3D-Printed Mortars with Combined Steel and Polypropylene Fibers
Abstract
:1. Introduction
- −
- Formulate and propose a new concept of rheotechnological index (RTI) of mixtures, as well as to develop a device for measuring RTI;
- −
- Prepare proposals for the regulatory code framework of 3D printed fiber mortars;
- −
- Develop and research fiber-reinforced concrete based on polymineral binders.
2. Materials and Methods
2.1. Materials
- −
- Portland cement CEM I 42.5 N (Belgorodsky cement, Belgorod, Russia) with factory grinding fineness of 300 m2/kg;
- −
- Mineral modifier (MM) obtained by joint grinding to a specific surface area of 500 m2/kg of sand, clayey rocks and chalk in a ratio of 2:2:1 (Figure 1).
- −
- To improve the physical and mechanical properties, quartz sand (QS) with a fraction of 1.5–2.5 mm was introduced into the composition;
- −
- Polycarboxylate superplasticizer (SP) Melflux 5581 (BASF, Ludwigshafen, Germany) contributing to a significant increase in the water-reducing ability of the molding mix;
- −
2.2. Mix Design
2.3. Methods
3. Results and Discussion
3.1. Proposals for the Regulatory Code Framework of 3D-Printed Fiber Mortars
- −
- Pumpability,
- −
- Ability to extrusion and ease of production,
- −
- Setting time and temperature change dynamics,
- −
- Compressive and flexural strength in parallel and perpendicular directions relative to the plane of the contact zone.
3.2. Rheological Characteristics of Mortars
3.3. Physical and Mechanical Properties
3.4. Durability
3.5. Binder Adhesion to Fiber
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klyuyev, S.V.; Guryanov, Y.V. External reinforcing of fiber concrete constructions by carbon fiber tapes. Mag. Civ. Eng. 2013, 1, 21–26. [Google Scholar] [CrossRef]
- Zharikov, I.S.; Laketich, A.; Laketich, N. Impact of concrete quality works on concrete strength of monolithic constructions. Constr. Mater. Prod. 2018, 1, 51–58. [Google Scholar] [CrossRef]
- Ali, M.; Abbas, S.; Salah, B.; Akhter, J.; Saleem, W.; Haruna, S.; Room, S.; Abdulkadir, I. Investigating Optimal Confinement Behaviour of Low-Strength Concrete through Quantitative and Analytical Approaches. Materials 2021, 14, 4675. [Google Scholar] [CrossRef]
- Ramakrishnan, K.; Depak, S.; Hariharan, K.; Abid, S.R.; Murali, G.; Cecchin, D.; Fediuk, R.; Amran, Y.M.; Abdelgader, H.S.; Khatib, J.M. Standard and modified falling mass impact tests on preplaced aggregate fibrous concrete and slurry infiltrated fibrous concrete. Constr. Build. Mater. 2021, 298, 123857. [Google Scholar] [CrossRef]
- Usanova, K.; Barabanshchikov, Y.G. Cold-bonded fly ash aggregate concrete. Mag. Civ. Eng. 2020, 95, 104–118. [Google Scholar] [CrossRef]
- Fediuk, R.S.; Ibragimov, R.A.; Lesovik, V.S.; Pak, A.A.; Krylov, V.V.; Poleschuk, M.M.; Stoyushko, N.Y.; Gladkova, N.A. Processing equipment for grinding of building powders. IOP Conf. Ser. Mater. Sci. Eng. 2018, 327, 042029. [Google Scholar] [CrossRef]
- Chernysheva, N.; Lesovik, V.; Fediuk, R.; Vatin, N. Improvement of Performances of the Gypsum-Cement Fiber Reinforced Composite (GCFRC). Materials 2020, 13, 3847. [Google Scholar] [CrossRef]
- Lukuttsova, N.P.; Karpikov, E.G.; Luginina, I.G.; Pykin, A.A.; Ustinov, A.G.; Pinchukova, I.N. High-performance fine concrete modified with nano-dispersion additive. Int. J. Appl. Eng. Res. 2014, 9, 16725–16731. [Google Scholar]
- Stroganov, V.; Sagadeev, E.; Ibragimov, R.; Potapova, L. Mechanical activation effect on the biostability of modified cement compositions. Constr. Build. Mater. 2020, 246, 118506. [Google Scholar] [CrossRef]
- Bataev, D.K.-S.; Murtazayev, S.-A.Y.; Salamanova, M.S.; Viskhanov, S.S. Utilization of Cement Kiln Dust in Production of Alkali-Activated Clinker-Free Binders. In Proceedings of the International Symposium “Engineering and Earth Sciences: Applied and Fundamental Research” Dedicated to the 85th Anniversary of H.I. Ibragimov (ISEES 2019), Grozny, Russia, 1 April 2019; Atlantis Highlights in Material Sciences and Technology (AHMST). Atlantis Press: Dordrecht, The Netherlands, 2019; Volume 1, pp. 457–460. Available online: https://www.atlantis-press.com/proceedings/isees-19/125914222 (accessed on 25 November 2021).
