A.; Vegas, I. Origin of the Exotic Blue Color of Copper-Containing Historical Pigments. Inorg. Chem. 2015, 54, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Möncke, D.; Papageorgiou, M.; Winterstein-Beckmann, A.; Zacharias, N. Roman Glasses Coloured by Dissolved Transition Metal Ions: Redox-Reactions, Optical Spectroscopy and Ligand Field Theory. J. Archaeol. Sci. 2014, 46, 23–36. [Google Scholar] [CrossRef]
- Tite, M.; Shortland, A.; Paynter, S. The Beginnings of Vitreous Materials in the near East and Egypt. Acc. Chem. Res. 2002, 35, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Rubenstein, D.; Patterson, W.P.; Peng, I.; Schunk, F.; Mendoza-Garcia, A.; Lyu, M.; Wang, L.-Q. Introductory Chemistry Laboratory: Quantum Mechanics and Color. J. Chem. Educ. 2020, 97, 4430–4437. [Google Scholar] [CrossRef]
- Nassau, K. The Fifteen Causes of Color: The Physics and Chemistry of Color. Color Res. Appl. 1987, 12, 4–26. [Google Scholar] [CrossRef]
- Miessler, G.L.; Fischer, P.J.; Tarr, D.A. Inorganic Chemistry; Pearson: Boston, MA, USA, 2014. [Google Scholar]
- Cartechini, L.; Miliani, C.; Nodari, L.; Rosi, F.; Tomasin, P. The Chemistry of Making Color in Art. J. Cult. Herit. 2021, 50, 188–210. [Google Scholar] [CrossRef]
- Ren, J.; Lin, T.; Sprague, L.W.; Peng, I.; Wang, L.-Q. Exploring Chemical Equilibrium for Alcohol-Based Cobalt Complexation through Visualization of Color Change and UV–Vis Spectroscopy. J. Chem. Educ. 2019, 97, 509–516. [Google Scholar] [CrossRef]
- Verger, L.; Dargaud, O.; Menguy, N.; Tománek, D.; Cormier, L. Interaction between Cr-Bearing Pigments and Transparent Glaze: A Transmission Electron Microscopy Study. J. Non-Cryst. Solids 2017, 459, 184–191. [Google Scholar] [CrossRef]
- Verger, L.; Dargaud, O.; Rousse, G.; Cormier, L. Reactivity of Chromium-Based Pigments in a Porcelain Glaze. Comptes Rendus Phys. 2018, 19, 589–598. [Google Scholar] [CrossRef]
- Hund, F. Inorganic Pigments: Bases for Colored, Uncolored, and Transparent Products. Angew. Chem. Int. Ed. Engl. 1981, 20, 723–730. [Google Scholar] [CrossRef]
- Hills-Kimball, K.; Lovelace, I.; Peng, I.; Wang, J.; Garces, H.F.; Rios, M.; Chen, O.; Wang, L.-Q. New Insights to the Interactions between Amorphous Georgite Pigment and Linseed Oil Binder That Lead to a Drastic Color Change. Inorganica Chim. Acta 2022, 529, 120661. [Google Scholar] [CrossRef]
- Sanchez, C.; Belleville, P.; Popall, M.; Nicole, L. Applications of Advanced Hybrid Organic–Inorganic Nanomaterials: From Laboratory to Market. Chem. Soc. Rev. 2011, 40, 696. [Google Scholar] [CrossRef]
- Orna, M.V. Chemical Origins of Color. J. Chem. Educ. 1978, 55, 478. [Google Scholar] [CrossRef]
- Ishii, T.; Tsuboi, S.; Sakane, G.; Yamashita, M.; Breedlove, B.K. Universal Spectrochemical Series of Six-Coordinate Octahedral Metal Complexes for Modifying the Ligand Field Splitting. Dalton Trans. 2009, 4, 680–687. [Google Scholar] [CrossRef] [PubMed]
- Yarranton, J.T.; McCusker, J.K. Ligand-Field Spectroscopy of Co(III) Complexes and the Development of a Spectrochemical Series for Low-Spin D6 Charge-Transfer Chromophores. J. Am. Chem. Soc. 2022, 144, 12488–12500. [Google Scholar] [CrossRef] [PubMed]
- Stallmann, O. Use of Metal Complexes in Organic Dyes and Pigments. J. Chem. Educ. 1960, 37, 220. [Google Scholar] [CrossRef]
