Hydration Phenomena of Functionalized Carbon Nanotubes (CNT)/Cement Composites
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Surface Functionalization of CNTs with PC
2.3. Characterization
2.4. Mechanical Characterization of Cement CNT Mortars
3. Results and Discussion
3.1. Morphological Studies
- For Mix 1 at 5 h, pores slowly started appearing due to the evaporable water during the process of setting, as indicated by the circle. This pore formation was rapid at 24 h, as indicated in Figure 5.
- By observing the morphology of Mix 5 at 5 h and 24 h, it can be inferred from the highlighted circles that the bundles of CNTs were patched at one point, which clearly exhibits the agglomeration behavior of the non-functionalized CNTs. This is due to the poor bonding of CNTs with cement grains, which resulted in improper dispersion. The same behavior appeared up until the 28th day of hydration.
- For Mix 7 at 5 h, it can be observed (highlighted circle) that the bridge-like formation of f-CNTs with hydration products of composites filled the thermal crack that occurred during the setting process. Further, it can be observed in the highlighted circle that a nested formation of cage-like structure occurred at 24 h of hydration in the same mix. This is evidence for the proper dispersion and chelation of CNTs, when functionalized with superplasticizer.
- Further, while comparing Mixes 5 and 7, it can be observed as indicated by the highlighted circles that, in the former case, bundles of CNTs appeared in agglomerated form due to the lack of functionalization. However, in the latter case, a well-co-ordinated and uniformly dispersed f-CNTs–hydration matrix is observed. This proves the effective functionalization of CNTs during cement hydration and its role as a filler and crack-bridging agent, thereby enhancing mechanical strength. Since the durability of the cement composites are largely affected by the presence of the pores or cracks formed at the early stage of hydration, it is necessary to create an in-situ filler or crack-bridging agent, which will automatically take care of the durability of the composites. The observations made in the present study also support the role of f-CNTs as in-situ filler as well as a crack-bridging agent. Hence, the durability of the above composites is taken care of.
3.2. Mechanical Property Analysis
3.3. Failure Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605. [Google Scholar] [CrossRef]
- Dowling, A.P. Development of nanotechnologies. Mater. Today 2004, 7, 30–35. [Google Scholar] [CrossRef]
- Hullmann, A. Measuring and assessing the development of nanotechnology. Scientometrics 2007, 70, 739–758. [Google Scholar] [CrossRef]
- Tiwari, J.N.; Tiwari, R.N.; Kim, K.S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 2012, 57, 724–803. [Google Scholar] [CrossRef]
- Khan, W.; Sharma, R.; Saini, P. Carbon Nanotube-Based Polymer Composites: Synthesis, Properties and Applications. In Carbon Nanotubes-Current Progress of their Polymer Composites; Berber, M.R., Hafez, I.H., Eds.; InTech: London, UK, 2016. [Google Scholar]
- Hayashi, T.; Endo, M. Carbon nanotubes as structural material and their application in composites. Compos. Part B 2011, 42, 2151–2157. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, J.-Q.; Qian, W.-Z.; Zhang, Y.-Y.; Wei, F. The Road for Nanomaterials Industry: A Review of Carbon Nanotube Production, Post-Treatment, and Bulk Applications for Composites and Energy Storage. Small 2013, 9, 1237–1265. [Google Scholar] [CrossRef] [PubMed]
- Khandoker, N.; Hawkins, S.C.; Ibrahim, R.; Huynh, C.P.; Deng, F. Tensile Strength of Spinnable Multiwall Carbon Nanotubes. Procedia Eng. 2011, 10, 2572–2578. [Google Scholar] [CrossRef]
- Liu, Z.; Cong, W.; Kim, H.; Ning, F.; Jiang, Q.; Li, T.; Zhang, H.C.; Zhou, Y. Feasibility Exploration of Superalloys for AISI 4140 Steel Repairing using Laser Engineered Net Shaping. Procedia Manuf. 2017, 10, 912–922. [Google Scholar] [CrossRef]
- Collins, F.; Lambert, J.; Duan, W.H. The influences of admixtures on the dispersion, workability, and strength of carbon nanotube–OPC paste mixtures. Cem. Concr. Compos. 2012, 34, 201–207. [Google Scholar] [CrossRef]
- Siddique, R.; Mehta, A. Effect of carbon nanotubes on properties of cement mortars. Constr. Build. Mater. 2014, 50, 116–129. [Google Scholar] [CrossRef]
- Gillani, S.S.; Khitab, A.; Ahmad, S.; Khushnood, R.A.; Ferro, G.A.; Kazmi, S.M.; Qureshi, L.A.; Restuccia, L. Improving the mechanical performance of cement composites by carbon nanotubes addition. Procedia Struct. Integr. 2017, 3, 11–17. [Google Scholar] [CrossRef]
- Shah, S.P.; Hou, P.; Cheng, X. Durability of Cement-Based Materials and Nano-particles: A Review. In Nanotechnology in Construction; Sobolev, K., Shah, S.P., Eds.; Springer International Publishing: Switzerland, 2015; pp. 15–24. Available online: https://link.springer.com/chapter/10.1007/978-3-319-17088-6_2 (accessed on 27 August 2017).