- Murali, G.; Fediuk, R.A. Taguchi approach for study on impact response of ultra-high-performance polypropylene fibrous cementitious composite. J. Build. Eng. 2020, 30, 101301. [Google Scholar] [CrossRef]
- Semenov, P.; Uzunian, A.; Davidenko, A.; Derevschikov, A.; Goncharenko, Y.; Kachanov, V.; Khodyrev, V.; Meschanin, A.; Minaev, N.; Mochalov, V.; et al. First study of radiation hardness of lead tungstate crystals at low temperatures. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 582, 575–580. [Google Scholar] [CrossRef] [Green Version]
- Fediuk, R.S.; Yevdokimova, Y.G.; Smoliakov, A.K.; Stoyushko, N.Y.; Lesovik, V.S. Use of geonics scientific positions for designing of building composites for protective (fortification) structures. IOP Conf. Series: Mater. Sci. Eng. 2017, 221, 012011. [Google Scholar] [CrossRef]
- Fediuk, R.; Mosaberpanah, M.A.; Lesovik, V. Development of fiber reinforced self-compacting concrete (FRSCC): Towards an efficient utilization of quaternary composite binders and fibers. Adv. Concr. Constr. 2020, 9, 387–395. [Google Scholar]
- Elistratkin, M.Y.; Lesovik, V.S.; Zagorodnjuk, L.H. New point of view on materials development. IOP Conf. Ser. Mater. Sci. Eng. 2018, 327, 032020. [Google Scholar] [CrossRef] [Green Version]
- Volodchenko, A.A.; Lesovik, V.S.; A Cherepanova, I.; Zagorodnjuk, L.H.; Elistratkin, M.Y.; Volodchenko, A.N. Peculiarities of non-autoclaved lime wall materials production using clays. In International Conference on Mechanical Engineering, Automation and Control Systems 2017: Proceedings of the IOP Conference Series: Materials Science and Engineering, Tomsk, Russia, 4–6 December 2017; IOP Publishing: Bristol, UK, 2018; Volume 327, p. 022021. [Google Scholar]
- Klyuyev, S.V.; Klyuyev, A.V.; Sopin, D.M.; Netrebenko, A.V.; Kazlitin, S.A. Heavy loaded floors based on fine-grained fiber concrete. Mag. Civ. Eng. 2013, 3, 7–14. [Google Scholar] [CrossRef]
- Begich, Y.E.; Klyuev, S.V.; Jos, V.A.; Cherkashin, A.V. Fine-grained concrete with various types of fibers. Mag. Civ. Eng. 2020, 97, 9702. [Google Scholar] [CrossRef]
- Anikanova, T.V.; Pogoromsky, A.S. The use of semi-aquatic calcium sulfate to intensify the processes of hardening of structural heat-insulating foamed concrete. Constr. Mater. Prod. 2018, 1, 25–32. [Google Scholar]
- Khan, M.I.; Sutanto, M.H.; Bin Napiah, M.; Zoorob, S.E.; Al-Sabaeei, A.M.; Rafiq, W.; Ali, M.; Memon, A.M. Investigating the mechanical properties and fuel spillage resistance of semi-flexible pavement surfacing containing irradiated waste PET based grouts. Constr. Build. Mater. 2021, 304, 124641. [Google Scholar] [CrossRef]
- Szeląg, M. Properties of cracking patterns of multi-walled carbon nanotube-reinforced cement matrix. Materials 2019, 12, 2942. [Google Scholar] [CrossRef] [Green Version]
- Korsun, V.; Vatin, N.; Korsun, A.; Nemova, D. Physical-mechanical properties of the modified fine-grained concrete subjected to thermal effects up to 200 °C. Appl. Mech. Mater. 2014, 633, 1013–1017. [Google Scholar] [CrossRef]
- Lukuttsova, N.; Pashayan, A.; Khomyakova, E.; Suleymanova, L.; Kleymenicheva, Y. The use of additives based on industrial wastes for concrete. Int. J. Appl. Eng. Res. 2016, 11, 7566–7570. [Google Scholar]