- Peng, I.; Hills-Kimball, K.; Lovelace, I.M.; Wang, J.; Rios, M.; Chen, O.; Wang, L.-Q. Exploring the Colors of Copper-Containing Pigments, Copper (II) Oxide and Malachite, and Their Origins in Ceramic Glazes. Colorants 2022, 1, 376–387. [Google Scholar] [CrossRef]
- Baker, A. The Ligand Field Spectra of Copper(II) Complexes. Semant. Sch. 1998, 75, 98. [Google Scholar] [CrossRef]
- Reddy, S.L.; Endo, T.; Reddy, G.S. Electronic (Absorption) Spectra of 3d Transition Metal Complexes. In Advanced Aspects of Spectroscopy; InTech Open: London, UK, 2012. [Google Scholar]
- Pashanova, K.I.; Ershova, I.V.; Trofimova, O.Y.; Rumyantsev, R.V.; Fukin, G.K.; Bogomyakov, A.S.; Arsenyev, M.V.; Piskunov, A.V. Charge Transfer Chromophores Derived from 3d-Row Transition Metal Complexes. Molecules 2022, 27, 8175. [Google Scholar] [CrossRef]
- Kupferschmidt, K. In Search of Blue. Science 2019, 364, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Nicola, M.; Gobetto, R.; Masic, A. Egyptian Blue, Chinese Blue, and Related Two-Dimensional Silicates: From Antiquity to Future Technologies. Part A: General Properties and Historical Uses. Rend. Lincei. Sci. Fis. E Nat. 2023, 34, 369–413. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Feng, S. Hydrothermal Synthesis and Properties of Pigments Chinese Purple BaCuSi2O6 and Dark Blue BaCu2Si2O7. Dye. Pigment. 2014, 105, 167–173. [Google Scholar] [CrossRef]
- Feng, L.; Wang, F.; Luo, H.; Zhu, J.; Wang, M.; Yang, C.; Jianxing, S.; Wang, T. Phase-Separated Tenmoku “Blue” Glaze: Microstructure and Coloring Mechanism. J. Eur. Ceram. Soc. 2023, 43, 6581–6589. [Google Scholar] [CrossRef]
- No, H.; Kim, U.; Kim, J.; Cho, W.; Kim, C.; Kim, C. Effect of TiO2 on the Color Generation in Celadon Glaze. J. Korean Ceram. Soc. 2014, 51, 150–155. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, T.Q.; Feng, Z.Y.; Fayard, B.; Pouyet, E.; Cotte, M.; De Nolf, W.; Salomé, M.; Sciau, P. Synchrotron Radiation-Based Multi-Analytical Approach for Studying Underglaze Color: The Microstructure of Chinese Qinghua Blue Decors (Ming Dynasty). Anal. Chim. Acta 2016, 928, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Ma, Y.; Chen, Y.; Li, Y.; Ma, Q.; Zhang, Z.; Wang, C.; Yang, Y. Raman Analysis of Cobalt Blue Pigment in Blue and White Porcelain: A Reassessment. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 190, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Bertolino, L.C.; Rossi, A.M.; Scorzelli, R.B.; Torem, M.L. Influence of Iron on Kaolin Whiteness: An Electron Paramagnetic Resonance Study. Appl. Clay Sci. 2010, 49, 170–175. [Google Scholar] [CrossRef]
- Pérez-Arantegui, J.; Resano, M.; Garcia-Ruiz, E.; Vanhaecke, F.; Roldán, C.; Ferrero, J.-M.; Coll, J.-L. Characterization of Cobalt Pigments Found in Traditional Valencian Ceramics by Means of Laser Ablation-Inductively Coupled Plasma Mass Spectrometry and Portable X-ray Fluorescence Spectrometry. Talanta 2008, 74, 1271–1280. [Google Scholar] [CrossRef]
- Ware, M. Prussian Blue: Artists’ Pigment and Chemists’ Sponge. J. Chem. Educ. 2008, 85, 612. [Google Scholar] [CrossRef]
- Biron, C.; Mounier, A.; Le Bourdon, G.; Servant, L.; Chapoulie, R.; Daniel, F. A Blue Can Conceal Another! Noninvasive Multispectroscopic Analyses of Mixtures of Indigo and Prussian Blue. Color Res. Appl. 2019, 45, 262–274. [Google Scholar] [CrossRef]