- Li, W.-W.; Ji, W.-M.; Liu, Y.; Xing, F.; Liu, Y.-K. Damping Property of a Cement-Based Material Containing Carbon Nanotube. J. Nanomater. 2015, 2015, 1–7. [Google Scholar] [CrossRef]
- Sáez de Ibarra, Y.; Gaitero, J.J.; Erkizia, E.; Campillo, I. Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. Phys. Stat. Solidi A 2006, 203, 1076–1081. [Google Scholar] [CrossRef]
- Cui, H.; Yang, S.; Memon, S. Development of Carbon Nanotube Modified Cement Paste with Microencapsulated Phase-Change Material for Structural–Functional Integrated Application. Int. J. Mol. Sci. 2015, 16, 8027–8039. [Google Scholar] [CrossRef] [PubMed]
- Arash, B.; Wang, Q.; Varadan, V.K. Mechanical properties of carbon nanotube/polymer composites. Sci. Rep. 2015, 4. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Larsen, R.M. Comparative Study on Dispersion and Interfacial Properties of Single Walled Carbon Nanotube/Polymer Composites Using Hansen Solubility Parameters. ACS Appl. Mater. Interfaces 2013, 5, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Gaffney, A.M.; Santos-Martinez, M.J.; Satti, A.; Major, T.C.; Wynne, K.J.; Gun’ko, Y.K.; Annich, G.M.; Elia, G.; Radomski, M.W. Blood biocompatibility of surface-bound multi-walled carbon nanotubes. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Lischner, J.; Arias, T.A. Material limitations of carbon-nanotube inertial balances: Possibility of intrinsic yoctogram mass resolution at room temperature. Phys. Rev. B 2010, 81. [Google Scholar] [CrossRef]
- Li, G.Y.; Wang, P.M.; Zhao, X. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem. Concr. Compos. 2007, 29, 377–382. [Google Scholar] [CrossRef]
- Luo, J.; Duan, Z.; Li, H. The influence of surfactants on the processing of multi-walled carbon nanotubes in reinforced cement matrix composites. Phys. Stat. Solidi A 2009, 206. [Google Scholar] [CrossRef]
- Shah, S.P.; Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Mondal, P. Nanoscale Modification of Cementitious Materials. In Nanotechnology in Construction 3; Bittnar, Z., Bartos, P.J.M., Němeček, J., Šmilauer, V., Zeman, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 125–130. [Google Scholar]
- Vaisman, L.; Wagner, H.D.; Marom, G. The role of surfactants in dispersion of carbon nanotubes. Adv. Colloid Interface Sci. 2006, 128–130, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Sobolkina, A.; Mechtcherine, V.; Khavrus, V.; Maier, D.; Mende, M.; Ritschel, M.; Leonhardt, A. Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cem. Concr. Compos. 2012, 34, 1104–1113. [Google Scholar] [CrossRef]
- Chen, Z.; Lim, J.L.G.L.; Yang, E.-H. Ultra high performance cement-based composites incorporating low dosage of plasma synthesized carbon nanotubes. Mater. Des. 2016, 108, 479–487. [Google Scholar] [CrossRef]
- Poorgholami-Bejarpasi, N.; Sohrabi, B. Role of surfactant structure in aqueous dispersions of carbon nanotubes. Fluid Phase Equilib. 2015, 394, 19–28. [Google Scholar] [CrossRef]
- Ghozatloo, A.; Rashidi, A.M.; Shariaty-Niasar, M. Effects of surface modification on the dispersion and thermal conductivity of CNT/water nanofluids. Int. Commun. Heat Mass Transf. 2014, 54, 1–7. [Google Scholar] [CrossRef]
- Korayem, A.H.; Barati, M.R.; Chen, S.J.; Simon, G.P.; Zhao, X.L.; Duan, W.H. Optimizing the degree of carbon nanotube dispersion in a solvent for producing reinforced epoxy matrices. Powder Technol. 2015, 284, 541–550. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Francisco, W.; de Menezes, B.R.; Cividanes, L.D.; dos Reis Coutinho, A.; Thim, G.P. Carbon nanotube functionalized with dodecylamine for the effective dispersion in solvents. Appl. Surf. Sci. 2015, 357, 2154–2159. [Google Scholar] [CrossRef]
- Li, Y.; Huang, X. Dispersion evaluation, processing and tensile properties of carbon nanotubes-modified epoxy composites prepared by high pressure homogenization. Compos. Part Appl. Sci. Manuf. 2015, 78, 166–173. [Google Scholar] [CrossRef]
