A Brief Review of New Fiber Microsphere Geometries
Abstract
1. Introduction
2. Multipath Interferometers with Cleaved Microspheres
3. Modified Microspheres for Random Lasing
4. Interferometric Hollow Microspheres
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kato, D. Light coupling from a stripe-geometry GaAs diode laser into an optical fiber with spherical end. J. Appl. Phys. 1973, 44, 2756–2758. [Google Scholar] [CrossRef]
- Paek, U.C.; Weaver, A.L. Formation of a Spherical Lens at Optical Fiber Ends with a CO2 Laser. Appl. Opt. 1975, 14, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.R.; Hu, T.Y.; Wang, D.N. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing. Opt. Express 2012, 20, 22813–22818. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shen, F.; Wang, Z.; Huang, Z.; Wang, A. Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor. Appl. Opt. 2006, 45, 7760–7766. [Google Scholar] [CrossRef] [PubMed]
- Jáuregui-Vázquez, D.; Estudillo-Ayala, J.M.; Rojas-Laguna, R.; Vargas-Rodr, E.; Sierra-Hernández, J.M.; Hernández-García, J.C.; Mata-Chávez, R.I. An all fiber intrinsic Fabry-Perot interferometer based on an air-microcavity. Sensors 2013, 13, 6355–6364. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Gui, Z.; Wang, G.; An, Y.; Gu, J.; Zhang, M.; Liu, X.; Wang, Z.; Wang, G.; Jia, P. A micro bubble structure based fabry-perot optical fiber strain sensor with high sensitivity and low-cost characteristics. Sensors 2017, 17, 555. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.S.; Santos, J.L.; Frazão, O. Silica microspheres array strain sensor. Opt. Lett. 2014, 39, 5937–5940. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.D.; Silveira, B.; Dellith, J.; Becker, M.; Rothhard, M.; Bartelt, H.; Frazao, O. Cleaved Silica Microsphere for Temperature Measurement. IEEE Photonics Technol. Lett. 2018, 30, 797–800. [Google Scholar] [CrossRef]
- Gomes, A.D.; Karami, F.; Zibaii, M.I.; Latifi, H.; Frazo, O. Multipath Interferometer Polished Microsphere for Enhanced Temperature Sensing. IEEE Sens. Lett. 2018, 2, 1–4. [Google Scholar] [CrossRef]
- Wiersma, D.S. The physics and applications of random lasers. Nat. Phys. 2008, 4, 359–367. [Google Scholar] [CrossRef]
- Turitsyn, S.K.; Babin, S.A.; Churkin, D.V.; Vatnik, I.D.; Nikulin, M.; Podivilov, E.V. Random distributed feedback fibre lasers. Phys. Rep. 2014, 542, 133–193. [Google Scholar] [CrossRef]
- Yang, L.; Yang, J.; Yang, Y.; Zhang, Z.; Wang, J.; Zhang, Z.; Xue, P.; Gong, Y.; Copner, N. Optical sensors using chaotic correlation fiber loop ring down. Opt. Express 2017, 25, 2031–2037. [Google Scholar] [CrossRef] [PubMed]
- Argyris, A.; Syvridis, D.; Larger, L.; Annovazzi-Lodi, V.; Colet, P.; Fischer, I.; García-Ojalvo, J.; Mirasso, C.R.; Pesquera, L.; Shore, K.A. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 2005, 438, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Uchida, A.; Amano, K.; Inoue, M.; Hirano, K.; Naito, S.; Someya, H.; Oowada, I.; Kurashige, T.; Shiki, M.; Yoshimori, S.; et al. Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photonics 2008, 2, 728–732. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.; Wang, A. Chaotic Correlation Optical Time Domain Reflectometer Utilizing Laser Diode. IEEE Photonics Technol. Lett. 2008, 20, 1636–1638. [Google Scholar] [CrossRef]