- Burns, R.G. Mineralogical Applications of Crystal Field Theory, 2nd ed.; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Stamokostas, G.L.; Fiete, G.A. Mixing of T2g−Eg Orbitals in 4d and 5d Transition Metal Oxides. Phys. Rev. B 2018, 97, 085150. [Google Scholar] [CrossRef]
- Subramanian, M.A.; Li, J. YInMn Blue—200 Years in the Making: New Intense Inorganic Pigments Based on Chromophores in Trigonal Bipyramidal Coordination. Mater. Today Adv. 2022, 16, 100323. [Google Scholar] [CrossRef]
- Begum, Y.; Wright, A.J. Relating Highly Distorted Jahn–Teller MnO6 to Colouration in Manganese Violet Pigments. J. Mater. Chem. 2012, 22, 21110. [Google Scholar] [CrossRef]
- Gupta, S.; Pandey, T.; Singh, A.K. Suppression of Jahn–Teller Distortions and Origin of Piezochromism and Thermochromism in Cu–Cl Hybrid Perovskite. Inorg. Chem. 2016, 55, 6817–6824. [Google Scholar] [CrossRef] [PubMed]
- Sinha, N.; Wenger, O.S. Photoactive Metal-To-Ligand Charge Transfer Excited States in 3d6 Complexes with Cr0, MnI, FeII, and CoIII. J. Am. Chem. Soc. 2023, 145, 4903–4920. [Google Scholar] [CrossRef]
- Janes, R.; Moore, E. (Eds.) Charge-Transfer Bands in the Electronic Spectra of Transition-Metal Complexes. In Metal-Ligand Bonding; Royal Society of Chemistry: London, UK, 2004; pp. 75–82. [Google Scholar] [CrossRef]
- Turner, W.H. Optical Absorption Spectra of Iron in the Rock-Forming Silicates: A Discussion. Am. Mineral. 1967, 52, 553–555. [Google Scholar]
- Warzecha, E.; Berto, T.C.; Wilkinson, C.C.; Berry, J.F. Rhodium Rainbow: A Colorful Laboratory Experiment Highlighting Ligand Field Effects of Dirhodium Tetraacetate. J. Chem. Educ. 2019, 96, 571–576. [Google Scholar] [CrossRef]
- Reinen, D.; Rauw, W.; Kesper, U.; Atanasov, M.; Güdel, H.U.; Hazenkamp, M.; Oetliker, U. Colour, Luminescence and Bonding Properties of Tetrahedrally Coordinated Chromium(IV), Manganese(v) and Iron(VI) in Various Oxide Ceramics. J. Alloys Compd. 1997, 246, 193–208. [Google Scholar] [CrossRef]
- Bartecki, A.; Kurzak, K. Colour of 3d Transition Metal Compounds. Part 1. Experimental Quantitative Studies and Ligand-Field Based Predictions for D1, D4, D6 and D9 Systems. Rev. Inorg. Chem. 2006, 26, 389–442. [Google Scholar] [CrossRef]
- Mohapatra, L.; Parida, K. A Review of Solar and Visible Light Active Oxo-Bridged Materials for Energy and Environment. Catal. Sci. Technol. 2017, 7, 2153–2164. [Google Scholar] [CrossRef]
- Goga, F.; Bortnic, R.A.; Avram, A.; Zagrai, M.; Barbu Tudoran, L.; Mereu, R.A. The Effect of Ni2+ Ions Substitution on Structural, Morphological, and Optical Properties in CoCr2O4 Matrix as Pigments in Ceramic Glazes. Materials 2022, 15, 8713. [Google Scholar] [CrossRef] [PubMed]
- Bhim, A.; Laha, S.; Gopalakrishnan, J.; Natarajan, S. Color Tuning in Garnet Oxides: The Role of Tetrahedral Coordination Geometry for 3 D Metal Ions and Ligand–Metal Charge Transfer (Band-Gap Manipulation). Chem.-Asian J. 2017, 12, 2734–2743. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Wu, C.; Song, Y.; Zheng, Y.; Zhao, K. Effects of Colouration Mechanism and Stability of CoAl2O4 Ceramic Pigments Sintered on Substrates. Ceram. Int. 2018, 44, 1019–1025. [Google Scholar] [CrossRef]
- Berke, H. The Invention of Blue and Purple Pigments in Ancient Times. Chem. Soc. Rev. 2007, 36, 15–30. [Google Scholar] [CrossRef] [PubMed]