- Murtazayev, S.-A.Y.; Salamanova, M.S.; Alaskhanov, A.K.; Ismailova, Z.K. Development of Multicomponent Binders Using Fine Powders. In Proceedings of the International Symposium: “Engineering and Earth Sciences: Applied and Fundamental Research” Dedicated to the 85th Anniversary of H.I. Ibragimov (ISEES 2019), Grozny, Russia, 1 April 2019; Atlantis Highlights in Material Sciences and Technology (AHMST). Atlantis Press: Dordrecht, The Netherlands, 2019; Volume 1, pp. 500–503. [Google Scholar]
- Izotov, V.S.; Ibragimov, R.A. Hydration Products of Portland Cement Modified with a Complex Admixture. Inorg. Mater. 2015, 51, 187–190. [Google Scholar] [CrossRef]
- Tolstoy, A.; Lesovik, V.; Fediuk, R.; Amran, M.; Gunasekaran, M.; Vatin, N.; Vasilev, Y. Production of Greener High-Strength Concrete Using Russian Quartz Sandstone Mine Waste Aggregates. Materials 2020, 13, 5575. [Google Scholar] [CrossRef]
- Tian, W.; Qi, B.; Liu, Y.; Liu, K.; Wang, W. Early frost resistance and permeability properties of carbon fiber/cement-based composite cured by ohmic heating under ultra-low temperature. Constr. Build. Mater. 2021, 282, 122729. [Google Scholar] [CrossRef]
- Murali, G.; Abid, S.R.; Amran, M.; Fediuk, R.; Vatin, N.; Karelina, M. Combined Effect of Multi-Walled Carbon Nanotubes, Steel Fibre and Glass Fibre Mesh on Novel Two-Stage Expanded Clay Aggregate Concrete against Impact Loading. Crystals 2021, 11, 720. [Google Scholar] [CrossRef]
- Wang, J. Frost durability and stress-strain relationship of lining shotcrete in cold environment. Constr. Build. Mater. 2018, 198, 58–69. [Google Scholar] [CrossRef]
- Amran, Y.H. Influence of structural parameters on the properties of fibred-foamed concrete. Innov. Infrastruct. Solut. 2020, 5, 1–18. [Google Scholar] [CrossRef]
- Tan, K.; Nichols, J.M. Frost Resistance of Concrete with Different Strength Grades and Mineral Admixtures. Mod. Civil Struct. Eng. 2018, 2, 1–8. [Google Scholar] [CrossRef]
- Mugahed Amran, Y.H.; Alyousef, R.; Alabduljabbar, H.; Khudhair, M.H.R.; Hejazi, F.; Alaskar, A.; Alrshoudi, F.; Siddik, A. Performance properties of structural fibred-foamed concrete. Results Eng. 2020, 5, 100092. [Google Scholar] [CrossRef]
- Murali, G.; Sallal, R.; Abid, K.; Karthikeyan, M.K.; Haridharan, M.A.; Siva, A. Low-velocity impact response of novel prepacked expanded clay aggregate fibrous concrete produced with carbon nano tube, glass fiber mesh and steel fiber. Constr. Build. Mater. 2021, 284, 122749. [Google Scholar] [CrossRef]
- Al-Nini, A.; Nikbakht, E.; Syamsir, A.; Shafiq, N.; Mohammed, B.S.; Al-Fakih, A.; Al-Nini, W.; Amran, Y.H.M. Flexural Behavior of Double-Skin Steel Tube Beams Filled with Fiber-Reinforced Cementitious Composite and Strengthened with CFRP Sheets. Materials 2020, 13, 3064. [Google Scholar] [CrossRef]
- Murali, G.; Abid, S.R.; Abdelgader, H.S.; Amran, Y.H.M.; Shekarchi, M.; Wilde, K. Repeated Projectile Impact Tests on Multi-Layered Fibrous Cementitious Composites. Int. J. Civ. Eng. 2021, 19, 635–651. [Google Scholar] [CrossRef]
- Murali, G.; Abid, S.R.; Amran, Y.M.; Abdelgader, H.S.; Fediuk, R.; Susrutha, A.; Poonguzhali, K. Impact performance of novel multi-layered prepacked aggregate fibrous composites under compression and bending. Structures 2020, 28, 1502–1515. [Google Scholar] [CrossRef]