- D'Alessandro, A.; Rallini, M.; Ubertini, F.; Materazzi, A.L.; Kenny, J.M. Investigations on scalable fabrication procedures for self-sensing carbon nanotube cement-matrix composites for SHM applications. Cem. Concr. Compos. 2016, 65, 200–213. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Highly dispersed carbon nanotube reinforced cement based materials. Cem. Concr. Res. 2010, 40, 1052–1059. [Google Scholar] [CrossRef]
- Krause, B.; Mende, M.; Pötschke, P.; Petzold, G. Dispersability and particle size distribution of CNTs in an aqueous surfactant dispersion as a function of ultrasonic treatment time. Carbon 2010, 48, 2746–2754. [Google Scholar] [CrossRef]
- Xu, S.; Liu, J.; Li, Q. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste. Constr. Build. Mater. 2015, 76, 16–23. [Google Scholar] [CrossRef]
- Stephens, C.; Brown, L.; Sanchez, F. Quantification of the re-agglomeration of carbon nanofiber aqueous dispersion in cement pastes and effect on the early age flexural response. Carbon 2016, 107, 482–500. [Google Scholar] [CrossRef]
- Chaipanich, A.; Nochaiya, T.; Wongkeo, W.; Torkittikul, P. Compressive strength and microstructure of carbon nanotubes–fly ash cement composites. Mater. Sci. Eng. A 2010, 527, 1063–1067. [Google Scholar] [CrossRef]
- Nochaiya, T.; Chaipanich, A. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials. Appl. Surf. Sci. 2011, 257, 1941–1945. [Google Scholar] [CrossRef]
- Metaxa, Z.S.; Seo, J.-W.T.; Konsta-Gdoutos, M.S.; Hersam, M.C.; Shah, S.P. Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials. Cem. Concr. Compos. 2012, 34, 612–617. [Google Scholar] [CrossRef]
- Morsy, M.S.; Alsayed, S.H.; Aqel, M. Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar. Constr. Build. Mater. 2011, 25, 145–149. [Google Scholar] [CrossRef]
- Li, G.Y.; Wang, P.M.; Zhao, X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 2005, 43, 1239–1245. [Google Scholar] [CrossRef]
- Horszczaruk, E.; Mijowska, E.; Kalenczuk, R.J.; Aleksandrzak, M.; Mijowska, S. Nanocomposite of cement/graphene oxide—Impact on hydration kinetics and Young’s modulus. Constr. Build. Mater. 2015, 78, 234–242. [Google Scholar] [CrossRef]
- García-Lodeiro, I.; Fernández-Jiménez, A.; Blanco, M.T.; Palomo, A. FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H. J. Sol-Gel Sci. Technol. 2008, 45, 63–72. [Google Scholar] [CrossRef]
Mix ID | Mix Details | Water/Cement (W/C)Ratio | % of Polycarboxylic Superplasticiser with Respect to the W/C |
---|---|---|---|
Mix-1 | Neat cement | 0.40 | None |
Mix-2 | Neat cement | 0.28 | 0.5 |
Mix-3 | Cement + 0.025% Carbon Nanotubes (CNTs) | 0.56 | None |
Mix-4 | Cement + 0.05% CNTs | 0.68 | None |
Mix-5 | Cement + 0.5% CNT s | 0.80 | None |
Mix-6 | Cement + 0.025% CNTs | 0.35 | 0.5 |
Mix-7 | Cement + 0.05% CNTs | 0.40 | 0.5 |
Mix-8 | Cement + 0.5% CNTs | 0.45 | 0.5 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balasubramaniam, B.; Mondal, K.; Ramasamy, K.; Palani, G.S.; Iyer, N.R. Hydration Phenomena of Functionalized Carbon Nanotubes (CNT)/Cement Composites. Fibers 2017, 5, 39. https://doi.org/10.3390/fib5040039
Balasubramaniam B, Mondal K, Ramasamy K, Palani GS, Iyer NR. Hydration Phenomena of Functionalized Carbon Nanotubes (CNT)/Cement Composites. Fibers. 2017; 5(4):39. https://doi.org/10.3390/fib5040039
Chicago/Turabian StyleBalasubramaniam, Bhuvaneshwari, Kunal Mondal, Karunya Ramasamy, Gadyam S. Palani, and Nagesh R. Iyer. 2017. "Hydration Phenomena of Functionalized Carbon Nanotubes (CNT)/Cement Composites" Fibers 5, no. 4: 39. https://doi.org/10.3390/fib5040039
APA StyleBalasubramaniam, B., Mondal, K., Ramasamy, K., Palani, G. S., & Iyer, N. R. (2017). Hydration Phenomena of Functionalized Carbon Nanotubes (CNT)/Cement Composites. Fibers, 5(4), 39. https://doi.org/10.3390/fib5040039