- García-Fernández, P.; Moreno, M.A.; Vegas, I. Origin of the Anomalous Color of Egyptian and Han Blue Historical Pigments: Going beyond the Complex Approximation in Ligand Field Theory. J. Chem. Educ. 2016, 93, 111–117. [Google Scholar] [CrossRef]
- Pagès-Camagna, S.; Reiche, I.; Brouder, C.; Cabaret, D.; Rossano, S.; Kanngießer, B.; Erko, A. New Insights into the Colour Origin of Archaeological Egyptian Blue and Green by XAFS at the Cu K-Edge. X-ray Spectrom. 2006, 35, 141–145. [Google Scholar] [CrossRef]
- Hall, F.P. The Influence of Chemical Composition on the Physical Properties of Glazes. J. Am. Ceram. Soc. 1930, 13, 182–199. [Google Scholar] [CrossRef]
- Pradell, T.; Molera, J. Ceramic Technology. How to Characterise Ceramic Glazes. Archaeol. Anthropol. Sci. 2020, 12, 189. [Google Scholar] [CrossRef]
- Denio, A.A. The Joy of Color in Ceramic Glazes with the Help of Redox Chemistry. J. Chem. Educ. 2001, 78, 1298. [Google Scholar] [CrossRef]
- Chaowu, Z.; Fen, W. Structure and Coordination Investigation of Iron-Ion Tinting Principle in Ferreous Glass. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2005, 20, 8–11. [Google Scholar] [CrossRef]
- Hill, P.S. Teaching Geochemistry through the Artistic Use of Glass, Ceramics, and Glazes. J. Geosci. Educ. 2000, 48, 276–278. [Google Scholar] [CrossRef]
- Norton, F.H.; Dulplin, V.J. Color Formation in Vitreous Bodies. J. Am. Ceram. Soc. 1932, 15, 206–212. [Google Scholar] [CrossRef]
- Luo, M.; Cheng, L.; Hu, X.; Liang, H.; Xiao, Z.; Shi, H.; Tang, C. Study on the Preparation of Copper Red Glaze and Parameters Affecting Its Colour. Mater. Ceram. 2019, 71, 397–407. [Google Scholar]
- Li, Y.; Yang, Y.; Zhu, J.; Zhang, X.; Jiang, S.; Zhang, Z.; Yao, Z.; Solbrekken, G. Colour-Generating Mechanism of Copper-Red Porcelain from Changsha Kiln (A.D. 7th–10th Century), China. Ceram. Int. 2016, 42, 8495–8500. [Google Scholar] [CrossRef]
- Zhu, J.; Duan, H.; Yang, Y.; Guan, L.; Xu, W.; Chen, D.; Zhang, J.; Wang, L.; Huang, Y.; Wang, C. Colouration Mechanism of Underglaze Copper-Red Decoration Porcelain (AD 13th–14th Century), China. J. Synchrotron Radiat. 2014, 21, 751–755. [Google Scholar] [CrossRef] [PubMed]
- Wakamatsu, M.; Takeuchi, N.; Nagai, H.; Ishida, S. Chemical States of Copper and Tin in Copper Glazes Fired under Various Atmospheres. J. Am. Ceram. Soc. 1989, 72, 16–19. [Google Scholar] [CrossRef]
- Wakamatsu, M.; Takeuchi, N.; Ishida, S. Effect of Furnace Atmosphere on Color of Iron Glaze. J. Non-Cryst. Solids 1987, 95–96, 733–740. [Google Scholar] [CrossRef]
- Kerr, R.; Wood, N. Science and Civilisation in China. Camb. Univ. Press 2004, 5, 658–692. [Google Scholar] [CrossRef]
- Muller, J.-P.; Calas, G. Genetic significance of paramagnetic centers in kaolinites. In Kaolin Genesis and Utilization (A Collection of Papers Presented at the Keller ‘90 Kaolin Symposium); Murray, H.H., Bundy, W., Harvey, C., Eds.; The Clay Minerals Society: Boulder, CO, USA, 1993; 341p. [Google Scholar] [CrossRef]
- Warner, T.E. Artificial Cuprorivaite CaCuSi (Egyptian Blue) by a Salt-Flux Method; John Wiley Sons Ltd.: Hoboken, NJ, USA, 2011; pp. 26–49. [Google Scholar] [CrossRef]
- Mohrig, J.R. Laboratory Techniques in Organic Chemistry: Supporting Inquiry-Driven Experiments, 4th ed.; Freeman: New York, NY, USA, 2014. [Google Scholar]