- Wang, A.; Wang, N.; Yang, Y.; Wang, B.; Zhang, M.; Wang, Y. Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser. J. Lightwave Technol. 2012, 30, 3420–3426. [Google Scholar] [CrossRef]
- Xia, L.; Huang, D.; Xu, J.; Liu, D. Simultaneous and precise fault locating in WDM-PON by the generation of optical wideband chaos. Opt. Lett. 2013, 38, 3762–3764. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Xia, L.; Xu, Z.; Yu, C.; Sun, Q.; Li, W.; Huang, D.; Liu, D. Optical chaos and hybrid WDM/TDM based large capacity quasi-distributed sensing network with real-time fiber fault monitoring. Opt. Express 2015, 23, 2416–2423. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.N.; Fan, M.Q.; Zhang, L.; Wu, H.; Churkin, D.V.; Li, Y.; Qian, X.Y.; Rao, Y.J. Long-range and high-precision correlation optical time-domain reflectometry utilizing an all-fiber chaotic source. Opt. Express 2015, 23, 15514–15520. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lu, P.; Gao, S.; Xiang, D.; Lu, P.; Mihailov, S.; Bao, X. Optical fiber random grating-based multiparameter sensor. Opt. Lett. 2015, 40, 5514–5517. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, L.; Yang, H.; Zhang, L.; Wang, J.; Zhang, Z. A novel demodulation scheme for high precision quasi-distributed sensing system based on chaotic fiber laser. Sens. Actuators A: Phys. 2015, 233, 427–433. [Google Scholar] [CrossRef]
- Rontani, D.; Choi, D.; Chang, C.-Y.; Locquet, A.; Citrin, D.S. Compressive Sensing with Optical Chaos. Sci. Rep. 2016, 6, 35206. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, M.; Lu, P.; Mihailov, S.; Bao, X.; Canada, C. Multi-parameter fiber-optic sensors based on fiber random grating. In Proceedings of the 2017 25th Optical Fiber Sensors Conference, Jeju, Korea, 24–28 April 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Cao, H. Review on latest developments in random lasers with coherent feedback. J. Phys. A: Math. Gen. 2005, 38. [Google Scholar] [CrossRef]
- Hu, D.J.J.; Wang, Y.; Lim, J.L.; Zhang, T.; Mileńko, K.B.; Chen, Z.; Jiang, M.; Wang, G.; Luan, F.; Shum, P.P.; et al. Novel miniaturized fabry-perot refractometer based on a simplified hollow-core fiber with a hollow silica sphere tip. IEEE Sens. J. 2012, 12, 1239–1245. [Google Scholar] [CrossRef]
- Cibula, E.; Donlagic, D. In-line short cavity Fabry-Perot strain sensor for quasi distributed measurement utilizing standard OTDR. Opt. Express 2007, 15, 8719–8730. [Google Scholar] [CrossRef] [PubMed]
- Antunes, P.F.C.; Domingues, M.F.F.; Alberto, N.J.; André, P.S. Optical fiber microcavity strain sensors produced by the catastrophic fuse effect. IEEE Photonics Technol. Lett. 2014, 26, 78–81. [Google Scholar] [CrossRef]
- Dong, B.; Hao, J.; Zhang, T.; Lim, J.L. High sensitive fiber-optic liquid refractive index tip sensor based on a simple inline hollow glass micro-sphere. Sens. Actuators B: Chem. 2012, 171, 405–408. [Google Scholar] [CrossRef]
- Liu, S.; Yang, K.; Wang, Y.; Qu, J.; Liao, C.; He, J.; Li, Z.; Yin, G.; Sun, B.; Zhou, J.; et al. High-sensitivity strain sensor based on in-fiber rectangular air bubble. Sci. Rep. 2015, 5, 7624. [Google Scholar] [CrossRef] [PubMed]