- Fediuk, R.; Amran, M.; Klyuev, S.; Klyuev, A. Increasing the Performance of a Fiber-Reinforced Concrete for Protective Facilities. Fibers 2021, 9, 64. [Google Scholar] [CrossRef]
- Amran, M.; Fediuk, R.; Vatin, N.; Lee, Y.H.; Murali, G.; Ozbakkaloglu, T.; Klyuev, S.; Alabduljabber, H. Fibre-Reinforced Foamed Concretes: A Review. Mater. 2020, 13, 4323. [Google Scholar] [CrossRef]
- Abid, S.R.; Murali, G.; Amran, M.; Vatin, N.; Fediuk, R.; Karelina, M. Evaluation of Mode II Fracture Toughness of Hybrid Fibrous Geopolymer Composites. Materials 2021, 14, 349. [Google Scholar] [CrossRef]
- Jaishankar, P.; Murali, G.; Salaimanimagudam, M.P.; Amran, Y.H.M.; Fediuk, R.; Karthikeyan, K. Study of Topology Optimized Hammerhead Pier Beam Made with Novel Preplaced Aggregate Fibrous Concrete. Period. Polytech. Civ. Eng. 2020, 65, 287–298. [Google Scholar] [CrossRef]
- Bosnjak, J.; Sharma, A.; Grauf, K. Mechanical Properties of Concrete with Steel and Polypropylene Fibres at Elevated Temperatures. Fibers 2019, 7, 9. [Google Scholar] [CrossRef] [Green Version]
Properties | Polypropylene Fiber | Steel Fiber |
---|---|---|
Tensile strength, MPa | 350 | 800 |
Fiber diameter, µm | 20 | 300 |
Fiber length, mm | 6 | 30 |
Elastic modulus, GPa | 3,5 | 200 |
Melting temperature, °C | 145 | 1500 |
Resistant to alkalis, acids and solvents | high | high |
Density, kg/m3 | 910 | 7800 |
Mix ID | Binder | SCQS | QS | Water | Fiber | |||
---|---|---|---|---|---|---|---|---|
CEM I | SP | MM | Steel | Polypropylene | ||||
1 | 680 | - | - | 1250 | 400 | 258 | - | - |
2 | 680 | - | - | 1250 | 400 | 238 | 41.4 | - |
3 | 680 | 3.55 | - | 1250 | 400 | 216 | 41.4 | - |
4 | 680 | 3.55 | 34.3 | 1250 | 400 | 164 | 41.4 | 4.7 |
Mix ID | RTI | Plastic Strength, kPa, at the Age in Minutes | |||
---|---|---|---|---|---|
1 | 15 | 35 | 50 | ||
1 | 72 | 22.2 | 133.0 | 627.0 | 1444.5 |
2 | 25 | 60.0 | 760.2 | 1744.4 | 1855.6 |
3 | 22 | 112.3 | 1520.3 | 3410.1 | 3520.1 |
4 | 18 | 172.9 | 2251.4 | 5442.2 | 5523.2 |
Mix ID | Water Absorption, % by wt | Frost Resistance, Cycles |
---|---|---|
1 | 3.6 | 200 |
2 | 3.2 | 250 |
3 | 2.8 | 250 |
4 | 2.3 | 300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lesovik, V.; Fediuk, R.; Amran, M.; Alaskhanov, A.; Volodchenko, A.; Murali, G.; Uvarov, V.; Elistratkin, M. 3D-Printed Mortars with Combined Steel and Polypropylene Fibers. Fibers 2021, 9, 79. https://doi.org/10.3390/fib9120079
Lesovik V, Fediuk R, Amran M, Alaskhanov A, Volodchenko A, Murali G, Uvarov V, Elistratkin M. 3D-Printed Mortars with Combined Steel and Polypropylene Fibers. Fibers. 2021; 9(12):79. https://doi.org/10.3390/fib9120079
Chicago/Turabian StyleLesovik, Valery, Roman Fediuk, Mugahed Amran, Arbi Alaskhanov, Aleksandr Volodchenko, Gunasekaran Murali, Valery Uvarov, and Mikhail Elistratkin. 2021. "3D-Printed Mortars with Combined Steel and Polypropylene Fibers" Fibers 9, no. 12: 79. https://doi.org/10.3390/fib9120079
APA StyleLesovik, V., Fediuk, R., Amran, M., Alaskhanov, A., Volodchenko, A., Murali, G., Uvarov, V., & Elistratkin, M. (2021). 3D-Printed Mortars with Combined Steel and Polypropylene Fibers. Fibers, 9(12), 79. https://doi.org/10.3390/fib9120079