- Ali, A.; Chiang, Y.W.; Santos, R.M. X-ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions. Minerals 2022, 12, 205. [Google Scholar] [CrossRef]
- Pradell, T.; Molina, G.; Molerà, J.; Pla, J.-M.; Labrador, A. The Use of Micro-XRD for the Study of Glaze Color Decorations. Appl. Phys. A 2012, 111, 121–127. [Google Scholar] [CrossRef]
- Świderski, G.; Wilczewska, A.Z.; Świsłocka, R.; Kalinowska, M.; Lewandowski, W. Spectroscopic (IR, Raman, UV–Vis) Study and Thermal Analysis of 3d-Metal Complexes with 4-Imidazolecarboxylic Acid. J. Therm. Anal. Calorim. 2018, 134, 513–525. [Google Scholar] [CrossRef]
- Basu, P. Use of EPR Spectroscopy in Elucidating Electronic Structures of Paramagnetic Transition Metal Complexes. J. Chem. Educ. 2001, 78, 666. [Google Scholar] [CrossRef]
- Janssens, K.; Alfeld, M.; Van der Snickt, G.; De Nolf, W.; Vanmeert, F.; Radepont, M.; Monico, L.; Dik, J.; Cotte, M.; Falkenberg, G.; et al. The Use of Synchrotron Radiation for the Characterization of Artists’ Pigments and Paintings. Annu. Rev. Anal. Chem. 2013, 6, 399–425. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Mehta, A.; Tamura, N.; Pickard, D.; Rong, B.; Zhou, T.; Pianetta, P. Influence of Taoism on the Invention of the Purple Pigment Used on the Qin Terracotta Warriors. J. Archaeol. Sci. 2007, 34, 1878–1883. [Google Scholar] [CrossRef]
- Cotte, M.; Susini, J.; Dik, J.; Janssens, K. Synchrotron-Based X-Ray Absorption Spectroscopy for Art Conservation: Looking Back and Looking Forward. Acc. Chem. Res. 2010, 43, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Martos, M.; Martínez, M.; Cordoncillo, E.; Escribano, P. Towards More Ecological Ceramic Pigments: Study of the Influence of Glass Composition on the Colour Stability of a Pink Chromium-Doped Ceramic Pigment. J. Eur. Ceram. Soc. 2007, 27, 4561–4567. [Google Scholar] [CrossRef]
- Molinari, C.; Conte, S.; Zanelli, C.; Ardit, M.; Cruciani, G.; Dondi, M. Ceramic Pigments and Dyes beyond the Inkjet Revolution: From Technological Requirements to Constraints in Colorant Design. Ceram. Int. 2020, 46, 21839–21872. [Google Scholar] [CrossRef]
- Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt Toxicity in Humans—A Review of the Potential Sources and Systemic Health Effects. Toxicology 2017, 387, 43–56. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coia, A.; Ruddick, J.; Kuang, O.; Wang, L.-Q. Exploring the Role and Variability of 3d Transition Metal Complexes in Artistic Coloration through a Bottom-Up Scientific Approach. Colorants 2024, 3, 152-174. https://doi.org/10.3390/colorants3020012
Coia A, Ruddick J, Kuang O, Wang L-Q. Exploring the Role and Variability of 3d Transition Metal Complexes in Artistic Coloration through a Bottom-Up Scientific Approach. Colorants. 2024; 3(2):152-174. https://doi.org/10.3390/colorants3020012
Chicago/Turabian StyleCoia, Alexandra, Jackson Ruddick, Olivia Kuang, and Li-Qiong Wang. 2024. "Exploring the Role and Variability of 3d Transition Metal Complexes in Artistic Coloration through a Bottom-Up Scientific Approach" Colorants 3, no. 2: 152-174. https://doi.org/10.3390/colorants3020012
APA StyleCoia, A., Ruddick, J., Kuang, O., & Wang, L. -Q. (2024). Exploring the Role and Variability of 3d Transition Metal Complexes in Artistic Coloration through a Bottom-Up Scientific Approach. Colorants, 3(2), 152-174. https://doi.org/10.3390/colorants3020012