- Villatoro, J.; Finazzi, V.; Coviello, G.; Pruneri, V. Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer. Opt. Lett. 2009, 34, 2441–2443. [Google Scholar] [CrossRef] [PubMed]
- Cano-Contreras, M.; Guzman-Chavez, A.D.; Mata-Chavez, R.I.; Vargas-Rodriguez, E.; Jauregui-Vazquez, D.; Claudio-Gonzalez, D.; Estudillo-Ayala, J.M.; Rojas-Laguna, R.; Huerta-Mascotte, E. All-fiber curvature sensor based on an abrupt tapered fiber and a Fabry-Pérot interferometer. IEEE Photonics Technol. Lett. 2014, 26, 2213–2216. [Google Scholar] [CrossRef]
- Monteiro, C.; Silva, S.; Frazao, O. Hollow microsphere fabry-perot cavity for sensing applications. IEEE Photonics Technol. Lett. 2017, 29, 1229–1232. [Google Scholar] [CrossRef]
- Monteiro, C.S.; Kobelke, J.; Schuster, K.; Bierlich, J.; Frazão, O. Fabry-Perot sensor based on two coupled microspheres for strain measurement. In Proceedings of the Optical Fiber Sensors Conference, Jeju, Korea, 24–28 April 2017; Chung, Y., Jin, W., Lee, B., Canning, J., Nakamura, K., Yuan, L., Eds.; p. 103232. [Google Scholar]
- Shi, Q.; Lv, F.; Wang, Z.; Jin, L.; Hu, J.J.; Liu, Z.; Kai, G.; Dong, X. Environmentally Stable Fabry-Pérot-Type Strain Sensor Based On Hollow-Core Photonic Bandgap Fiber. IEEE Photonics Technol. Lett. 2008, 20, 2008–2010. [Google Scholar] [CrossRef]
- Gong, Y.; Rao, Y.; Guo, Y.; Ran, Z.-L.; Wu, Y. Temperature-Insensitive Micro Fabry-Perot Strain Sensor Fabricated by Chemically Etching Er-Doped Fiber. IEEE Photonics Technol. Lett. 2009, 21, 1725–1727. [Google Scholar] [CrossRef]
- Rao, Y.-J.; Deng, M.; Duan, D.-W.; Yang, X.-C.; Zhu, T.; Cheng, G.-H. Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser. Opt. Express 2007, 15, 14123–14128. [Google Scholar] [CrossRef] [PubMed]
- Favero, F.C.; Araujo, L.; Bouwmans, G.; Finazzi, V.; Villatoro, J.; Pruneri, V. Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing. Opt. Express 2012, 20, 7112–7118. [Google Scholar] [CrossRef] [PubMed]
Cavity Structure | Strain Sensitivity | Cavity Size | Reference |
---|---|---|---|
Hollow-core photonic bandgap fiber | 1.55 pm/µε | 200 µm | [34] |
Chemically etched Er-doped fiber | 3.15 pm/µε | 104 µm | [35] |
Two inline microspheres | 4.07 pm/µε | - | [33] |
Photonic crystal fiber | 4.50 pm/µε | 75 µm | [36] |
Inline hollow microsphere | 4.66 pm/µε | 157 µm | [32] |
Spheroidal microbubble | 10.3 pm/µε | 10 µm | [37] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, A.D.; Monteiro, C.S.; Silveira, B.; Frazão, O. A Brief Review of New Fiber Microsphere Geometries. Fibers 2018, 6, 48. https://doi.org/10.3390/fib6030048
Gomes AD, Monteiro CS, Silveira B, Frazão O. A Brief Review of New Fiber Microsphere Geometries. Fibers. 2018; 6(3):48. https://doi.org/10.3390/fib6030048
Chicago/Turabian StyleGomes, André Delgado, Catarina Silva Monteiro, Beatriz Silveira, and Orlando Frazão. 2018. "A Brief Review of New Fiber Microsphere Geometries" Fibers 6, no. 3: 48. https://doi.org/10.3390/fib6030048
APA StyleGomes, A. D., Monteiro, C. S., Silveira, B., & Frazão, O. (2018). A Brief Review of New Fiber Microsphere Geometries. Fibers, 6(3), 48. https://doi.org/10.3390/fib6030048